你好,欢迎访问达普芯片交易网!|  电话:010-82614113

达普芯片交易网 > 新闻资讯 > 基础知识

数位投影与显示:DLP技术基础知识介绍

  在我们的世界里,视觉和声音都是类比形式,但当我们利用电子讯号来获取、储存和传送这些类比现象时,采用数位技术却能带来许多重大优点;音讯处理就是个例子,当它从磁带和黑胶唱片的类比技术转变为数位音乐光碟后,数位技术的优点也第一次鲜明的呈现在人们面前——DLP技术把相同理念带到静态和动态影像世界。

  DLP技术

  数位光源处理技术(Digital Light Processing,简称DLP)是真正的数位投影和显示技术,它能接受数位视讯,然后产生一系列的数位光脉冲;这些光脉冲进入眼睛后,我们的眼睛会把它解译成为彩色类比影像。

  DLP技术是以一种微机电(MEMS)元件为基础,称为数位微型反射镜元件(Digital Micromirror Device,简称DMD),这种速度极快的反射性数位光开关是由TI在1987年发明。DMD微晶片上面包含数量庞大的超小型数位光开关,它们是面积非常小(14微米)、外观为四方型、并由铝金属制程的绞接式反射镜,可以接受电子讯号代表的资料字元,然后产生光学字元输出。

  DMD周围环绕着许多必要功能,例如影像处理、记忆体、格式转换、时序控制、光源和投影光学系统,它们可以接受数位影像,然后在不降低画质的情形下,把这些影像投影到投影幕。

  DLP发展

  第一部采用单片式DMD晶片的DLP投影机提供350流明亮度、VGA(640 x 480)解析度和大约23磅的重量;相形之下,今日采用单片式DMD晶片的DLP投影机重量最轻只有2磅,解析度达到SXGA(1,280 x 1,024),最高并能提供3,000流明的亮度。另一方面,第一部采用三片式DMD晶片的DLP投影机可提供1,300流明亮度,目前采用三片式DMD晶片的DLP投影机却能达到17,500流明。今天,消费者只需不到1,000美元,就能买到以DLP技术为基础的投影机。

  第一部DLP投影机进入市场至今已经七年,这段期间出现了许多进步,使得DLP投影机的效能、重量、体积和成本都获得大幅改进。1996年时只有一种DMD元件,这段期间却有13种不同的DMD元件问世。解析度也大幅提高,专为DLP Cinema应用而设计的最新DMD元件就能提供220万像素,长宽比16:9的DMD元件也已推出。透过将微反射镜的面积从~17微米减少到~14微米,并把微反射镜的间距从1微米缩小成0.8微米,元件体积大幅减少,制造成本也变得更低。此外,元件制程也从六吋晶圆升级至八吋晶圆,不但进一步降低成本,还能增加制造良率。

  提高对比值是许多研发工作的重点,主要改变包括采用了更小旋转导孔(Smaller Rotated Via,简称SRV),它将微反射镜中心的方形“孔”旋转45度,体积也变得更小,这能减少杂散光(stray light)的影响,进而提高对比值。最近,一种称为Dark Metal 3的新制程技术也被采用,它会在DMD次结构表面镀上一层吸光性材料,让通过微反射镜间隙的光线不会再反射出来,而是被这些材料所吸收,这也能减少杂散光强度,提供更高的对比值。

  除了DMD元件之外,DLP技术的许多其它领域也是研发重点,例如把更多的投影系统功能整合至相关晶片组。这项努力还在进行中,但它已经让DLP解决方案的效能更高、体积更小、重量更轻和成本更低,未来这些影响还会更明显。DDR和LVDS子系统的应用也可大幅改善效能,特别是在视讯应用方面。

  自从第一部投影机推出后,色轮的效能也有长足进步。第一部投影机采用三种颜色的色轮,并以1x的正常速度工作,今日的投影机最多可能采用6种颜色,并以3x的高速工作,等于是将颜色更新速率(color refresh rates)提高6倍,大幅减少色序系统(color sequential systems)常出现的假影杂讯(artifacts)。由于更多的色轮可供选择,制造商将享有更大弹性,例如他们可以针对亮度最佳化,以满足商业投影机的高亮度要求,或是针对色彩饱和度最佳化,以提供家庭娱乐应用所需要的更高色彩饱和度。最新发展重点是采用SCR(Sequential Color Recapture)技术,它有很大潜力来提高效率、增加输出亮度和改善色彩饱和度。

  制造

  DMD像素是一种整合的微机电上层结构电路单元(MEMS superstructure cell),它是利用CMOS SRAM记忆晶胞所制成。DMD上层结构的制造是从完整CMOS记忆体电路开始,再透过光罩层的使用,制造出铝金属层和硬化光阻层(hardened photoresist)交替的上层结构,铝金属层包括位址电极(address electrode)、绞链(hinge)、轭(yoke)和反射镜,硬化光阻层则做为牺牲层(sacrificial layer),用来形成两个空气间隙(air gaps)。铝金属会经过溅镀沉积(sputter-deposited)以及电浆蚀刻(plasma-etched)处理,牺牲层则会经过电浆去灰(plasma-ashed)处理,以便制造出层间的空气间隙。

  工作原理

  每个微反射镜都能将光线从两个方向反射出去,实际反射方向则视底层记忆晶胞的状态而定;当记忆晶胞处于ON状态时,反射镜会旋转至+12度,若记忆晶胞处于OFF状态,反射镜会旋转至-12度。只要结合DMD以及适当光源和投影光学系统,反射镜就会把入射光反射进入或是离开投影镜头的透光孔,使得ON状态的反射镜看起来非常明亮,OFF状态的反射镜看起来就很黑暗。利用二位元脉冲宽度调变可以得到灰阶效果,如果使用固定式或旋转式彩色滤镜,再搭配一颗或三颗DMD晶片,即可得到彩色显示效果。

  DMD的输入是由电流代表的电子字元,输出则是光学字元,这种光调变或开关技术又称为二位元脉冲宽度调变(binary pulsewidth modulation),它会把8位元字元送至DMD的每个数位光开关输入端,产生28或256个灰阶。最简单的位址序列(address sequence)是将可供使用的字元时间(field time)分成八个部份,再从最高有效位元(MSB)到最低有效位元(LSB),依序在每个位元时间使用一个位址序列。当整个光开关阵列都被最高位元定址后,再将各个像素致能(重设),使他们同时对最高有效位元的状态(1或0)做出反应。在每个位元时间,下个位元会被载入记忆体阵列,等到这个位元时间结束时,这些像素会被重设,使它们同时对下个位址位元做出反应。此过程会不断重复,直到所有的位址位元都载入记忆体。

  入射光进入光开关后,会被光开关切换或调变成为一群光包(light bundles),然后再反射出来,光包时间则是由电子字元的个别位元所决定。对于观察者来说,由于光包时间远小于眼睛的integration时间,因此他们将会看到固定亮度的光线。

  DLP架构

  DLP投影系统应该采用一颗或三颗DMD晶片是由多项因素决定,包括成本、光源效率、功耗、重量和体积。

  单晶片DLP子系统主要用于商用资料投影机、绝大多数的家庭娱乐投影机以及大萤幕背投电视,它先利用一组聚光镜将灯泡发出的光线聚焦在穿透性色轮(transmissive color wheel),再利用第二组镜片将通过色轮的光线均匀聚焦在DMD元件表面。随着反射镜旋转状态的不同(+12度或-12度),光线可能会反射进入投影镜头的透光孔(ON)或是离开投影镜头的透光孔(OFF)。

  采用单片面板可以缩小光学系统的体积,减轻它们的重量,使厂商得以发展出携带方便又有弹性的投影机。

  对于必须提供高亮度输出的应用,例如会议室、礼堂、研讨会以及出租和舞台,就必须采用三颗DMD的架构,这能组成更大的反射面积,让投影机能透过镜头提供更高亮度的输出。在采用三颗DMD元件的投影机中,灯泡发出的光线会被棱镜分成红绿蓝三种原色,每种颜色则分别被导向适当的DMD元件,这表示红光、绿光和蓝光都各有一颗DMD元件负责执行光调变。对于采用单颗DMD的DLP系统,萤幕像素是一个微反射镜的输出结果,但是3-DMD提供的萤幕像素则是三个微反射镜输出的组合/聚光结果,一个微反射镜调变红光,第二个调变绿光,第三个调变蓝光。使用三个DMD元件还能支援更先进的色彩处理,进而提供范围更宽广的色彩再生能力。

  DLP市场

  DLP是非常独特的技术,因为它能针对种类最广泛的投影和显示应用,协助厂商发展最佳解决方案。单片面板架构可用来发展重量仅2磅的投影机,这也是全世界最小最轻的投影机;事实上,所有重量小于3.5磅的投影机都是采用DLP技术。应用领域另一端则是采用3颗DMD元件的DLP架构,它已被用来发展全世界最明亮的投影机,输出亮度高达17,500流明。大萤幕电视是DLP技术的一个快速成长市场,TI客户已针对此市场发展各种消费性应用解决方案,提供绝佳影像画质、精巧设计、优雅造型和很低的成本。立体电视墙和平面电视墙(video cube/video wall)制造商在发展命令及控制应用时,DLP也是他们最先考虑的技术。

  DLP技术的另一个重要市场是数位剧院投影解决方案市场。电影业者早就发现,若能透过数位形式把他们的电影传送到全世界电影院,他们即可获得庞大利益。事实上,电影业者早就掌握充份科技,可将原版电影从类比转换成数位形式,然后压缩、加密和传送所得到的档案,再把电影储存至电影院里的伺服器 - 但若缺少了数位投影技术,业者就无法在萤幕上产生和胶卷底片同样画质的影像,数位剧院也就无法成为现实。

  TI在1990年代末期开始与电影业者合作,希望能发展出特殊应用的DLP技术,可在普通电影院播放首轮电影。

  TI在1999年展示了第一套产品原型,并用来播放“星际大战首部曲:威胁潜伏”;就在同时,大规模的全球现场展示计划也随之展开,用来评估数位剧院投影系统是否强固可靠,它的操作控制是否简单方便,这套系统随后成为业界熟知的DLP Cinema技术。

  此后,全世界已有超过160家电影院安装以DLP Cinema技术为基础的投影机,DLP Cinema技术也是目前唯一经过实际考验的数位剧院投影技术,证明它能稳定可靠的提供高画质影像,不但看起来不输给胶卷底片,有些人甚至认为DLP Cinema投影出来的画质还胜过它们。

  DLP优势

  对于目前大多数投影和显示应用,LCD技术是DLP最主要的竞争对手,但DLP技术拥有多项优势胜过LCD技术。DLP是数位技术,每个微反射镜只会处于ON或OFF状态,LCD却是一种类比技术。数位投影技术的优点是它能忠实而不断重复的产生影像,不会受到温度、湿气或震动等环境因素的影响。

  DLP技术核心的微反射镜能以每秒5,000次速度开关,远超过LCD像素的开关速度,这能带来多项优点,其中最重要的就是DLP技术只需使用一个投影面板,就能同时调变红绿蓝三种光束;相形之下,LCD技术由于速度较慢,因此必须采用三片式投影面板架构,第一片面板用来调变红光,第二片调变绿光,第三片给蓝光使用。

  单片面板架构有多项优点:首先,单面板架构只需一套简单轻巧的光学系统,使它能发展出体积重量都小于三片式面板系统的投影机和显示器。

  简单轻巧的光学系统为DLP技术带来另一项优势:投影机或大萤幕电视内的光线管理要比三片面板架构更简单,这能为它带来更高的对比值。高对比值可以提供更丰富的画面细节,使画面更逼真,黑颜色会显得更黑,并让画面看起来更清晰锐利(人体视觉器官依赖对比值来分辨物体的边缘,因此高对比值影像看起来更锐利,采用DLP技术的投影机很容易就能达到2000:1以上的对比值。

  此外,根据定义,单片面板系统绝不会失焦,但采用三片面板的LCD系统却可能受到环境因素的影响而失焦,使得萤幕画面看起来有些模糊。单片面板系统所提供的画面却能永远保持清晰锐利。

  观众对于影像画质的好坏还会受到另外一项因素影响,就是它看起来“与电影相似”的程度,在观看动态视讯时更是如此。在DLP技术中,微反射镜的反射面积远大于它们之间的距离,因此它能提供很高的“填满率(fill factor)”,投影画面看起来也更加完美自然。另一方面,若和像素之间的距离相比,LCD技术的像素面积却没有那么大,使得画面看起来有点颗粒的感觉,这种情形就像是透过“格状玻璃”看图片一样。

  微反射镜拥有很高的开关速度,因此就本质而言,它更有能力将画面的快速动作准确再生,这是它为DLP技术带来的另一项优点;LCD技术由于开关速度较慢,快速移动的影像画面看起来会有些模糊不清。

  若和其它技术相比,例如电浆、映像管和LCOS等,DLP技术也有多项重要优势。

  DLP可靠性

  DLP非常可靠,对于一种在本质上属于机械性的技术来说,这确实令人惊讶。实验室测试结果显示,DMD的预期寿命时间超过100,000小时,客户反应结果也多半证实了这项预测。此外,DLP技术全部采用无机材料,不会像有机技术一样,因为长时间曝露在热源或光源下而逐渐劣化。2002年5月,美国罗彻斯特大学的孟赛尔色彩科学实验室(Munsell Color Science Laboratory at the University of Rochester) 进行一项研究计划,对五部可携式商业资料液晶投影机和两部DLP投影机的“画面可靠性”进行比较,他们把“画面可靠性”定义为:投影机画面品质下降到无法接受地步的所需工作时间。接受测试的投影机必须日夜不停连续工作4,000小时;测试期间结束后研究人员发现,所有液晶投影机都出现清楚可见而令人不悦的画面瑕疵,采用DLP技术的投影机却没有这些问题。研究人员认为LCD技术的影像品质会下降,主要是因为偏光板和面板内的有机材料长期曝露在光源和热源之下。

  结论

  仅仅七年多的时间,DLP技术就成为投影和显示系统市场的重要力量。DLP投影机目前的市场占有率在25%至35%之间,绝大多数分析师都认为这个数字还会增加,甚至会成为市场的最主要技术。在美国境内,采用DLP技术大萤幕电视早已超过以其它技术为基础的大萤幕产品,因为消费者比较喜欢TI客户提供的更完美画质、更良好设计和更低价格。无论是现有市场的成长,或者是新市场商机的来临,人们都将发现业界的转变脚步仍将由DLP技术继续主导。

热点排行

在线人工客服

点击这里给我发消息

点击这里给我发消息

点击这里给我发消息

010-82614113

客服在线时间周一至周五
9:00-17:30