

NPN SILICON TRANSISTOR

NE681M13

FEATURES

NEW MINIATURE M13 PACKAGE:

- Small transistor outline –
- 1.0 X 0.5 X 0.5 mm
- Low profile / 0.50 mm package height
- Flat lead style for better RF performance

• HIGH GAIN BANDWIDTH PRODUCT:

fT = 7 GHz

LOW NOISE FIGURE:

NF = 1.4 dB

DESCRIPTION

The NE681M13 transistor is ideal for low noise, high gain, and low cost amplifier applications. NEC's new low profile/ flat lead style "M13" package is ideal for today's portable wireless applications. The NE681 is also available in chip, Micro-x, and six different low cost plastic surface mount package styles.

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE M13

PIN CONNECTIONS

- 1. Emitter
- 2. Base
- 3. Collector

ELECTRICAL CHARACTERISTICS (TA = 25°C)

PART NUMBER EIAJ¹ REGISTERED NUMBER PACKAGE OUTLINE			NE681M13 2SC5615 M13			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX	
f⊤	Gain Bandwidth at Vce = 3 V, Ic = 7 mA, f = 1 GHz	GHz	4.5	7		
NF	Noise Figure at VcE = 3 V, Ic = 7 mA, f = 1 GHz	dB		1.4	2.7	
S21E ²	Insertion Power Gain at VcE = 3 V, Ic = 7 mA, f = 1 GHz	dB	10	12		
hFE ²	Forward Current Gain at VcE = 3 V, Ic = 7 mA		80		145	
Ісво	Collector Cutoff Current at VcB = 10 V, IE = 0	μΑ			0.8	
І ЕВО	Emitter Cutoff Current at VEB = 1 V, Ic = 0	μΑ			0.8	
CRE ³	Feedback Capacitance at VcB = 3 V, IE = 0, f = 1 MHz	pF			0.9	

Notes:

- 1. Electronic Industrial Association of Japan.
- 2. Pulsed measurement, pulse width \leq 350 µs, duty cycle \leq 2 %.
- 3. Capacitance is measured with emitter and case connected to the guard terminal at the bridge.

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vсво	Collector to Base Voltage	V	20
VCEO	Collector to Emitter Voltage	V	10
VEBO	Emitter to Base Voltage	V	1.5
Ic	Collector Current	mA	65
PT ²	Total Power Dissipation	mW	140
TJ	Junction Temperature	°C	150
Тѕтс	Storage Temperature	°C	-65 to +150

Notes:

- Operation in excess of any one of these parameters may result in permanent damage.
- 2. With device mounted on 1.08 cm² X 1.2 mm glass epoxy board.

TYPICAL PERFORMANCE CURVES (TA = 25°C)

