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Implementing Adaptive Predictive
Control with the TMS320C50 DSP

Abstract 

This application report describes the implementation of the Texas
Instruments (TITM) TMS320C50 digital signal process (DSP)  and
particularly the TMS320C50 DSP starter kit (DSK) as an
advanced controller. The TMS320C50 effectively handles heavy
computation loads required by adaptive predictive control
methods. The design includes a supervisor to improve robustness
to modeling errors.

To illustrate, an experiment is conducted to regulate the position
of a marble on a rail. The marble on a rail is an unstable
mechanical system in which dynamics change according to its
state. Sophisticated methods of adaptive control are therefore
necessary. These methods are composed mostly of a predictive
controller and an algorithm to identify the parameters of the
process to be controlled.

The identification is often realized by recursive least squares
(RLS) methods that provide an estimated transfer function of the
system in discrete time. For this experiment, the generalized
predictive control (GPC) from D.W. Clarke was chosen as the
control algorithm. The augmented UD identification (AUDI) from S.
Niu was chosen as the identification algorithm. In adaptive control,
the GPC is often employed because of its robustness properties
and the AUDI because of its numerical properties.

This document was an entry in the 1995 DSP Solutions
Challenge, an annual contest organized by TI to encourage
students from around the world to find innovative ways to use
DSPs. For more information on the TI DSP Solutions Challenge,
see TI’s World Wide Web site at www.ti.com.
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Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.



SPRA311

Implementing Adaptive Predictive Control with the TMS320C50 DSP 9

The Experiment

Physical Description and Control Objective

The system is mostly composed of an iron marble moving on a
reclining rail shaped like a gutter. One end of the rail is fixed to an
axis and can freely turn around it. The other extremity is fixed to a
spring pulled on its other side by a thread. The thread is rolled
around a pulley in which rotation is controlled by an electric motor
through a mechanical reducer. Figure 1 shows the system.

Figure 1. Experiment System

The control objective is to regulate the position of the marble in
the middle of the rail. For example, the controller should be able to
keep the marble in the middle of the rail, then make it go close to
the left end and, finally, go back to the middle.
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Modeling of the Mechanical System

To understand the difficulty of the control problem, it is necessary
to write down the mechanical equations of the system. Two
different parts can be considered. The first one concerns the way
the marble is accelerated according to the rail angle. Practically,
the marble is submitted to the forces shown in Figure 2

Figure 2. Marble Acceleration Model

The vector equation of mechanics for the marble gives:

Rgmm
&&& +=γ (1)

where:

m  denotes the mass of the marble,

γ&  denotes its acceleration,

gm
&

 denotes its weight,

R
&

 denotes the reaction of the rail.

Here, no friction between the marble and the rail is assumed. If
projected onto the x axis, this equation becomes:

θcosmgxm =�� (2)

where:

x denotes the position of the marble,

θ denotes the angular position of the rail.
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So, for low values of the θ  angle, the transfer function between θ
and x  is when using the Laplace transform:

2)(

)(

s

g

s

sX −=
Θ

(3)

Now follows the second part of the system concerning the way the
angular position of the rail is set. To describe how the control of θ
is achieved, it is necessary to consider the system marble + rail
and to write the equation of the torque around the O point:

Figure 3. Rail Position Model

It yields to

lhkh
x

mgMgxI )(
22

1
)( ��� ξθ ++−−= (4)

where:

l denotes the length of the rail,

M denotes its mass,

I(x) denotes its inertia given by:

( ) 22

3

1
mxMlxI +=  (5)

k denotes the rigidity of the spring,

ξ  denotes its dynamic damping ratio,

h  denotes its elongation.

The elongation can be divided into three terms:

θlhhh −+′= 0 (6)
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where h0 denotes the elongation needed to compensate the
weight of the rail.

Then, the dynamic equation can be simplified:

( ) ( ) ( )llhllhk
x

mgxI θξθθ −′+−′+−=
2

�� (7)

which is also:

( ) ( )lhhk
x

mgkllxI ���� ′+′+−=++ ξθθξθ
2

22 (8)

Assuming slow motion, which means I(x) is nearly constant, and
using the Laplace transform once more, the equation becomes:

( )[ ] ( ) ( ) ( ) ( )sHsklsX
mg

sklslsxI ′++−=Θ++ ξξ
2

222 (9)

But:

( )
( ) 2s

g

s

sX −=
Θ

(10)

So, if the true input of the system hu �′=  is used, the transfer
function between θ and u is given by:

( )
( )

( )
( )

2

2
22324 mg

sklslsxI

sskl

sU

s

−++

+=Θ

ξ

ξ
(11)

which finally gives the useful transfer function between the
position of the marble and the control input:

( )
( )

( )
( )

2

1
2

22324 mg
sklslsxI

skgl

ssU

sX

−++

+−=
ξ

ξ
(12)

Assuming that ξ  is negligible, the transfer function takes the form:

( )
( ) ( )( )βα −+

= 22

1
ss

K

ssU

sX
(13)

where α and β are real and positive. So, the process includes:

� An integrator

� An oscillating mode

� An unstable mode
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Moreover, these modes change as I(x) changes with respect to
the position of the marble. All these techniques made the process
a very uneasy one to be controlled.

Measurement of the Marble Position

To control its position, the marble is measured by a potentiometric
system. Because a resistive wire lies along the rail, the metallic
marble acts as the cursor of the potentiometer. Figure 4 shows a
section of the rail explaining the way the position is measured:

Figure 4. Rail Section

Figure 5 illustrates the electronic circuit that shapes the signal
coming from the special potentiometer:
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Figure 5. Electronic Circuit

Here, the capacitor C1 holds the input voltage in case the marble
loses contact with the resistive wire. The potentiometer P2 helps
to adjust the zero position. The first operational amplifier on the
left amplifies and cuts off the high-frequency components of the
signal. The second operational amplifier only amplifies. The last
one adapts the output impedance. Note that the Zener diodes at
the output limit the voltage in order to protect the A/N converter of
the DSK board from high voltages.

Primary Control of the Speed of the DC Electric Motor

The motor that controls the position of the rail has the following
transfer function when it is unloaded:

( )
30

24
+

=
s

sT (14)

This includes the power amplifier. But when it is loaded and
especially dynamically loaded, its behavior changes significantly in
terms of response time and static gain. So, to avoid unpredictable
results, it is necessary to add a controller to ensure good
performances of the whole system. A very simple electronic
proportional-integral (PI) regulator realizes it. The motor has an
integrated tachymeter that provides the required value of speed
after low pass filtering. Figure 6 shows the electronic diagram of
the P1 controller:
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Figure 6. PI Controller

The experiment shows that the transfer function of the closed loop
remains regardless of the load:

( )
30

30

+
=

s
sT (15)
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GPC Control Algorithm

Main Controller

The control algorithm is the well-known GPC of D.W. Clarke, C.
Mothadi, and P.S. Tuffs (Clarke et al., 1987). The process is
supposed to be represented by an ARMAX model:

( ) ( ) ( ) ( ) ( )
( )1

11
−

−−

∆
+−=

q

te
dtuqBtyqA (16)

where:

y(t) denotes the output of the process,

( )tu  denotes its input,

( )te  denotes an uncorrelated random noise,

( )1−qA  and ( )1−qB  are polynomials of 1−q , the backward shift
operator:

( ) Na
NaqaqaqA −−− +++= �

1
1

1 1  and

( ) Nb
NbqbqbbqB −−− +++= �

1
10

1 (17)

( ) 11 1 −− −=∆ qq

The control objective is that the output y(t) follows the reference
trajectory r(t) with dynamics specified by P(q-1). So an auxiliary
output is defined by:

( ) ( ) ( )tyqPt 1−=φ (18)

which is the output filtered by the desired dynamics of the closed
loop.

The control increment minimizes the following cost function:

( ) ( ) ( )[ ] ( )[ ]∑ ∑
=

−

=
+∆+−+=

hp

hii

hc

j

jtutrPitJ
21

0

2
1ˆ λφ (19)

under the constraint:

( ) 0,0 =+∆> ktukif (20)

where:
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( ) ( )






 +=+

t

it
Eit

φφ̂ denotes the prediction of the auxiliary output

at time t+i  according to t,

hi denotes the initial horizon,

hp denotes the prediction horizon,

hc denotes the control horizon,

λ denotes the weight on the inputs.

To simplify the algorithm, hc is assumed to be equal to 1. The
predictors of φ(t) are given by:

( ) ( ) ( ) ( ) ( ) ( )dituqBqEtyqFit ii −+∆+=+ −−− 111φ̂ (21)

where Ei(q
-1) and Fi(q

-1) are the polynomial solutions of the
Diophantine equation:

( ) ( ) ( ) ( ) ( )11111 −−−−−− +∆= qFqqEqqAqP i
i

i (22)

( ) 1deg −= iEi

( ) ( ) ( )[ ]APFi deg,degmaxdeg =

The following algorithm compute Ei(q -1) and Fi(q -1) recursively:

Initialization : set:

( ) ( ) ( )111 −−− ∆=′ qqAqA

( ) 0
1

1 pqE =−

( ) ( ) ( )[ ]1
0

11
1

−−− ′−= qApqPqqF

where p0 is the constant coefficient of the polynomial P(q -1).

Recursion : Compute:

( ) ( ) 1
0,

11
1

+−−−
+ += i

iii qfqEqE

( ) ( ) ( )[ ]1
0,

11
1

−−−
+ ′−= qAfqFqqF iii

where fi,0 is the constant coefficient of the polynomial Fi(q -1).
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Now some auxiliary variables must be defined:

( ) ( ) ( ) 1
1,

1
1,

111

0,

+−−
−+

−−−− +++== iNb
iNbiiii qgqggqBqEqG

i
�

djii gh −= , (23)

( ) 1
1,

1
2,1,

1 +−−
−+

−
+−+− +++= dNb

iNbidjidjii qgqggqH �

So, the cost function can be rewritten:

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑
=

−− +−−∆+∆+=
hp

hii
iii trPtuqHtuhtyqFJ

211 11 ( )[ ] 2tu∆λ

(24)

Its minimization implies:

( )[ ] ( ) ( ) ( ) ( ) ( )[∑
=

−− −−∆+∆+==
∆∂
∂ hp

hii
iiii tuqHtuhtyqFh

tu

J
120 11 ( ) ( )] ( )tutrP ∆+ λ21 (25)

Finally, the control increment is given at time t by:

( )
( ) ( ) ( ) ( ) ( ) ( )

∑

∑∑∑

=

=

−

=

−

=

+

−∆





−





−






=∆ hp

hii
i

hp

hii
i

hp

hii
i

hp

hii
i

h

tuqHtyqFtrhP

tu
2

112 11

λ
(26)

which can take the form used in the source code:

( ) ( ) ( ) ( ) ( ) ( )
γ

111 −∆−−=∆
−− tuqStyqRtTr

tu (27)

Supervision

To achieve better robustness, the following rules have been
included in the final design. They are essentially practical:

Rule 1

( ) maxUtu ∆≤∆ (28)

The control increment is restricted to limit the divergence rate of
the process in case of poor identification. So, the estimation
algorithm is more likely to find a realistic model.
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Rule 2

( ) ( ) ( ) maxmin 1 UtututuU ≤∆+−=≤ (29)

The control increment itself is restricted to avoid the critical results
of possible instabilities.

Rule 3

( ) ( ) ( )
0b

trty
tu

−≤∆ (30)

In any case, the step of the control increment should exceed the
one necessary to reach the ordered position in one step.

Rule 4

If ( )tu∆ and ( )1−∆ tu  have opposite signs then

( ) ( )1−∆≤∆ tutu α  with  0 < α < 1 (31)

This condition avoids outputting a bang-bang control signal when
the process identification performs poorly.
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AUDI Identification Algorithm

AUDI as an RLS Algorithm

The AUDI algorithm was developed by S. Niu, D. Grant Fisher,
and D. Xiao (Niu et al., 1992). This algorithm was largely inspired
by the UD factorization algorithm of G.J. Bierman (Bierman,
1977). Because the AUDI is an RLS algorithm with a constant
forgetting factor, it minimizes the following cost function:

( ) ( ) ( )[ ]∑
=

− −=
t

i

tit iiiyJ
0

2ϕθλ (32)

where:

λ denotes the forgetting factor (0 < λ <1),

y(t) denotes the output of the system,

ϕ(t) denotes the data vector such that:

( ) ( ) ( ) ( ) ( )[ ]tmdtudtuntytyt −−−−−−−= ��1ϕ (33)

u(t) denotes the input of the system,

θ(t) denotes the vector of the system parameters such that:

( ) [ ]t
mn bbaat �� 01=θ (34)

The result of the minimization is the vector ( )tθ̂ , which is the best
estimate of the parameters. The corresponding estimated transfer
function of the system is given by:

( ) n
n

m
md

qaqa

qbqbb
qqT −−

−−
−−

+++
+++=

ˆˆ1

ˆˆˆ
ˆ

1
1

1
101

�

�
(35)

The following standard RLS algorithm obtains the vector ( )tθ̂
recursively:

At each sample time, compute:

( ) ( ) ( ) ( ) ( ) ( )[ ]1ˆ1ˆˆ −−+−= tttytKtt t θϕθθ

( ) ( ) ( ) ( )ttPttS t ϕϕλ 1−+=
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( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
λ

ϕϕ 111 1 −−−−
=

− tPttSttPtP
tP

t

(36)

( ) ( ) ( )ttPtK ϕ=

where:

K(t) denotes the vectorial Kalman gain,

P(t) denotes the covariance matrix of the parameter vector
estimate.

The problem is that the formula updating P(t) is potentially
unstable because there is no guarantee that the matrix will always
be positive definite. The main idea of the AUDI algorithm is to
decompose the covariance matrix P(t) into the P(t) = U(t)D(t)U(t)t

form where U(t) and D(t) are a unit-upper-triangular matrix and a
diagonal matrix respectively.

This decomposition guarantees positive definiteness of P(t). In the
algorithm, U(t) and D(t) are updated instead of P(t). Another
interesting feature of the algorithm rearranges and augments the
data vector and the parameters vector. These new vectors are
defined as:

( ) ( )[ ( ) ( ) ( ) −−−−−−−−−= 12 dtutyndtuntyt �ϕ ( ) ( ) ]ttydtuty )(1 −−−

( ) [ ] t
nnn bababat 11122�=θ (37)

where n is the order of the estimate. The cost function the AUDI
algorithm minimizes is:

( ) ( )[ ]
2

0
∑

=

−=
t

i
n

t
n

it
n iiJ ϕθλ (38)

The reason for choosing such vectors is explained by the forms
taken by the matrix U(t) and D(t):

( )

( )
( )

( ) ( ) ( )





























−+−

+−
−

=
−

1

10

1

ˆ1ˆ1ˆ1

1ˆ1

ˆ1

11

1

0

�

ttnt

nt

nt

tU
nn θαα

θ
α
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( ) ( ) ( ) ( ) ( )[ ]{ } 1
100 1 −

− −−−= tJtLntLntJdiagtD nn� (39)

where, particularly:

( )tiθ̂  denotes the estimate of the parameters of the ith order

model,

Ji(t) denotes the value of the cost function for the ith order model.

This algorithm provides simultaneous estimates of the parameters
for all model orders from 1 to n with a computational load
equivalent to nth order RLS.

Stepwise Procedure for the AUDI Algorithm

Initialization: At t =0, set:

P(0) = U(0)D(0)U(0)t=σ 2I

where σ  is a large integer and I is the identity matrix.

Step 1:  Construct the data vector ( )tϕ  and compute:

( ) ( )ttUf t ϕ1−=
( ) ftDg 1−=

Set β0=λ

Step 2: For ,,,1 dj �=  go through steps 3-5 (d=2n is the
dimension of U(t) and D(t) ).

Step 3: Compute :

jjjj gf+= −1ββ

( ) ( )
λβ

β

j

jjj
jj

tD
tD ,1

,

1−
= −

jj gv =

1−

−=
j

j
j

f

β
µ

Step 4: If j>1 , for i=1,…,j-1, go through step 5.

Step 5: Compute:
( ) ( ) jijiji vtUtU µ+−= ,, 1

( ) jjiii vtUvv ,1−+=
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At the end of the computation, the parameter vector estimate is
given by the last column of the U(t) matrix.
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C Source Code of the Whole Controller

#include <dsk.h> includes basic function of the DSK board

(described in Appendix)

#define min(a,b) ((a)<(b)) ? (a):(b) Some basic functions …

#define abs(x) ((x)>0)?(x):-(x)

#define N 5 degree of the estimated transfer function

#define d 5 delay of the process

float A[N+l], B[N]; polynomials composing the transfer function

#define Nd 2*N+1 dimension of U and D matrix

#define ID_forget 0.95 forgetting factor of the AUDI

float U[Nd][Nd]; matrix U of the AUDI

float D[Nd]; diagonal elements of matrix D

float Phi[Nd]; data vector of the AUDI

#define Umax 10000.0 maximum control input

#define Umin –10000.0 minimum control input

#define DUmax 1000.0 maximum input step

#define LAMBDA 0.001 weight on the input step of the GPC

#define Np 2 number of elements of polynomial P

float P[Np]={ 1.0, -0.8}; P itself

#define Pl 0.2 sum of the elements of P, P(1)

#define hp 15 prediction horizon

float E[hp]; polynomial Ei of the prediction of φ(t+i)

float F[N+1]; polynomial Fi of the prediction of φ (t+I)

float R[N+l]; polynomial R of the final form of the step input

float S[N+d-2]; polynomial S of the final form of the step input

float T, gamma; T and γ
float y0; ordered position of the marble

float y[N+1]; array containing past value of y(t) filtered by R

float delta_u[N+d-2]; array containing past value of ∆u (t) filtered by

S

float Sample_In_10Hz=0.0, Sample_Out_10Hz=0.0; Input and Output of the 10 Hz interrupt
procedure

int Ok_10Hz=0; Flag indicating whether or not 10 hz procedure

has to be entered

void Array_Shift_Left(float *tab, int n, float x) Procedure to shift an array to the left

{

int i;

for (i=1; i<n; i++) tab[i-1]=tab[i];

tab[n-1] =x

}

void Array_Shift_Right(float *tab, int n, float x) Procedure to shift an array to the right

{

int i;
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for (i=n-1; i>0; i--) tab[i]=tab[i-1];

tab[0]=x;

}

float Array_Sum(float *a, float *b, int n)

{

Procedure to compute scalar product of two
arrays (used to filter)

int i;

float s = 0,0;

for (i=0; i<n; i++) s+=a[i]*b[i];

return s;

}

void Array_Zero(float *tab, int n) Set all elements of an array to zero

{

int i;

for (i=0; i<n; i++) tab[i]=0.0;

}

void Array_Product(float *a, float *b, int na, int nb, float *c) Multiply two arrays

{

int i,j;

tab_zero(c, na+nb-1);

for (i=0; i<na; i++)

{

float temp=a[i];

for j=0; j<nb; j++) c[i+j] +=temp*b[j];

}

}

void Array_Accumulate(float *a, float *b, int n, float x)

{

Add one array to another according
to a specified weight

int i;

for (i=0; i<n; i++) a[i] += x*b[i];

}

void Init_AUDI(void) Initialization procedure of the AUDI

{ algorithm

int i,j;

Array_Zero(Phi, Nd); Set ϕ(t) to zero

for (i=0; i<Nd; i++)

{

D[i]=1e10;

for (j=0;j<Nd;j++) U[i][j]=(float)(i==j);

}

U[Nd-2][Nd-1]=1.0;

all diagonal elements of D are set to 1e10
only diagonal elements of U are set to 0
(the others are zeroed) apart from the one of
the last column which is actually b0

}
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void AUDI(void) The AUDI algorithm

{

int i,j;

float f[Nd], g[Nd], v[Nd], mu, fact, bo=ID_oubli, ff=0.0;

for (i=0; i<Nd; i++)

{

f[i]=0.0;

for (j=0; j<Nd; j++) f[i] +=U[j][i]*Phi[j]; Compute f as described in step 1

}

for (i=0; i<Nd; i++) g[i]=D[i]*f[i]; Compute g

fact=f[Nd-1]*f[Nd-1]*D[Nd-1];

if (fact<l.3*(l-ID_oubli)) return;

Compute a measurement of how new is the
information in ϕ(t) and eventually abort the
updating

if (fact>0.5) fact=0.5; Limit the updating

for (i=0; i<Nd; i++) ff +=f[i]*g[i]; Allow to update only in the direction where
there is new information

if (ff>le-20) for (i=0; i<Nd; i++) g[i]*=(1-fact/ff);

for (i=0; i<Nd; i++) Step 2 of the algorithm

{

float bn;

bn=bo+f[i]*g[i]; Step 3

D[i] *=bo/bn/ID_oubli;

v[i]=g[i];

mu=-f[i]/bo;

bo=bn;

if (i>0) Step 4

for (j=0; j<i; j++)

{

float a;

a=U[j][i]; Step 5

U[j][i]=a+v[j]*mu;

v[j]+=a*v[i];

}

}

for (i=0; i<N; i++)

{

B[i]=U[Nd-2*(i+l)][Nd-l];

A[i+1]=U[Nd-2*(i+1)-1][Nd-1];

Update the polynomials A and B according to
the new last column of matrix U

}

A[0]=1.0;

}

void Init_GPC(void) Initialization of the GPC algorithm

{

y0=0.0;

Array_Zero(y, N+1);

Array_Zero(delta_u, N+d-2);

Set the ordered position of the marble, the past
values of y(t) and the past values of ∆u(t) to
zero
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}

void GPC(void) The GPC algorithm

{

int i,j;

float h,sum_h2=0.0;

Array_Zero(R, N+1); Set R and S to zero

Array_Zero(S, N+d-2);

for (i=0; i<hp; i++)

{

if(i==0) Compute the polynomials Ei and Fi

{

E[0]=P[0]/A[0]; Initialization

for (j=0; j<N; j++)

{

F[j]=-E[0]*(A[j+1]-A[j]);

if(j<=Np) F[j]+=P[j];

}

F[N]=E[0]*A[N];

}

else

{

E[i]=F[0]/A[0]; Recursion

for (j=0; j<N; j++) F[j]=F[j+l]-E[i]*(A[j+1]-A[j]);

F[N]=E[i]*A[N];

}

if(i>=d-1) Note that this condition implies hi = d

{

Array_Product(B,E,N,i+1,G); Compute Gi

h=G[i+1-d]; and hi

Array_Accumulate(S,&(G[i+2-d]),N+d-2,h); Add Hi to S

Array_Accumulate(R,F,N+1,h); Add Fi to R

sum_h2 +=h*h; Compute the sum of hi
2

}

}

T=P1*sum_h2 Compute T

gamma=LAMBDA + sum_h2; and y

}

interrupt void AIC_Interrupt(void) Interrupt procedure called every 1/5000 sec.

{

static int count=0, Out =0;

static float In=0.0;

In=0.998*In+0.002*(float)AIC_Load(); Low pass filtering of the input

if (++count==500)

{

count=0;

Sample_In_10Hz=In;

Out=(int)Sample_Out_10Hz;

Every 1/10 sec. the procedure set the input and
the output for the 10 Hz procedure



SPRA311

28 Implementing Adaptive Predictive Control with the TMS320C50 DSP

Ok_10Hz=l;

}

AIC_Write(Out);

}

void IT_10Hz(void) Procedure called every 1/10 sec.

{

static int count=0;

float du, du_max, b1,b2;

Ok_10Hz=0;

if (count++> 100)

{

float next_y0;

count=0; Every 10 sec. the ordered position changes:

if (y0==0.0) next_y0=10000.0; middle to left corner

if(y0==10000.0) next_y0= -10000.0; left corner to right corner

if(y0== -10000.0) next_y0=0.0; back to the middle

y0=next_y0; and so on...

}

du_max=min(DUmax,abs((entree-position)/B[0])); Set the maximum step in control input
according to the model

Array_Shift_Right(y, Np+N, Sample_In_10Hz); Store the new position

du=(T*y0-Array_Sum(R,y,N+1)-Array_Sum(S,delta_u,N+d-2))/gamma; Compute the new
step of the control
increment

b1=min(du_max, Umax - Sample_Out_10Hz);

b2=min(du_max, Sample_Out_10Hz - Umin);

Look for a change of direction of the control
input

if (delta_u[0]>0.0) b2=min(b2, 0.1*delta_u[0]);

if (delta_u[0] <0.0) b1=min(bl, -0.l*delta_u[0]);

If there is one, limit the step to one tenth of
the former step

if(du>bl) du=b1;

if(du<-b2)du= -b2;

Array_Shift_Right(delta_u, N+d-2, du); Store the new step

Array_Shift_Left(Phi, Nd, - Sample_In_10Hz); update ϕ(t) with the new position

AUDI(); Run the AUDI procedure

GPC(); Then run the GPC one

Sample_Out_10Hz +=du; Set the control input

Array_Shift_Left(Phi, Nd, Sample_Out_10Hz); update ϕ (t) with the new control input

}

void main(void) The main procedure

{

Init_Hardware(); Initialization of the DSK board

/*Fc=2KHz   Fe=5KHz*/

AIC_Setup(31,31,32,32,GO|SYNCH); Set Sampling rate to 5 Khz and Cut-off
frequency to 2 KHz

Init_AUDI(); Initialization of the AUDI algorithm

Init_GPC(); Initialization of the GPC algorithm

Enable_Interrupt(); Let's go !!!
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while(l)

{

if(Ok_l0Hz) IT_10Hz(); Every 1/10 Hz enter the 10 Hz procedure

}

}

Summary

As expected, the adaptive predictive controller performed very
well. The stability margin seemed to be large. A new experiment
based on the inverted pendulum has just shown that higher
sampling rate can be achieved by the algorithm running in the
Texas Instruments TMS320C50 DSP.

For example, a simultaneous sampling frequency of 100 Hz and a
prediction horizon of 40 are no longer a problem for the
TMS320C50 DSP. Therefore, the largest part of the most
sophisticated methods of control can reach the status of real-time
methods.
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Appendix A. 
The following three files are required to compile the C source code and
make it work with the TMS320C50 DSK.

File: “DSK.LNK”
MEMORY

{

PAGE 0:

IT: origin=800h, length=  40h

PROG: origin=980h, length=1680h

PAGE 1:

DATA: origin=2000h, length=0C00h

}

SECTIONS

{

vectors: >IT

text: >PROG

cinit: >PROG

switch: >DATA

const: >DATA

stack: >DATA

sysmem: >DATA

data: >DATA

bss: >DATA

}

File: “DSK.ASM"
.title “DSK_STARTER

.mmregs

.sect "vectors"

.global _c_inf0, _AIC_Interrupt

RESET: B_c_int0 ;RESET

INTl: RETE ;Int 1

NOP

INT2: RETE ;lnt 2

NOP

INT3: RETE ;Int 3

NOP

TINT RETE ;TIMER

NOP

RINT: B _AIC_Interrupt ;Serial port receive

XINT: RETE ;Serial transmit

NOP

TRNT: RETE ;TDM receive

NOP

TXNT: RETE ;TDM transmit
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NOP

INT4: RETE ;lnt4

NOP

.text.

global_AIC_Init

global_AIC_Load

global_AIC_Write

global_TA,_RA,_TB,_RB,_AIC_CTR

_AIC_Init:

SETC INTM

LDP #0

OPL #0830h,PMST

ZAC

SAMM CWSR

SAMM PDWSR

SPLK #0022h,IMR

CALL AICINIT

LDP #0

SPLK #0012h,IMR

CLRC OVM

SPM 0

MAR *,ARl

RET

AIC_Load:

LAMM DRR

AND #0fffch

RET

_AIC_Write:

SAR AR0,*+

SAR AR1,*

LAR AR0,*+,AR2

LARK AR2,-2

MAR *0+

LACC *,AR1

AND #0FFFCh

SAMM DXR

RETD

SBRK 2

LAR ARO,*

AICINIT: LDP #0

SETC SXM

SPLK #0020h,TCR

SPLK #0001h,PRD

MAR *,AR3

LACC #0008h ;Non continuous mode

SACL SPC ;FSX as input

LACC #00C8h ;l6 bit words
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SACL SPC

LACC #080h ;Pulse AIC reset by seting it low

SACH DXR

SACL GREG

LAR AR3,#0FFFFh

RPT #10000 ;and taking it high after 10000 cycles

LACC *,0,AR3 ;(.5ms at 50ns)

SACH GREG

;__________________

LDP #_TA

LACC _TA,9 ;Initialized TA and RA register

LDP #_RA

ADD _RA,2

CALL AIC_2ND

;__________________

LDP #_TB

LACC _TB,9 ;Initialized TB and RB register

LDP #_RB

ADD _RB,2

ADD #02h

CALL _AIC_2ND

;__________________

LDP #_A_AIC_CTR

LACC _AIC_CTR,2 ;Initialized control register

ADD #03h

CALL AIC_2ND

RET

AIC_2ND:

LDP #0

SACH DXR

CLRC INTM

IDLE

ADD 6h,15

;0000 0000 0000 0011 XXXX XXXX XXXX XXXX b

SACH DXR

IDLE

SACL DXR

IDLE

ZAC

SACL DXR ;make sure the word got sent

IDLE

SETC INTM

RET

.text

.global_Init_Hardware

.global_Enable_Interrupt

_global_Disable_Interrupt

_Init_Hardware
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SETC INTM

LDP #0

OPL #0830h,PMST

ZAC

SAMM CWSR

SAMM PDWSR

SETC SXM

CLRC OVM

SPM #0

RET

_Enable_Interrupt:

CLRC INTM

RET

_Disable_Interrupt:

SETC INTM

RET

.end

File: “DSK.H"
/*__________________________________________________ */

/* MCLK=10 MHz */

/* SCLK=MCLK/4=2.5 MHz */

/* SCF=MCLK/2/TA */

/* Fout=3.5*SCF/288-6l/TA */

/* Fs=MCLK/2/TA/TB */

/* Example: */

/* Fs=20 KHz */

/* TA=RA=7 TB=RB=36 */

/*__________________________________________________ */

/*Bit definition of the control register in the AIC */

# define BANDPASS 1

# define LOOPBACK 2

# define AUXIN 4

# define SYNCH 8

# define G0 16

# define Gl 32

# define SINX_X 128

extern int TA=24,RA=24,TB=18,RB=18;

extern int AIC_CTR=GO|SYNCH;

extern void AIC_Init(void);

void AIC_Setup(int new_ta, int new_ra, int new_tb, int new_rb, int new_aic_ctr)

{

TA=new_ta;

RA=new_ra;
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TB=new_tb;

RB=new_rb;

AIC_CTR=new_aic_ctr;

AIC_Init();

}

extern void AIC_Write(int);

extern int AIC_Load(void);

extern void Enable_Interrupt(void);

extern void Disable_Interrupt(void);

extern void Init_Hard(void);


