SPICE Device Model Si4896DY

N-Channel 80-V (D-S) MOSFET

Characteristics

- N-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The sub-circuit model was extracted and optimized over a -55°C to 125°C temperature range under pulse conditions for 0 to 10 volts gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold voltage. A novel gate-to-drain

feedback capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Siliconix 4/16/01 Document: 71562

N-Channel Device (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.63	V
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} \ge 5V, V_{GS} = 10V$	319	A
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 10A$	0.0127	Ω
		$V_{GS} = 6V$, $I_D = 8A$	0.0175	
Forward Transconductance ^a	$g_{ m fs}$	$V_{DS} = 15V, I_D = 10A$	24	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 2.8A, V_{GS} = 0V$	0.83	V
Dynamic ^b				
Total Gate Charge	Q_{g}		37.6	
Gate-Source Charge	Q_{gs}	$V_{DS} = 40V, V_{GS} = 10V,$	7.5	nC
	_	$I_D = 10A$		
Gate-Drain Charge	Q_{gd}		11	
Turn-On Delay Time	$t_{d(on)}$		18	
Rise Time	$t_{\rm r}$	$V_{DD} = 40V, R_L = 40\Omega$	22	
Turn-Off Delay Time	$t_{d(off)}$	$I_D \cong 1A, V_{GEN} = 10V,$	30	ns
		$R_G = 6\Omega$		
Fall Time	t_{f}		45	
Source-Drain Reverse Recovery Time	t _{rr}	$I_{F} = 2.8A,$	40	
		$di/dt = 100A/\mu s$		

Notes:

a) Pulse test; pulse width $\leq 300 \,\mu s$, duty cycle $\leq 2\%$

b) Guaranteed by design, not subject to production testing

15

0

30

Qg (nC)

Siliconix 4/16/01 Document: 71562 45

60