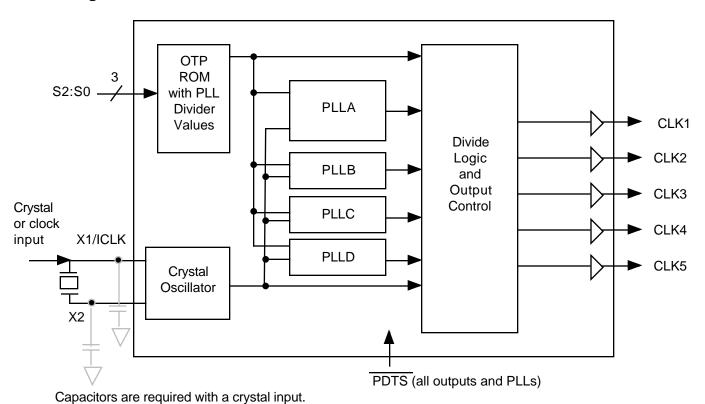

Quad PLL Quick Turn Clock Synthesizer

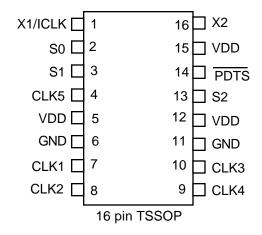
Description

The ICS387 QTClock™ generates up to 5 high quality, high frequency clock outputs including a reference from a low frequency crystal or clock input. It is designed to replace crystals and crystal oscillators in most electronic systems. The ICS387 contains a One Time Programmable (OTP) ROM which is factory programmed with PLL divider values to output a broad range of frequencies up to 200 MHz, allowing customer requests for different frequencies to be shipped in 1-3 days. Programming features include a selectable frequency table and up to 2 low-skew outputs.

Using Phase-Locked-Loop (PLL) techniques, the device runs from a standard fundamental mode, inexpensive crystal, or clock. It can replace multiple crystals and oscillators, saving board space and cost.


Features

- Quick turn frequency programming allows samples as quickly as one day
- Up to 2 outputs can be low-skew
- Can include 8 selectable output frequencies
- Up to 3 reference outputs
- Replaces multiple crystals and oscillators
- Output frequencies up to 200 MHz at 3.3V
- Input crystal frequency of 5 27 MHz
- Input clock frequency of 2 50 MHz
- Duty cycle of 45/55
- Operating voltages of 3.3 V or 5 V
- · Advanced, low power CMOS process


Block Diagram

Quad PLL Quick Turn Clock Synthesizer

Pin Assignments

Pin Descriptions

Number	Name	Туре	Description		
1	X1/ICLK	XI	Crystal connection. Connect to fundamental mode crystal or clock input.		
2	S0	I	Select pin 0 for frequency table/chip control. Internal pull-up resistor.		
3	S1		Select pin 1 for frequency table/chip control. Internal pull-up resistor.		
4	CLK5	0	Clock output.		
5	VDD	Р	Connect to +3.3V or +5V. Must be same voltage as pins 12 and 15.		
6	GND	Р	Connect to ground.		
7	CLK1	0	Clock output.		
8	CLK2	0	Clock output.		
9	CLK4	0	Clock output.		
10	CLK3	0	Clock output.		
11	GND	Р	Connect to ground.		
12	VDD	Р	Connect to +3.3V or +5V. Must be same voltage as pins 5 and 15.		
13	S2	1	Select pin 2 for frequency table/chip control. Internal pull-up resistor.		
14	PDTS	I	All-chip Power Down when low. Note 1.		
15	VDD	Р	Connect to +3.3V or +5V. Must be same voltage as pins 5 and 12.		
16	X2	ХО	Crystal connection. Leave unconnected for clock input.		

Key: XI, XO = crystal connections, I = input, O = output, P = power supply connection Note 1: All outputs are internally high impedance with a weak internal pull-down resistor. When PDTS is active, it is possible to overdrive the output pins for board-level testing.

MDS 387 A Revision 050401

Quad PLL Quick Turn Clock Synthesizer

Device Configuration

The ICS387 QTClock provides the facility for up to 5 clock outputs. The outputs are derived from either the reference input or from one of the 4 PLLs. All chip functions are controlled from an OTP ROM which has 3 input control lines (S2, S1, S0), giving a total of 8 address locations. Each address location gives control of the following:

- 1) Each output can be turned off individually
- 2) The internal dividers for each PLL are controlled to generate any required frequency.
- 3) Each PLL can be turned off (powered down) individually.
- 4) The output divide and control logic can be configured to bring the appropriate clock to the correct pin.
- 5) Up to four low skew copies of the same clock can be enabled.

This chip architecture provides the user with unrivaled flexibility. For example, one of the input pins could be used to control the power of the chip by shutting down PLLs and outputs when not used. The second and third could be used to change the output clock frequencies.

The specification is complete when the ICS387 QTClock Order Form accompanies this data sheet. The order form lists the input and CLK actual frequencies, as well as any other available options. This unique configuration is given a two character alphanumeric programming code (ICS387-xx), which must be specified when referring to samples or ordering parts.

Frequency Select Table

The ICS387 can be configured so that one PLL provides up to 8 frequency selections. For example, CPU frequencies of 66.7 MHz, 100.0 MHz, 133.3 MHz, and 166.7 MHz could be included. This information should be indicated on the Order Form when the ICS387 is initially defined.

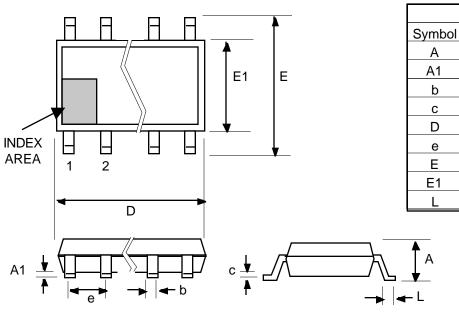
External Components / Crystal Selection

The ICS387 requires a $0.01\mu\text{F}$ decoupling capacitor to be connected between VDD and GND on pins 5 and 6, and another between pins 12 and 11. These must be connected close to the ICS387 to minimize lead inductance. No external power supply filtering is required for this device. A 33 series terminating resistor can be used next to each CLK pin. For a crystal input, a parallel resonant, fundamental mode crystal should be used. Crystal capacitors must be connected from each of the pins X1 and X2 to Ground. The value (in pF) of these crystal caps should equal (CL-6pf)*2, where CL is the crystal load capacitance in pF. As an example, for a crystal with 16 pF load capacitance, each crystal capacitor would be 20 pF [(16 - 6pf)*2 = 20].

For a clock input, connect to X1/ICLK and leave X2 unconnected (no capacitors on either X1 or X2).

Quad PLL Quick Turn Clock Synthesizer

Electrical Specifications


Parameter	Conditions	Minimum	Typical	Maximum	Units				
ABSOLUTE MAXIMUM RATINGS (stresses beyond these can permanently damage the device)									
Supply Voltage, VDD	Referenced to GND			7	٧				
Inputs	Referenced to GND	-0.5		VDD+0.5	V				
Clock Output	Referenced to GND	-0.5		VDD+0.5	V				
Ambient Operating Temperature	Commercial version	0		70	°C				
Ambient Operating Temperature	Industrial version	-40		85	°C				
Soldering Temperature	Max of 10 seconds			260	°C				
Storage temperature		-65		150	°C				
DC CHARACTERISTICS (VDD = 3.3V	unless otherwise	noted)							
Operating Voltage, VDD		3.13		5.5	V				
Input High Voltage, VIH, ICLK only	ICLK (Pin 1)	(VDD/2)+1			V				
Input Low Voltage, VIL, ICLK only	ICLK (Pin 1)			(VDD/2)-1	V				
Input High Voltage, VIH	PDTS, S0, S1, S2	2			V				
Input Low Voltage, VIL	PDTS, S0, S1, S2			0.8	V				
Output High Voltage, VOH	IOH=-4mA	VDD-0.4			V				
Output High Voltage, VOH	IOH=-25mA	2.4			V				
Output Low Voltage, VOL	IOL=25mA			0.4	V				
IDD Operating Supply Current, 20 MHz crysta	No Load, 100MHz		20		mA				
Short Circuit Current	CLK output		±70		mA				
On-Chip Pull-up Resistor, inputs			TBD		k				
On-Chip Pull-down Resistor, outputs			TBD						
Input Capacitance, inputs			4		pF				
AC CHARACTERISTICS (VDD = 3.3V	unless otherwise	noted)							
Input Frequency, crystal input		5		27	MHz				
Input Frequency, clock input		2		50	MHz				
Output Frequency		2		200	MHz				
Output Clock Rise Time	0.8 to 2.0V		1		ns				
Output Clock Fall Time	2.0 to 0.8V		1		ns				
Output Clock Duty Cycle (Note 1)	at VDD/2	45	49 to 51	55	%				
Absolute Clock Period Jitter	Deviation from mean		±TBD		ps				
One Sigma Clock Period Jitter			TBD		ps				
Pin to Pin Skew	Low skew outputs	-250		250	ps				
Power-up time, PDTS goes high until CLK out			8	20	ms				

Note 1: These are typical values. The actual minimum and maximum duty cycle limits are shown on the ICS387 QTClock Order Form for each programmed version.

Quad PLL Quick Turn Clock Synthesizer

Package Outline and Package Dimensions (For current dimensional specifications, see JEDEC Publication No. 95.)

16 pin TSSOP

Α Α1

b

С D

е

Ε

E1

Inches

0.0035 0.008

0.193 | 0.201

.0256 BSC

.252 BSC

0.169 0.177

0.018 0.030

Max

0.047

0.006

0.012

Min

0.002

0.007

Millimeters

Max

1.20

0.15

0.30

0.20

5.10

4.50

0.75

Min

0.05

0.19

0.09

4.90

4.30

0.45

0.65 BSC

6.40 BSC

Ordering Information

Part/Order Number	Marking	Package	Shipping	Temperature
ICS387G-xx	ICS387G-xx	16 pin TSSOP	Tubes	0 to 70 °C
ICS387G-xxT	ICS387G-xx	16 pin TSSOP	Tape and Reel	0 to 70 °C
ICS387G-xxI	ICS387G-xxI	16 pin TSSOP	Tubes	-40 to 85 °C
ICS387G-xxIT	ICS387G-xxl	16 pin TSSOP	Tape and Reel	-40 to 85 °C

xx represents a 2 character alphanumeric programming code assigned by the factory, which indicates the output frequencies on all CLKs and other features. All samples are shipped with an ICS387 order form describing the characteristics of the device.

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Inc. (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

QTClock is a trademark of ICS