

CAT809, CAT810

3-Pin Microprocessor Power Supply Supervisors

FEATURES

- Precision monitoring of
 - +5.0 V (+/- 5%, +/- 10%, +/- 20%),
 - +3.3 V (+/- 5%, +/ 10%),
 - +3.0 V (+/- 10%) and
 - +2.5 V (+/- 5%) power supplies
- Offered in two output configurations:
 - CAT809: Active LOW reset
 - CAT810: Active HIGH reset

- Direct replacements for the MAX809 and MAX810 in applications operating over the industrial temperature range
- Reset valid down to V_{cc} = 1.0 V
- 6 µA power supply current
- Power supply transient immunity
- Compact 3-pin SOT23 and SC70 packages
- Industrial temperature range: -40°C to +85°C

APPLICATIONS

- **■** Computers
- Servers
- Laptops
- **Cable modems**
- Wireless communications

- **■** Embedded control systems
- White goods
- Power meters
- Intelligent instruments
- PDAs and handheld equipment

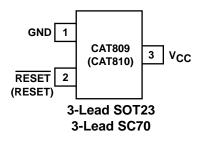
DESCRIPTION

The CAT809 and CAT810 are μP supervisory circuits that monitor power supplies in digital systems. The CAT809 and CAT810 are direct replacements for the MAX809 and MAX810 in applications operating over the industrial temperature range.

These devices generate a reset signal, which is asserted while the power supply voltage is below a preset threshold level and for at least 140 ms after the power supply level has risen above that level. The underlying floating gate technology, AE^{2(TM)} used by Catalyst Semiconductor, makes it possible to offer any custom reset threshold value. Seven industry standard threshold levels are

offered to support +5.0 V, +3.3 V, +3.0 V and +2.5 V systems.

The CAT809 features a RESET push-pull output (active LOW) and the CAT810 features a RESET push-pull output (active HIGH).


Fast transients on the power supply are ignored and the output is guaranteed to be in the correct state at V_{cc} levels as low as 1.0 V.

The CAT809/810 are fully specified over the industrial temperature range (-40°C to 85°C) and are available in compact 3-pin SOT23 and SC70 packages.

THRESHOLD SUFFIX SELECTOR

Nominal Threshold	Threshold Suffix
Voltage	Designation
4.63V	L
4.38V	М
4.00V	J
3.08V	Т
2.93V	S
2.63V	R
2.32V	Z

PIN CONFIGURATION

ORDERING INFORMATION

Ordering Part Number	RESET Polarity	Package	Parts per Reel	
CAT809_EUR-T	Push-Pull RESET	3-pin, SOT23	3k	
CAT809_EUR-T10	Push-Pull RESET	3-pin, SOT23	10k	
CAT809_TBI-T	Push-Pull RESET	3-pin, SOT23 Green	3k	
CAT809_TBI-T10	Push-Pull RESET	3-pin, SOT23 Green	10k	
CAT809_EXR-T	Push-Pull RESET	3-pin, SC70	3k	
CAT809_EXR-T10	Push-Pull RESET	3-pin, SC70	10k	
CAT809_SDI-T	Push-Pull RESET	3-pin, SC70 Green	3k	
CAT809_SDI-T10	Push-Pull RESET	3-pin, SC70 Green	10k	
CAT810_EUR-T	Push-Pull RESET	3-pin, SOT23	3k	
CAT810_EUR-T10	Push-Pull RESET	3-pin, SOT23	10k	
CAT810_TBI-T	Push-Pull RESET	3-pin, SOT23 Green	3k	
CAT810_TBI-T10	Push-Pull RESET	3-pin, SOT23 Green	10k	
CAT810_EXR-T	Push-Pull RESET	3-pin, SC70	3k	
CAT810_EXR-T10	Push-Pull RESET	3-pin, SC70	10k	
CAT810_SDI-T	Push-Pull RESET	3-pin, SC70 Green	3k	
CAT810_SDI-T10	Push-Pull RESET	3-pin, SC70 Green	10k	

Insert threshold suffix (L, M, J, T, S, R or Z) into the blank position. Example: CAT809LTBI-T for 4.63 V.

TOP MARKING

	SOT23	SOT23 Green	SC70	SC70 Green
CAT809L	AAYM	DAYM	FA_	GA_
CAT809M	ABYM	DBYM	FB_	GB_
CAT809J	CWYM	CDYM	FG_	GG_
CAT809T	ACYM	DCYM	FE_	GE_
CAT809S	ADYM	DDYM	FD_	GD_
CAT809R	AFYM	DFYM	FC_	GC_
CAT809Z	CFYM	CAYM	FF_	GF_
CAT810L	AGYM	DGYM	FH_	GH_
CAT810M	AHYM	DHYM	FJ_	GJ_
CAT810J	AIYM	DIYM	FP_	GP_
CAT810T	AJYM	DJYM	FM_	GM_
CAT810S	AKYM	DKYM	FL_	GL_
CAT810R	ALYM	DLYM	FK_	GK_
CAT810Z	CGYM	СВҮМ	FN_	GN_

Where YM stands for Year and Month for the SOT23 package and the blank is replaced by the assembly location for the SC70 package.

PIN DESCRIPTIONS

Pin Number		Name	Description
CAT809	CAT810	Name	Description
1	1	GND	Ground
2	_	RESET	Active LOW reset. $\overline{\text{RESET}}$ is asserted if V_{CC} falls below the reset threshold and remains low for at least 140ms after V_{CC} rises above the reset threshold.
_	2	RESET	Active HIGH reset. RESET is asserted if V_{CC} falls below the reset threshold and remains high for at least 140ms after V_{CC} rises above the reset threshold.
3	3	Vcc	Power supply voltage that is monitored.

ABSOLUTE MAXIMUM RATINGS*

Any pin with respect to ground0.3	3 V to +6.0 V
Input Current, V _{CC}	20 mA
Output Current, RESET, RESET	20 mA
Rate of Rise, V _{CC}	100 V/μs
Continuous Power Dissipation	
Derate 2.2mW/°C above 70°C (SC70)	175 mW
Derate 4mW/°C above 70°C (SOT23)	320 mW

Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +105°C
Lead Soldering Temperature (10 sec) 300°C
*COMMENT

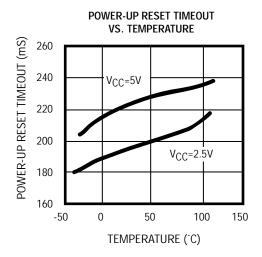
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

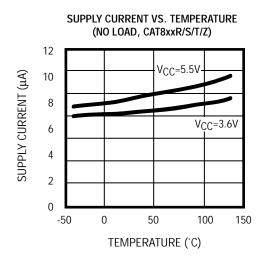
ELECTRICAL CHARACTERISTICS

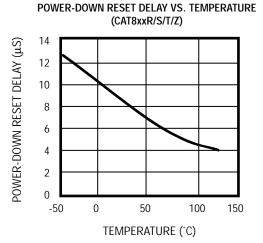
 V_{CC} = Full range, T_A = -40°C to +85°C unless otherwise noted. Typical values at T_A = +25°C and V_{CC} = 5 V for the L/M/J versions, V_{CC} = 3.3 V for the T/S versions, V_{CC} = 3 V for the R version and V_{CC} = 2.5 V for the Z version.

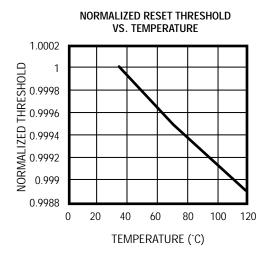
Parameter	Symbol	Condi	Conditions		Тур	Max	Units	
VCC Range		$T_A = 0$ °C to +70°C		1.0		5.5	V	
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.2		5.5	V	
Supply Current	laa	T 40°C to 105°C	V _{CC} < 5.5 V, J/L/M		8	20	^	
Supply Current	I _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{CC} < 3.6 V, R/S/T/Z		6	15	μΑ	
		I. Throohold	T _A = +25°C	4.56	4.63	4.70		
		L Threshold	$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	4.50		4.75		
		MThorate	T _A = +25°C	4.31	4.38	4.45		
	M Threshold	$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	4.25		4.50			
	set	17	T _A = +25°C	3.93	4.00	4.06	1	
		eset	J Threshold	$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	3.89		4.10	
Reset			T Threshold	T _A = +25°C	3.04	3.08	3.11	1
Threshold	V_{TH}	i mresnoid	$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	3.00		3.15	V	
Voltage	VIII	0.71	T _A = +25°C	2.89	2.93	2.96		
		S Threshold	$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	2.85		3.00		
			5.71	T _A = +25°C	2.59	2.63	2.66	
	R Threshold	$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	2.55		2.70			
			T _A = +25°C	2.28	2.32	2.35		
		Z Threshold	$T_A = -40^{\circ} \text{C to } +85^{\circ} \text{C}$	2.25		2.38		

ELECTRICAL CHARACTERISTICS (continued)


 V_{CC} = Full range, T_A = -40°C to +85°C unless otherwise noted. Typical values at T_A = +25°C and V_{CC} = 5 V for L/M/J versions, V_{CC} = 3.3 V for T/S versions, V_{CC} = 3 V for R version and V_{CC} = 2.5 V for Z version.


Parameter	Symbol Conditions		Min	Typ ⁽¹⁾	Max	Units
Reset Threshold Tempco				30		ppm/°C
V _{CC} to Reset Delay (Note 2)		V _{CC} = V _{TH} to (V _{TH} - 100 mV)		20		μs
Reset Active Timeout Period		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	140	240	400	ms
RESET Output Voltage Low		$V_{CC} = V_{TH} \text{ min, } I_{SINK} = 1.2 \text{ mA}$ $CAT809R/S/T/Z$			0.3	
(Push-pull, active LOW, CAT809)	Vol	$V_{CC} = V_{TH} \text{ min, } I_{SINK} = 3.2 \text{ mA}$ $CAT809J/L/M$			0.4	V
		$V_{CC} > 1.0 \text{ V, I}_{SINK} = 50 \mu\text{A}$			0.3	
RESET Output Voltage High (Push-pull, active LOW,	Vон	$V_{CC} = V_{TH}$ max, $I_{SOURCE} = 500 \mu A$ $CAT809R/S/T/Z$	0.8 V _{CC}			V
CAT809)	V OIT	$V_{CC} = V_{TH}$ max, $I_{SOURCE} = 800 \mu A$ CAT809J/L/M	V _{CC} - 1.5			
RESET Output Voltage Low (Push-pull, active HIGH,	V _{OL}	$V_{CC} > V_{TH}$ max, $I_{SINK} = 1.2$ mA CAT810R/S/T/Z			0.3	V
CAT810)	VOL	$V_{CC} > V_{TH}$ max, $I_{SINK} = 3.2$ mA CAT810J/L/M			0.4	v
RESET Output Voltage High (Push-pull active HIGH, CAT810)	Vон	1.8 V < V _{CC} \leq V _{TH} min, I _{SOURCE} = 150 μ A	0.8 V _{CC}			٧


Note 1: Production testing done at $T_A = +25^{\circ}C$; limits over temperature guaranteed by design only. Note 2: \overline{RESET} output for the CAT809; RESET output for the CAT810


TYPICAL OPERATING CHARACTERISTICS

 V_{CC} = Full range, T_A = -40°C to +85°C unless otherwise noted. Typical values at T_A = +25°C and V_{CC} = 5 V for L/M/J versions, V_{CC} =3.3 V for T/S versions, V_{CC} = 3 V for R version and V_{CC} = 2.5 V for Z version.

DETAILED DESCRIPTIONS

RESET TIMING

The reset signal is asserted LOW for the CAT809 and HIGH for the CAT810 when the power supply voltage falls below the threshold trip voltage and remains asserted for at least 140ms after the power supply voltage has risen above the threshold.

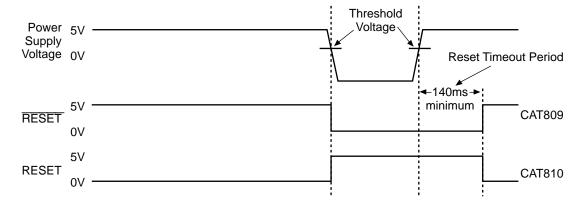


FIGURE 1. RESET TIMING DIAGRAM

V_{CC} TRANSIENT RESPONSE

The CAT809/810 protect μ Ps against brownout failure. Short duration transients of 4 μ sec or less and 100 mV amplitude typically do not cause a false RESET.

Figure 2 shows the maximum pulse duration of negative-going V_{CC} transients that do not cause a reset condition. As the amplitude of the transient goes further below the threshold (increasing V_{TH} - V_{CC}), the maximum pulse duration decreases. In this test, the V_{CC} starts from an initial voltage of 0.5V above the threshold and drops below it by the amplitude of the overdrive voltage (V_{TH} - V_{CC}).

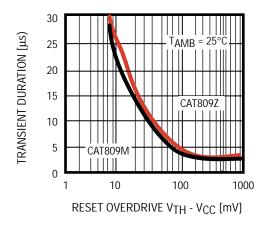


FIGURE 2. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator Overdrive

VALID RESET WITH V_{CC} UNDER 1.0 V

To ensure that the CAT809 $\overline{\text{RESET}}$ pin is in a known state when V_{CC} is under 1.0 V, a 100 k Ω pull-down resistor between $\overline{\text{RESET}}$ pin and GND is recommended; the value is not critical. For the CAT810, a pull-up resistor from RESET pin to V_{CC} is needed.

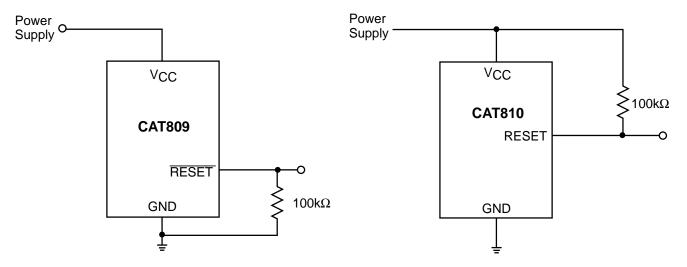
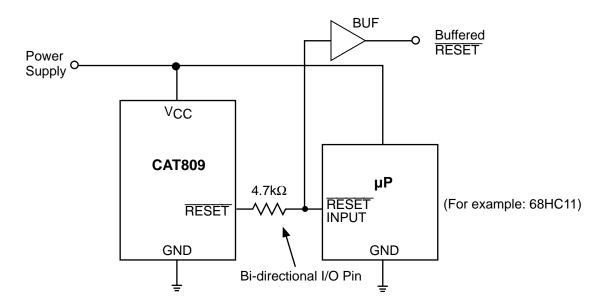
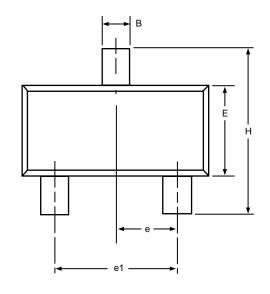


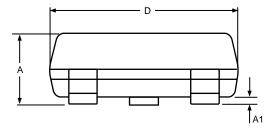
FIGURE 3. RESET Valid with VCC Under 1.0 V

FIGURE 4. RESET Valid with VCC Under 1.1 V

BI-DIRECTIONAL RESET PIN INTERFACING

The CAT809/810 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7 k Ω resistor in series with the CAT809/810 reset output and the $\mu P/\mu C$ bi-directional reset pin.

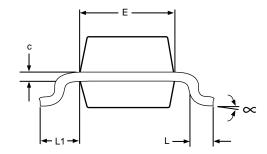



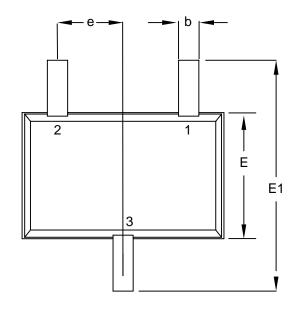

FIGURE 5. Bi-directional Reset Pin Interfacing

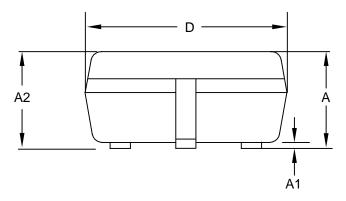
OTHER SUPERVISORY PRODUCTS

Function	CAT1161/3	CAT1162	CAT809	CAT810	CAT811	CAT812
With 16k Bit Serial EEPROM Memory	•	•				
Watchdog Timer	•					
Manual Reset Input	•	•			•	•
Active Low Reset			•		•	
Active High Reset				•		•
Dual Polarity Reset Outputs	•	•				
Package	8-pin DIP and SOIC	8-pin DIP and SOIC	3-pin SOT23 and SC70	3-pin SOT23 and SC70	4-pin SOT143	4-pin SOT143

PACKAGE INFORMATION Plastic SOT-23 (3-Pin)

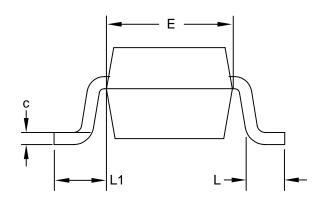



	Inch	ies	Millim	eters			
	Min Max		Min	Max			
	Plastic SOT-23 (3-Pin)						
Α	0.0350	0.0441	0.89	1.12			
A1	0.0005	0.0039	0.013	0.10			
В	0.0146	0.0197	0.37	0.50			
С	0.0033	0.0071	0.085	0.18			
D	0.1102	0.1197	2.80	3.04			
Е	0.0472	0.0551	1.20	1.40			
е	0.0350	0.0406	0.89	1.03			
e1	0.0701	0.0807	1.78	2.05			
Н	0.0827	0.1039	2.10	2.64			
∞	0°	8°	0°	8°			
L	0.0083	0.0161	0.275	0.41			
L1	0.0160	0.0270	0.275	0.685			


NOTE:

- 1. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION TO-236AB
- 2. DIE IS FACE UP FOR MOLD AND TRIM/FORM
- 3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR

PACKAGE INFORMATION SC-70 Package (3-Lead)



	Inch	nes	Millim	eters
	Min	Max	Min	Max
	Pla	3-Pin)		
Α	0.0315	0.0433	0.80	1.10
A1	0.0000	0.0039	0.00	0.10
A2	0.0315	0.0394	0.80	1.00
b	0.0059	0.00118	0.15	0.30
С	0.0035	0.0071	0.09	0.18
D	0.0709	0.0866	1.80	2.20
Е	0.0453	0.0531	1.15	1.35
E1	0.0709	0.0945	1.80	2.40
е	0.00255 BSC		0.65	BSC
L	0.0102	0.0181	0.26	0.46
L1	0.0108	0.0226	0.275	0.575

NOTE:

- 1. THIS PART IS COMPLIANT WITH EIAJ SPECIFICATION SC-70
- 2. DIE IS FACE UP FOR MOLD. DIE IS FACING DOWN FOR TRIM/FORM
- 3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR

REVISION HISTORY

Date	Rev.	Reason
10/29/2003	N	Updated VCC Transient Response text and Figure 2
10/30/2003	0	Updated Power Up Reset Timeout vs. Temperature curve
3/10/2004	Р	Corrected temperature range
		Updated Description
		Updated Ordering Information
		Updated Absolute Maximum Ratings
		Updated Electrical Characteristics
03/23/2004	Q	Updated Description
		Updated Ordering Information
		Updated Absolute Maximum Ratings
		Updated Electrical Characteristics
		Updated Typical Operating Characteristics
		Updated Package Information
3/25/2004	R	Changed Preliminary designation to Final
		Updated Max Reset Active Timout Period in Electrical Characteristics
		Updated package drawings

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE2 ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000

Fax: 408.542.1200

www.catalyst-semiconductor.com

Publication #: 3004 Revison: R Issue date: 3/25/04 Type: Final

Patent Pending