UTMC APPLICATION NOTE

UT69RH051 Address/Data Demultiplexer

UTMC recommends the following circuit to demultiplex address from data during UT69RH051 external memory and instruction cycles. The circuit uses UT69RH051 output ALE to control a flip-flop. D flip-flop outputs (Q_N) equal inputs (D_N) when ALE transitions from high to low. Port 0 outputs from the UT69RH051 supply the least significant 8 bits address information and drive flip-flop inputs D_N . Port 2 outputs supply the upper 8 bits of address information. Flip-flop outputs D_N , in combination with Port 2, drive memory address inputs A(15:0). The combination of Port 0 and 2 allows the UT69RH051 to access a 64K memory space.

Address information from Port 0 and 2 is valid t_{AVLL} (t_{CLCL} -40ns minimum) before the falling edge of ALE. During 20MHz operation, address information becomes valid at least 10ns before the falling edge of ALE. The maximum propagation delay from D_N to Q_N for the UT54ACS374 is 18ns. The maximum propagation delay from D_N to Q_N for the UT54ACS14 is 14ns. Therefore, 32ns after the falling edge of ALE, the D-flip-flop presents valid address information to the memory. The memory array must return read information within t_{LLIV} for a valid program instruction and t_{LLDV} for a data memory read. Subtracting 32ns from both t_{LLIV} and t_{LLDV} leaves 68ns for program instruction reads and 218ns minimum for data memory reads. The 68ns and 218ns determines the access time requirements for a program instruction fetch and a read of program memory. The UT54ACTS374 requires at least 5ns of data setup prior to the falling edge of the input clock. The worst case relationship between Port 0 valid and ALE low meets this requirement. Figure 1 displays the recommended circuit.

Figure 1. UT69RH051 Address and Data Demultiplex Circuit

Use $\overline{\text{PSEN}}$ and/or $\overline{\text{RD}}$ to control the memory output enable function. The memory array output enable assertion to valid data must meet requirements t_{PLIV} and t_{RLDV} . At 20MHz, the memory array must return valid data within 45ns of the $\overline{\text{PSEN}}$ assertion or within 85ns of the $\overline{\text{RD}}$ assertion. A simple logical "AND" of $\overline{\text{PSEN}}$ and $\overline{\text{RD}}$ generates a memory array output enable. The memory array successfully write with a minimum write strobe width of t_{WLWH} of 200ns at 20MHz. Use UT69RH051 output $\overline{\text{WR}}$ to control the memory array write input.

To increase noise immunity choose a CMOS input Dflip-flop (i.e., UT54ACS374). V_{OH} minimum (4.2 volts) for both Port 0 and ALE meets the UT54ACS374's V_{IH} minimum of $.7V_{DD}$ (3.85 volts @5.5 V_{DD}). V_{OL} maximum (.3 volts) for both Port 0 and ALE meets the UT54ACS373's V_{IH} maximum of $.3V_{DD}$ (1.65 volts @5.5 V_{DD}). The CMOS D-flip-flop drives within 250mV of V_{SS} or V_{DD} (i.e., V_{SS} +.25 or V_{DD} -.25) while sinking (I_{OL}) or sourcing (I_{OH}) 100mA.