
# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)



muRata

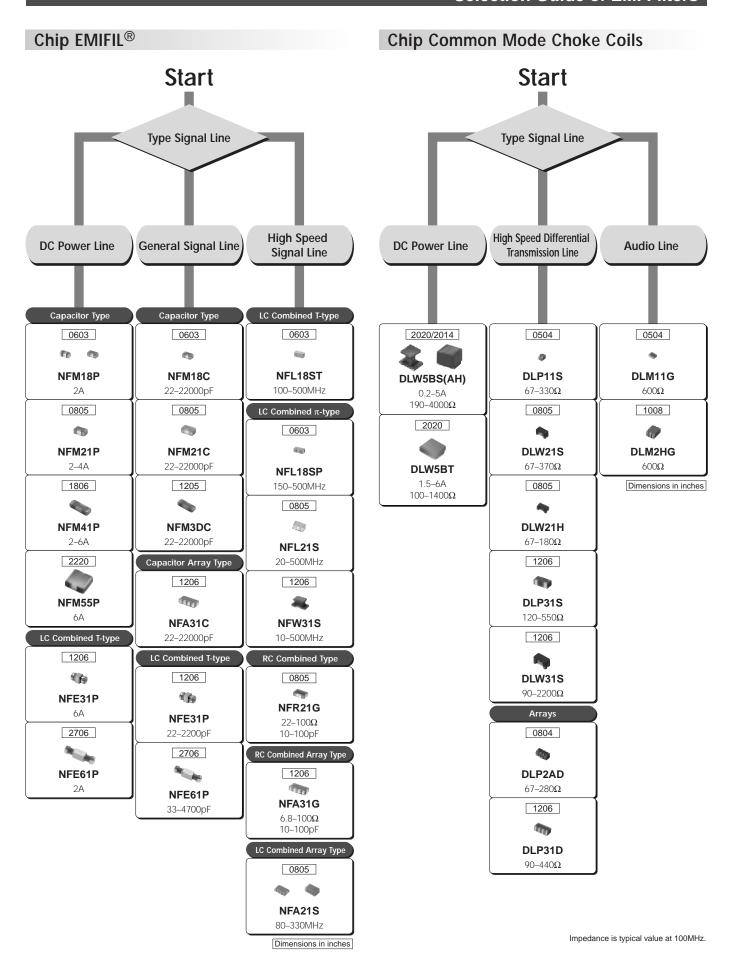
Innovator in Electronics

Murata Manufacturing Co., Ltd.

# CONTENTS

 ${\rm EMIFIL^{\circledcirc}},\,{\rm EMIGUARD^{\circledcirc}},\,{\rm "EMIFIL"}$  and "EMIGUARD" in this catalog are the trademarks of Murata Manufacturing Co., Ltd.

| Selection Guide of EMI Filters                                                                                                       |                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Products Guide / Effective Frequency Range                                                                                           |                                                                                                           |
| Outlines of EMI Suppression Filters (EMIFIL®) for DC Line                                                                            | e — 7                                                                                                     |
| _                                                                                                                                    |                                                                                                           |
| 1 Chip Ferrite Beads Part Numbering / Impedance                                                                                      | e Map / BLM Series Line Up — 13                                                                           |
|                                                                                                                                      | 9 ●BLM15P/18P/21P/31P/41P — 48                                                                            |
|                                                                                                                                      | 7 ● For GHz Range Noise Suppression BLM15H/15E/18H/18E/18G — 56                                           |
|                                                                                                                                      | 9 ●Array Type BLA2AA/2AB/31A/31B — 67                                                                     |
| ●BLM18R/21R — 43                                                                                                                     | 3                                                                                                         |
| 2 Chip EMIFIL® Part Numbering                                                                                                        | 74                                                                                                        |
|                                                                                                                                      |                                                                                                           |
|                                                                                                                                      | 7 • RC Combined Type NFR21G 89                                                                            |
|                                                                                                                                      | 1 •RC Combined Array Type NFA31G — 93                                                                     |
|                                                                                                                                      | 2 ●For Large Current NFM18P/21P/3DP/41P/55P — 95<br>5 ●LC Combined Type for Large Current NFE31P/61P — 10 |
|                                                                                                                                      | 7 •LC Combined Type for Large Current NFE61H — 103                                                        |
| •Le combined winding Type Ni W313                                                                                                    | Total                                                                                                     |
| 3 Chip Common Mode Choke Coils Part Numb                                                                                             | ering ————104                                                                                             |
| ●Film Type DLP11S/31S ──── 109                                                                                                       | 5 ●Winding Type DLW21S/21H/31S ———11                                                                      |
| ●Film Type Array DLP2AD/31D ———— 10                                                                                                  | 7 ●Winding Type for Large Current DLW5AH/5BS/5BT — 114                                                    |
| ●Monolithic Type DLM11G/2HG ———— 109                                                                                                 | 9                                                                                                         |
| Lead Type EMI Suppression Filters (EMIFIL®)  Ferrite Beads Inductors Part Numbering  BL01/02/03 ———————————————————————————————————— | Block Type EMIFIL®  7                                                                                     |
| Microwave Absorbers Part Numbering ————————————————————————————————————                                                              | 145                                                                                                       |
|                                                                                                                                      |                                                                                                           |
|                                                                                                                                      |                                                                                                           |
| Soldering and Mounting                                                                                                               |                                                                                                           |
| Packaging                                                                                                                            |                                                                                                           |
| Chip EMI Suppression Filter Design Kits                                                                                              |                                                                                                           |
| Outlines of Major Noise Regulation Standards                                                                                         | 172                                                                                                       |
| Noise Suppression Principles by DC EMIFIL®                                                                                           | 177                                                                                                       |
| Murata EMI Filter Selection Simulator                                                                                                | 181                                                                                                       |




### **Selection Guide of EMI Filters**

### **Chip Ferrite Beads** Start Type Signal Line High Speed Signal Line **DC Power Line** General Signal Line General **High Frequency High Frequency High Frequency** General General 0402 0402 0201 0402 0201 0402 BLM15HG/EG BLM15HD/HB BLM15P BLM15EG BLM03A BLM03B 120-1800Ω 10-600 $\Omega$ $120-1000\Omega$ 1A 0.7-1.5A $75\Omega$ 0603 0402 0603 0402 0603 0603 1 1 BLM18P BLM18EG BLM15A BLM18HG/HK/EG BLM15B BLM18HD/HB 0.5-2A 10-1000Ω $100-1000\Omega$ 5–1800Ω $120-1800\Omega$ 0.5-3A Dimensions in inches 0805 0603 0603 0603 **(III)** BLM21P BLM18A/T/R BLM18GG BLM18B 1.5-6A $120 – 1000 \Omega$ $470\Omega$ $5-2500\Omega$ 1206 0805 0805 BLM31P BLM21A/R BLM21B 1.5-6A $120-1000\Omega$ $5-2700\Omega$ 1806 Arrays Arrays 0804 0804 BLM41P 1-6A **BLA2AA BLA2AB** 120-1000 $\Omega$ 10–1000Ω 1206 1206 G P BLA31A BLA31B $30-1000\Omega$ $120-1000\Omega$

Impedance is typical value at 100MHz.

### **Selection Guide of EMI Filters**





# Products Guide/Effective Frequency Range

### **Product Guide**

| Product G        | Туре                      |          | Series                       | Dimer                 | nsions   | Effective Frequency Range                |
|------------------|---------------------------|----------|------------------------------|-----------------------|----------|------------------------------------------|
| In divide        |                           |          | Julius                       | (mm)                  | EIA Code | 10kHz 100kHz 1MHz 10MHz100MHz 1GHz 10GHz |
| Inductor<br>Type | For Digital<br>Interfaces | 10       | BLM18R                       | 1.6                   | 0603     |                                          |
|                  |                           | •        | BLM21R                       | 2.0<br>■ 11.25        | 0805     |                                          |
|                  | Standard                  | 40       | BLM03A                       | 0.6                   | 0201     |                                          |
|                  |                           | 100      | BLM15A                       | 1.0<br># +0.5         | 0402     |                                          |
|                  |                           | •        | BLM18A                       | 1.6<br><b>≕</b> •0.8  | 0603     |                                          |
|                  |                           | •        | BLM18T                       | 1.6<br><b>≕</b> •0.8  | 0603     |                                          |
|                  |                           | •        | BLM21A                       | 2.0<br>11.25          | 0805     |                                          |
|                  |                           | dip.     | BLA2AA<br>(4 circuits array) | 2.0<br><b>±</b> \$1.0 | 0804     |                                          |
|                  |                           | dip.     | BLA31A<br>(4 circuits array) | 3.2                   | 1206     |                                          |
|                  | For High<br>Speed Signals | h<br>S   | BLM03B                       | 0.6                   | 0201     |                                          |
|                  | , v                       | 10       | BLM15B                       | 1.0<br>= +0.5         | 0402     |                                          |
|                  |                           | 10       | BLM18B                       | 1.6<br><b>=</b> •0.8  | 0603     |                                          |
|                  |                           | <b>*</b> | BLM21B                       | 2.0                   | 0805     |                                          |
|                  |                           | dip.     | BLA2AB<br>(4 circuits array) | 2.0<br><b>±</b> ‡1.0  | 0804     |                                          |
|                  |                           | dip.     | BLA31B<br>(4 circuits array) | 3.2                   | 1206     |                                          |
|                  | For High<br>Current       | 40       | BLM15P                       | 1.0<br>= +0.5         | 0402     |                                          |
|                  |                           | 10       | BLM18P                       | 1.6<br>•• •0.8        | 0603     |                                          |
|                  |                           | •        | BLM21P                       | 2.0                   | 0805     |                                          |
|                  |                           |          | BLM31P                       | 3.2                   | 1206     |                                          |
|                  |                           |          | BLM41P                       | <u>4.5</u><br>‡1.6    | 1806     |                                          |
|                  | For GHz<br>Range          | *        | BLM15HG                      | 1.0<br>•• +0.5        | 0402     |                                          |
|                  | Noise<br>Suppression      | 100      | BLM15HB                      | 1.0<br>•• +0.5        | 0402     |                                          |
|                  |                           | 40       | BLM15HD                      | 1.0<br><b>=</b> +0.5  | 0402     |                                          |
|                  |                           | 40       | BLM15EG                      | 1.0                   | 0402     |                                          |
|                  |                           | 10       | BLM18HG                      | 1.6<br><b>≅ •</b> 0.8 | 0603     |                                          |
|                  |                           | •        | BLM18HB                      | 1.6<br><b>≅ •</b> 0.8 | 0603     |                                          |
|                  |                           | •        | BLM18HD                      | 1.6                   | 0603     |                                          |
|                  |                           | •        | BLM18HK                      | 1.6<br>= •0.8         | 0603     |                                          |
|                  | 10                        | 4        | BLM18EG                      | 1.6                   | 0603     |                                          |
|                  |                           | 10       | BLM18GG                      | 1.6<br><b>≅ ∙</b> 0.8 | 0603     |                                          |

muRata

# Products Guide/Effective Frequency Range

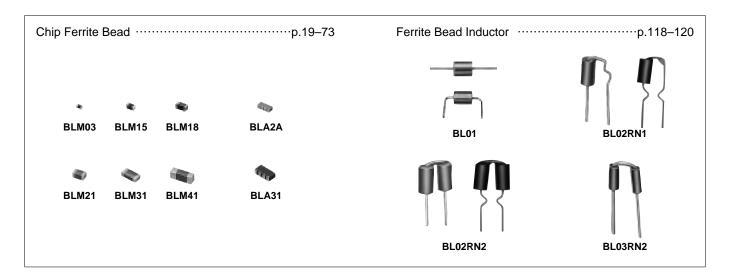
Continued from the preceding page

| Continued from the preceding page.    |                              |              |                              |                             |                    |                                                                    |
|---------------------------------------|------------------------------|--------------|------------------------------|-----------------------------|--------------------|--------------------------------------------------------------------|
|                                       | Туре                         |              | Series                       | Dimei<br>(mm)               | nsions<br>EIA Code | Effective Frequency Range 10kHz 100kHz 1MHz 10MHz100MHz 1GHz 10GHz |
| Capacitor<br>Type                     | Standard<br>Type             | 9            | NFM18C                       | 1.6                         | 0603               |                                                                    |
| , , , , , , , , , , , , , , , , , , , | 31                           |              | NFM21C                       | 2.0<br><b>1</b> 1.25        | 0805               |                                                                    |
|                                       |                              | •            | NFM3DC                       | 3.2<br>\$11.25              | 1205               |                                                                    |
|                                       |                              | •            | NFM41C                       | ¥.5<br>‡1.6                 | 1806               |                                                                    |
|                                       |                              |              | NFA31C<br>(4 circuits array) | 3.2                         | 1206               |                                                                    |
|                                       | For Signal<br>Lines          | filip        | NFL18ST                      | 1.6<br>• 0.8                | 0603               |                                                                    |
|                                       |                              | 40           | NFL18SP                      | 1.6                         | 0603               |                                                                    |
|                                       |                              |              | NFL21S                       | 2.0<br>11.25                | 0805               |                                                                    |
|                                       | •                            | Ф            | NFA21S<br>(4 circuits array) | 2.0<br>11.25                | 0805               |                                                                    |
|                                       |                              | *            | NFW31S                       | 3.2<br><b>1</b> 1.6         | 1206               |                                                                    |
|                                       |                              |              | NFR21G                       | 2.0<br><b>1</b> 1.25        | 0805               |                                                                    |
|                                       |                              |              | NFA31G<br>(4 circuits array) | 3.2                         | 1206               |                                                                    |
|                                       | For High<br>Current          | fp O         | NFM18P                       | 1.6<br>= •0.8               | 0603               |                                                                    |
|                                       |                              |              | NFM21P                       | 2.0                         | 0805               |                                                                    |
|                                       |                              | 49           | NFM3DP                       | 3.2<br>‡1.25                | 1205               |                                                                    |
|                                       |                              | •            | NFM41P                       | ‡1.6                        | 1806               |                                                                    |
|                                       |                              |              | NFM55P                       | 5.7                         | 2220               |                                                                    |
|                                       | T Filter for<br>High Current | 個            | NFE31P                       | 3.2<br>\$\frac{3.2}{11.6}\$ | 1206               |                                                                    |
|                                       |                              | *            | NFE61P(H)                    | \$1.6                       | 2706               |                                                                    |
| Common Mo                             |                              | 9            | DLP11S                       | 1,25<br>■ ‡1.0              | 0504               |                                                                    |
|                                       |                              |              | DLP31S                       | 3.2                         | 1206               |                                                                    |
|                                       |                              | •            | DLP2AD                       | 2.0                         | 0804               |                                                                    |
|                                       |                              | THE STATE OF | DLP31D                       | 3.2                         | 1206               |                                                                    |
|                                       |                              | *            | DLM11G                       | 1,25<br>■ ‡1.0              | 0504               |                                                                    |
|                                       |                              | •            | DLM2HG                       | 2.5                         | 1008               |                                                                    |
|                                       |                              |              | DLW21S                       | 2.0                         | 0805               |                                                                    |
|                                       |                              | *            | DLW21H                       | 2.0<br><b>1</b> 1.2         | 0805               |                                                                    |
|                                       |                              |              | DLW31S                       | 3.2<br>11.6                 | 1206               |                                                                    |
|                                       | *                            |              | DLW5BS<br>(DLW5AH)           | 5.0                         | 2020               |                                                                    |
|                                       |                              | 9            | DLW5BT                       | 5.0                         | 2020               | Continued on the following page                                    |

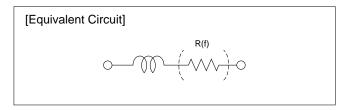
Continued on the following page.  $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$ 

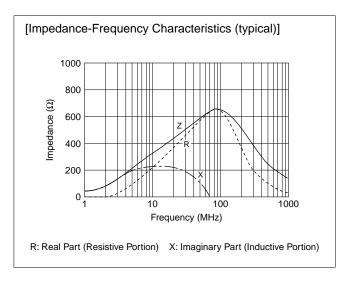




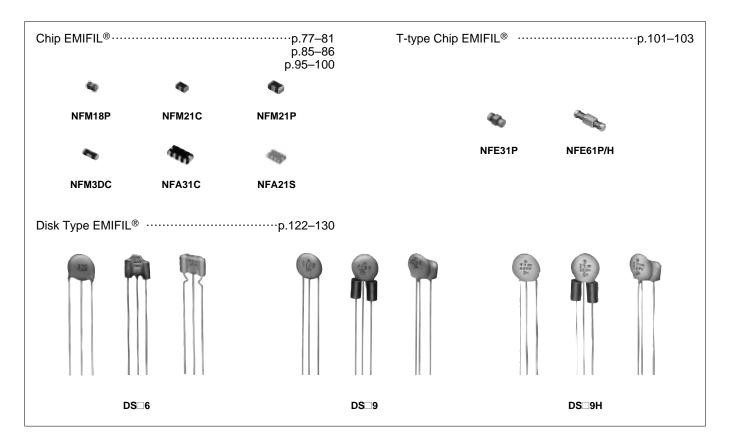

# Products Guide/Effective Frequency Range

Continued from the preceding page.

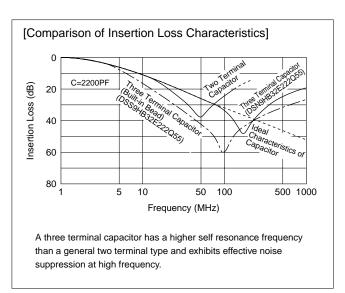

| Continued from the preceding page.              |                        |                                      |          |       |           |           |            |             |
|-------------------------------------------------|------------------------|--------------------------------------|----------|-------|-----------|-----------|------------|-------------|
| Туре                                            | Series                 | Dimensions Effective Frequency Range |          |       |           |           |            |             |
| урс                                             |                        | (mm)                                 | EIA Code | 10kHz | 100kHz 1M | Hz 10MHz1 | 00MHz 1GHz | 10GHz       |
| Disc EMIFIL®                                    |                        |                                      |          |       |           |           |            |             |
|                                                 |                        |                                      |          |       |           |           | 1 1        | 1           |
|                                                 |                        |                                      |          |       |           | 1         |            | 1           |
|                                                 | BL01/02/03             |                                      |          |       |           | i         |            |             |
| /                                               | DSN6/9(H)<br>DSS6/9(H) |                                      |          |       |           |           |            |             |
|                                                 | DST9(H)                |                                      |          |       |           |           |            |             |
|                                                 | ` ,                    |                                      |          |       |           |           |            |             |
|                                                 |                        |                                      |          |       |           |           |            |             |
|                                                 |                        |                                      |          |       |           |           |            |             |
| EMIGUARD® (EMI Filters with varistor functions) |                        |                                      |          |       |           |           |            |             |
| (LIVII 1 IILEIS WILLI VALISTOI TUTICUOTIS)      | VFR3V                  |                                      |          |       |           |           |            |             |
|                                                 | VFS6V/9V               |                                      |          |       |           | 1         |            | 1           |
|                                                 |                        |                                      |          |       |           | 1         |            |             |
| Block EMIFIL®                                   |                        |                                      |          |       |           |           |            | 1           |
| All the second                                  | BNX002/003/005         |                                      |          |       | - :       | - !       |            |             |
| testa.                                          | BNX012/016             |                                      |          |       |           |           |            |             |
|                                                 |                        |                                      |          |       |           |           |            | 1           |
| Common Mode Choke Coils                         |                        |                                      |          |       |           |           | 1 1        | 1           |
| Common widge Charle Colls                       |                        |                                      |          |       |           | -         | <u> </u>   | 1           |
|                                                 | PLT09H                 |                                      |          |       |           |           |            | 1           |
|                                                 |                        |                                      |          |       |           |           |            | 1<br>1<br>1 |
|                                                 |                        |                                      |          |       | -         | - !       |            | 1           |
| Microwave Absorbers                             |                        |                                      |          |       |           |           |            | 1           |
|                                                 | EA10/20/21/30          |                                      |          |       |           |           |            |             |
|                                                 | LA 10/20/21/30         |                                      |          |       |           |           |            | <u> </u>    |
|                                                 |                        |                                      |          |       |           |           |            |             |



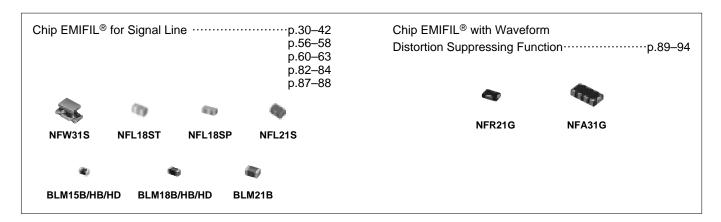

- Chip Ferrite Bead
- Ferrite Bead Inductor




- Chip Ferrite Beads are effective for frequencies ranging from a few MHz to a few GHz. Chip Ferrite Beads are widely used as a low noise countermeasure, as well as a universal noise suppression component.
- Chip Ferrite Beads produce a micro inductance in the low frequency range. At high frequencies, however, the resistive component of the inductor produces the primary impedance. When inserted in series in the noise producing circuit, the resistive impedance of the inductor prevents noise propagation.







- ●Chip EMIFIL®
- ■T-type Chip EMIFIL®
- ●Disk Type EMIFIL®

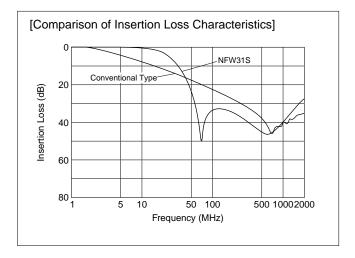


- This capacitor type EMI suppression filter has a large noise suppression effect at frequencies ranging from a few MHz to hundreds of MHz. This type of filter is used widely as a universal, high performance EMI suppression component.
- The chip EMIFIL<sup>®</sup> incorporates a built-in three terminal capacitor, eliminating the lead wire and thereby increasing the high frequency performance characteristic.
- The T-type chip EMIFIL® is a chip EMI suppression filter with a built-in feed-thru capacitor. The use of ferrite beads on input and output terminals minimizes resonance with surrounding circuits.
- Whatever the situation, three terminal construction reduces residual inductance, thereby substantially improving noise suppression at frequencies over 10MHz.

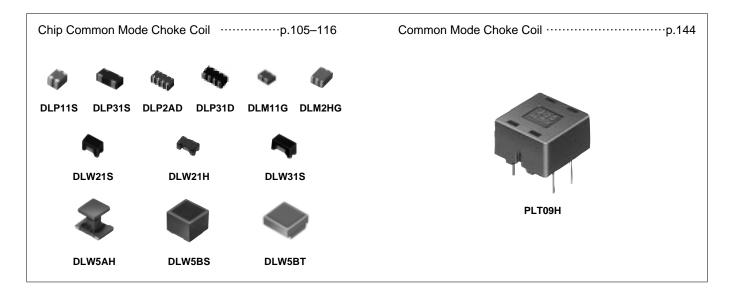


- ●Chip EMIFIL® for Signal Line
- Chip EMIFIL® with Waveform Distortion Suppressing Function



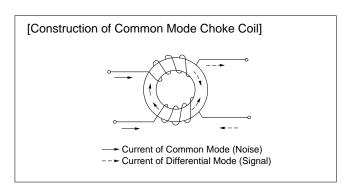

High-speed signal application EMIFIL® are high performance EMI suppression filters which increase the slope of insertion loss frequency characteristic curves (shape factor), thereby improving noise and signal separation. These are used for high speed signal applications in which noise and signal frequency approach the same value.

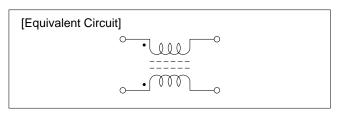
To avoid the elimination of both the noise and specific signal components, three terminal capacitors and other components are applied.

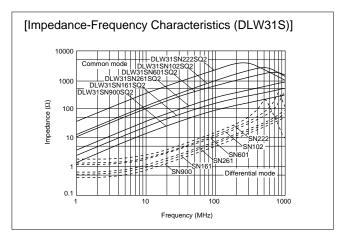

An NFW31S with a built-in capacitor and an inductor type BLMDB are available.

BLM—HB/HD has additional performance for suppressing GHz range noise after cut-off frequency.

The EMIFIL<sup>®</sup> with waveform distortion suppressing function suppresses waveform distortion caused by the resonance of digital ICs and surrounding circuits.

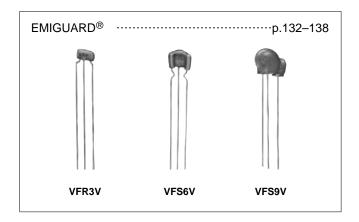




- Chip Common Mode Choke Coil
- Common Mode Choke Coil

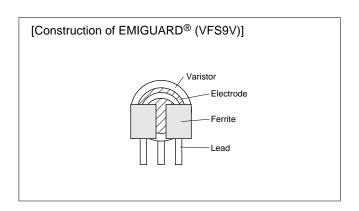



 These choke coils reduce common mode noise, which causes problems on balanced transmission lines, and are effective against common mode noise in the several MHz to several 100MHz frequency range.

They are ideally suited for noise suppression on DC power supply lines and interface cables.





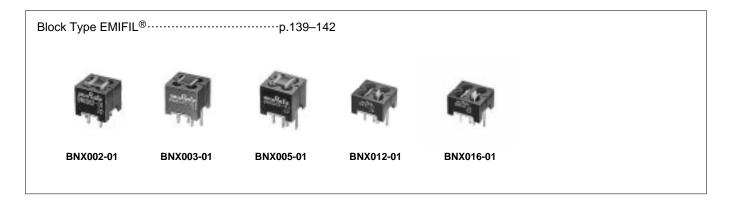





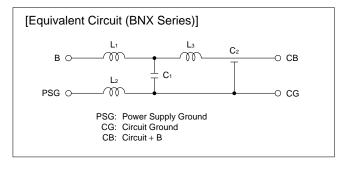

### ● EMIGUARD®

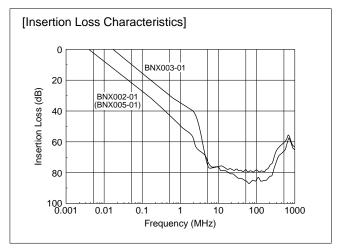


- EMIGUARD® eliminates both surge noises and EMI noises due to its dielectric varistor material.
- Effective when high frequency noise and high voltage surge suppression are required, and also in situations when surging starts at extremely high speeds. This type of surging cannot be eliminated with general type varistors.

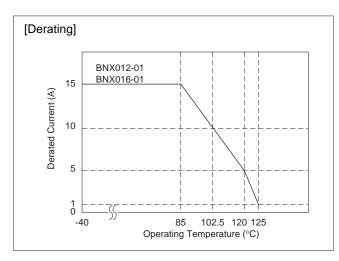



■Surge Absorption Effect of EMIGUARD®


| Type of Filter                                                        | Surge Absorption Effect of EMIGUARD®                 |
|-----------------------------------------------------------------------|------------------------------------------------------|
| No filter                                                             | 500V<br>/div<br>-1kV<br>-100ns 50ns/div 400ns        |
| Three terminal capacitor is used to suppress the surge.               | 4kV<br>500V<br>/div<br>-1kV<br>-100ns 50ns/div 400ns |
| EMIGUARD <sup>®</sup> is used to suppress the surge. ( <b>VFS6V</b> ) | 4kV<br>500V<br>/div<br>-1kV<br>-100ns 50ns/div 400ns |




### ■Block Type EMIFIL<sup>®</sup>




- Block type EMIFIL<sup>®</sup> are resin encased, built-in, high performance EMI suppression filters, which use a feed-thru capacitor having excellent high frequency characteristics.
- Used when the noise frequency is high, or when extreme countermeasures are required.
- The high performance EMIFIL® BNX series exhibits significant noise suppression effects over a wide frequency band (extending from 100kHz to 1GHz) in DC power lines.





 In operating temperatures exceeding +85°C, derating of current is necessary for BNX010 series. Please apply the derating curve according to the operating temperature.





# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)



# Chip Ferrite Beads Part Numbering

### Chip Ferrite Beads

BL | M | 18 | AG | 102 | S | N | 1 | D (Part Number)

### Product ID

| Product ID |                    |
|------------|--------------------|
| BL         | Chip Ferrite Beads |

### 2Type

| Code | Туре            |
|------|-----------------|
| Α    | Array Type      |
| М    | Monolithic Type |

### 3Dimensions (LXW)

| Code | Dimensions (LXW) | EIA  |
|------|------------------|------|
| 03   | 0.6×0.3mm        | 0201 |
| 15   | 1.0×0.5mm        | 0402 |
| 18   | 1.6×0.8mm        | 0603 |
| 2A   | 2.0×1.0mm        | 0804 |
| 21   | 2.0×1.25mm       | 0805 |
| 31   | 3.2×1.6mm        | 1206 |
| 41   | 4.5×1.6mm        | 1806 |

### 6 Impedance

Expressed by three figures. The unit is in ohm ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

### 6 Performance

Expressed by a letter.

| Ex.) | Code | Performance |
|------|------|-------------|
|      | S/T  | Sn Plating  |
|      | Α    | Au Plating  |

### Category

| Code | Category      |
|------|---------------|
| N    | Standard Type |

### 8 Number of Circuits

| Code | Number of Circuits |
|------|--------------------|
| 1    | 1 Circuit          |
| 4    | 4 Circuits         |

### 4 Characteristics/Applications

| Code *1 | Characteristics/Applications                      | Series                              |
|---------|---------------------------------------------------|-------------------------------------|
| AG      | for General Use                                   | BLM03/BLM15/BLM18/BLM21/BLA2A/BLA31 |
| TG      | Tor General Use                                   | BLM18                               |
| ВА      |                                                   | BLM18                               |
| ВВ      | for High-speed Signal Lines                       | BLM03/BLM15/BLM18/BLM21/BLA2A       |
| BD      |                                                   | BLM15/BLM18/BLM21/BLA2A/BLA31       |
| PG      | for Power Supplies                                | BLM15/BLM18/BLM21/BLM31/BLM41       |
| RK      | for Digital Interface                             | BLM18/BLM21                         |
| HG      | for GHz Band General Use                          | BLM15/BLM18                         |
| EG      | for GHz Band General Use (Low DC Resistance Type) | BLM13/BLM18                         |
| НВ      | for CII- Bond High around Cinnal Line             | BLM15/BLM18                         |
| HD      | for GHz Band High-speed Signal Line               | BLM15/BLM18                         |
| НК      | for GHz Band Digital Interface                    | BLM18                               |
| GG      | for High-GHz Band General Use                     | BLM18                               |

<sup>\*1</sup> Frequency characteristics vary with each code.

### Packaging

| Code | Packaging                    | Series                                 |  |  |
|------|------------------------------|----------------------------------------|--|--|
| K    | Plastic Taping (ø330mm Reel) | DI M24/DI M44/DI M24 *1                |  |  |
| L    | Plastic Taping (ø180mm Reel) | BLM31/BLM41/BLM21 *1                   |  |  |
| В    | Bulk                         | All Series                             |  |  |
| J    | Paper Taping (ø330mm Reel)   | BLM15/BLM18/BLM21 *2/BLA31             |  |  |
| D    | Paper Taping (ø180mm Reel)   | BLM03/BLM15/BLM18/BLM21 *2/BLA2A/BLA31 |  |  |
| С    | Bulk Case                    | BLM15/BLM18                            |  |  |

<sup>\*1</sup> BLM21BD222SN1/BLM21BD272SN1 only.



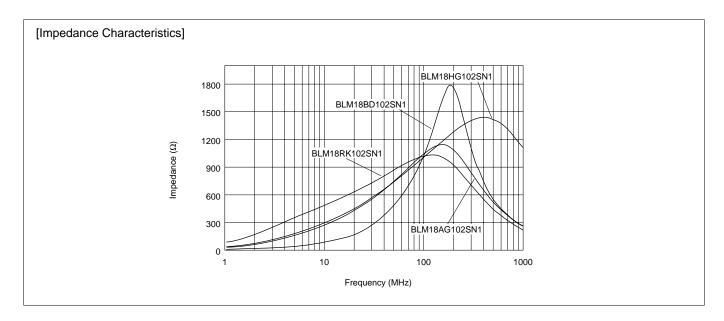
<sup>\*2</sup> Except BLM21BD222SN1/BLM21BD272SN1

# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)



Chip Ferrite Bead **BLM** Series

# **Essential for Noise Suppression in High Speed Signal Lines and DC Power Lines**


The chip ferrite bead BLM series comprises ferrite beads in the shape of a chip. This ferrite bead generates a high impedance which at high frequencies mainly consists of a resistance element. The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

Chip sizes of 0.6x0.3, 1.0x0.5, 1.6x0.8, 2.0x1.25, 3.2x1.6 and 4.5x1.6mm are cataloged. (The BLA series of array type chip ferrite beads is also cataloged.) The nickel barrier structure of the external electrodes provides excellent solder heat resistance.

### ■Features

The BLM series comprises the R series (for digital interface), the A series (for standard), the B series (for high speed signal), the P series (for large current), and the H/E/G series (for GHz range noise suppression).

- 1. BLM□□R series For Digital Interface The BLM-R series can be used in Digital Interface. Resistance of BLM-R series especially grows in the lower frequency range. Therefore BLM-R series is less effective for digital signal waveform at low frequency range and can suppress the ringing.
- 2. BLM□□A/T series For General Use The BLM-A series generates an impedance from the relatively low frequencies. Therefore the BLM-A series is effective in noise suppression in the wide frequency range (30MHz - several hundred MHz).
- 3. BLM□□B series For High Speed Signal The BLM-B series can minimize attenuation of the signal waveform due to its sharp impedance characteristics. Various impedances are available to match signal frequency.
- 4. BLM□□P series For Large Current The BLM-P series can be used in high current circuits due to its low DC resistance. It can match power lines to a maximum of 6A DC (BLM41P).
- 5. BLM□□H/E/G series For GHz Range Noise Suppression The BLMDH/E/G series has a modified internal electrode structure that minimizes stray capacitance and increases the effective frequency range.



| Imped                    | danc | е М    | ар           |      |      |         |                     |              |                       |      |          |            |                       |            |             |                                  |                 |
|--------------------------|------|--------|--------------|------|------|---------|---------------------|--------------|-----------------------|------|----------|------------|-----------------------|------------|-------------|----------------------------------|-----------------|
|                          |      |        |              |      |      |         |                     | 2700         |                       |      |          |            |                       |            |             |                                  |                 |
|                          |      |        |              |      |      |         | 2500                | 0050         |                       |      |          |            |                       |            |             |                                  |                 |
|                          |      |        |              |      |      |         | 2200                | 2250<br>2200 |                       |      |          |            |                       |            |             |                                  |                 |
|                          |      |        |              |      |      | 1800    | 1800                |              |                       |      |          |            |                       |            |             | 1800                             |                 |
|                          |      |        |              |      |      | 1000    |                     | 1500         |                       |      |          |            |                       |            |             | 1000                             |                 |
| 1000                     | _    | 1000   | 1000         | 1000 |      | 1000    | 1                   |              | 1000                  | 1000 |          |            |                       |            | 1000 (1.5A) | 1000                             | 1000            |
|                          |      |        |              |      |      |         |                     | 750          |                       |      |          |            |                       |            | , ,         |                                  |                 |
|                          | 600  | 600    | 600          | 600  |      | 600     | 600                 | 600          | 600                   | 600  |          |            |                       | 600 (1.5A) |             | 600                              | 600             |
|                          |      |        | 470          | 470  |      | 470     | 470                 | 470          | 470                   | 470  |          |            |                       |            | 470 (2A)    |                                  | 470             |
|                          |      |        |              |      |      |         | 420                 | 420          |                       |      |          |            |                       |            |             |                                  |                 |
|                          |      |        |              |      |      |         |                     |              |                       |      |          |            |                       |            |             |                                  |                 |
|                          |      |        | 220          | 220  |      |         | 220                 | 220          |                       |      |          |            | 220 (4 5 4)           | 390 (2A)   |             |                                  | 390             |
| Z<br>                    | 240  |        | 330          | 330  |      |         | 330                 | 330          |                       |      |          |            | 330 (1.5A)            |            |             |                                  | 330             |
| Impedance (12) at 100MHz | 240  | 220    | 220          | 220  |      | 220     | 220                 | 220          | 220                   | 220  |          |            | 220 (2A)              |            |             | 220                              | 220             |
| at                       |      |        |              |      |      |         |                     | 200          |                       |      |          |            | ( ,                   |            |             |                                  |                 |
| 6 (52<br>e               |      |        |              |      |      |         |                     |              |                       |      |          | 180 (1.5A) |                       |            | 180 (3A)    |                                  |                 |
| Janc                     |      |        | 150          | 150  |      |         | 150                 | 150          |                       |      |          |            |                       |            |             |                                  |                 |
| ž<br>E                   |      |        |              |      |      |         | 140                 |              |                       |      |          |            |                       |            |             |                                  |                 |
|                          | 120  | 120    | 120          | 120  |      | 120     | 120                 | 120          | 120                   | 120  |          | 120 (2A)   |                       | 120 (3A)   |             | 120                              | 120             |
| 100                      | _    |        |              |      |      |         |                     |              |                       |      |          |            |                       |            |             |                                  | 100             |
|                          |      |        |              |      | 75   | 75      | 75                  | 75           |                       |      |          |            |                       |            | 75 (3A)     |                                  |                 |
|                          | 70   | 70     |              |      | 10   | '       | '                   | 10           |                       |      |          |            |                       |            | 70 (0/1)    |                                  |                 |
|                          |      | . 0    |              |      |      |         | 60                  | 60           |                       |      |          | 60 (0.5A)  | 60 (3A)               |            | 60 (6A)     |                                  |                 |
|                          |      |        |              |      |      |         |                     |              |                       |      |          |            | , ,                   | 50 (3A)    | , ,         |                                  |                 |
|                          |      |        |              |      |      | 47      | 47                  |              |                       |      |          |            |                       |            |             |                                  |                 |
|                          |      |        |              |      |      |         |                     |              |                       |      |          | 33 (3A)    |                       | 33 (6A)    |             |                                  |                 |
|                          |      |        |              |      |      |         |                     |              |                       |      |          | 30 (1A)    | 30 (3A)               |            |             |                                  |                 |
|                          |      |        |              |      |      |         |                     |              |                       |      |          |            | 00 (04)               |            |             |                                  |                 |
| 10                       | 10   | 10     |              |      |      | 22      | 10                  |              |                       |      | 10 (1 1) |            | 22 (6A)               |            |             |                                  |                 |
| 10                       | - 10 | 10     |              |      |      | 10<br>5 | 5                   | 5            |                       |      | 10 (1A)  |            |                       |            |             |                                  |                 |
| mm                       | 0603 | 1005   | 1608         | 2012 | 0603 | -       | 1608                |              | 1608                  | 2012 | 1005     | 1608       | 2012                  | 3216       | 4516        | 1005                             | 1608            |
| \ Code                   |      |        |              |      |      |         | 0603                |              |                       | 0805 | 0402     | 0603       | 0805                  | 1206       | 1806        | 0402                             | 0603            |
|                          | F    | or Sta | andard       | d    | Fo   | or Higi | h Spe               | ed           | For D                 |      |          | For        | Large Curi            | ent        |             | GHz Range Noise                  | GHz Range Noise |
|                          | 1    | 3LM[   | <b>□A/</b> 1 | Γ    |      |         | jnaĺ<br>□□ <b>B</b> |              | Inter<br><b>BLM</b> [ |      |          | ( )=       | BLM□□P<br>=Rated Curi | rent       |             | Suppression Type <b>BLM15H/E</b> | BLM18H/E/G      |



### **■**BLM Series

| e (EIA Code) |              | Туре                  | Part Number   | · ·           | ance (Ω)   | Rated Current (m |     |
|--------------|--------------|-----------------------|---------------|---------------|------------|------------------|-----|
| (            |              | 71-                   |               | at 100MHz     | at 1GHz    | ·                |     |
|              |              |                       | BLM03AG100SN1 | 10 (Typ.)     | -          | 500              |     |
|              |              |                       | BLM03AG700SN1 | 70 (Typ.)     | -          | 200              |     |
| 0201         | For          | Standard              | BLM03AG121SN1 | 120±25%       | -          | 200              |     |
|              |              |                       | BLM03AG241SN1 | 240±25%       | -          | 100              |     |
|              |              |                       | BLM03AG601SN1 | 600±25%       | -          | 100              |     |
|              | For High     | n Speed Signal        | BLM03BB750SN1 | 75±25%        | -          | 200              |     |
|              |              |                       | BLM15AG100SN1 | 10 (Typ.)     | -          | 1000             |     |
|              |              |                       | BLM15AG700SN1 | 70 (Typ.)     | -          | 500              |     |
|              |              |                       | BLM15AG121SN1 | 120±25%       | -          | 300              |     |
|              | For          | Standard              | BLM15AG221SN1 | 220±25%       | -          | 300              |     |
|              | FOI          | Standard              | BLM15AG601SN1 | 600±25%       | -          | 300              |     |
|              |              |                       | BLM15AG102SN1 | 1000±25%      | -          | 200              |     |
|              |              |                       | BLM15AG601AN1 | 600±25%       | 140 (Typ.) | 300              |     |
|              |              |                       | BLM15AG102AN1 | 1000±25%      | 300 (Typ.) | 200              |     |
|              |              |                       | BLM15BB050SN1 | 5±25%         | -          | 500              |     |
|              |              |                       | BLM15BB100SN1 | 10±25%        | -          |                  |     |
|              |              |                       | BLM15BB220SN1 | 22±25%        | -          |                  |     |
|              |              |                       | BLM15BB470SN1 | 47±25%        | -          | 300              |     |
|              |              |                       | BLM15BB750SN1 | 75±25%        | -          |                  |     |
|              |              |                       | BLM15BB121SN1 | 120±25%       | _          |                  |     |
|              | For High     | n Speed Signal        | BLM15BB221SN1 | 220±25%       | _          | 200              |     |
|              |              | ance characteristics) | BLM15BD750SN1 | 75±25%        | -          |                  |     |
| 0402         |              | Í                     | BLM15BD121SN1 | 120±25%       | _          | 300              |     |
|              |              |                       | BLM15BD221SN1 | 220±25%       | _          | -                |     |
|              |              |                       | BLM15BD471SN1 | 470±25%       | _          |                  |     |
|              |              |                       | BLM15BD601SN1 | 600±25%       | _          | 200              |     |
|              |              |                       | BLM15BD102SN1 | 1000±25%      | -          |                  |     |
|              |              |                       | BLM15BD182SN1 | 1800±25%      | -          | 100              |     |
|              | For L        | orgo Current          | BLM15PG100SN1 | _             | -          |                  |     |
|              | FOIL         | arge Current          | BLM15HG601SN1 | 10 (Typ.)     | 1000+409/  | 1000             |     |
|              | For Standard |                       | BLM15HG102SN1 | 600±25%       | 1000±40%   | 300              |     |
|              |              |                       |               | BLM15HB121SN1 | 1000±25%   | 1400±40%         | 250 |
|              |              |                       | BLM15HB221SN1 | 120±25%       | 500±40%    | 300              |     |
|              |              | For High Speed        |               | 220±25%       | 900±40%    | 250              |     |
|              | GHz Range    | Signal -              | BLM15HD601SN1 | 600±25%       | 1400±40%   | 300              |     |
|              |              | -                     | BLM15HD102SN1 | 1000±25%      | 2000±40%   | 250              |     |
|              |              | For Standard          | BLM15HD182SN1 | 1800±25%      | 2700±40%   | 200              |     |
|              |              | (Low DC               | BLM15EG121SN1 | 120±25%       | 145 (Typ.) | 1500*            |     |
|              |              | Resistance Type)      | BLM15EG221SN1 | 220±25%       | 270 (Typ.) | 700*             |     |
|              |              | _                     | BLM18AG121SN1 | 120±25%       | -          | _                |     |
|              |              |                       | BLM18AG151SN1 | 150±25%       | -          | _                |     |
|              |              |                       | BLM18AG221SN1 | 220±25%       | -          | 200              |     |
|              |              |                       | BLM18AG331SN1 | 330±25%       | -          |                  |     |
|              |              |                       | BLM18AG471SN1 | 470±25%       | -          |                  |     |
|              | For          | Standard              | BLM18AG601SN1 | 600±25%       | -          |                  |     |
|              |              |                       | BLM18AG102SN1 | 1000±25%      | -          | 100              |     |
|              |              |                       | BLM18TG121TN1 | 120±25%       | -          |                  |     |
| 0603         |              |                       | BLM18TG221TN1 | 220±25%       | -          | 200              |     |
|              |              |                       | BLM18TG601TN1 | 600±25%       | -          |                  |     |
|              |              |                       | BLM18TG102TN1 | 1000±25%      | -          | 100              |     |
|              |              |                       | BLM18BA050SN1 | 510507        | -          | 500              |     |
|              |              |                       | BLM18BB050SN1 | 5±25%         | -          | 700              |     |
|              | For Hink     | n Speed Signal        | BLM18BA100SN1 |               | -          |                  |     |
|              |              | ance characteristics) | BLM18BB100SN1 | 10±25%        | -          |                  |     |
|              |              |                       | BLM18BA220SN1 |               | -          | 500              |     |
|              |              |                       |               | 22±25%        | i .        | 1                |     |

<sup>\*</sup> Please see p.59 "Derating of Rated Current".

Continued on the following page.





| Continued fr | om the | preceding | pag |
|--------------|--------|-----------|-----|
|              |        |           |     |

| ze (EIA Code) |               | Туре                    | Part Number   |            | ance (Ω)    | Rated Current (m |  |
|---------------|---------------|-------------------------|---------------|------------|-------------|------------------|--|
|               |               |                         |               | at 100MHz  | at 1GHz     |                  |  |
|               |               |                         | BLM18BA470SN1 | 47±25%     | -           | 300              |  |
|               |               |                         | BLM18BB470SN1 |            | -           | 500              |  |
|               |               |                         | BLM18BB600SN1 | 60±25%     | -           | 200              |  |
|               |               |                         | BLM18BA750SN1 | 75±25%     | -           | 300              |  |
|               |               |                         | BLM18BB750SN1 | 1.2_2,7    | -           | 200              |  |
|               |               |                         | BLM18BA121SN1 | _          | -           |                  |  |
|               |               |                         | BLM18BB121SN1 | 120±25%    | -           |                  |  |
|               |               |                         | BLM18BD121SN1 |            | -           |                  |  |
|               |               |                         | BLM18BB141SN1 | 140±25%    | -           | 200              |  |
|               |               |                         | BLM18BB151SN1 | 150±25%    | -           |                  |  |
|               |               |                         | BLM18BD151SN1 | 100±2070   | -           |                  |  |
|               | For High      | Speed Signal            | BLM18BB221SN1 | 220±25%    | -           |                  |  |
|               | (Sharp impeda | nce characteristics)    | BLM18BD221SN1 | 220±2570   | -           |                  |  |
|               |               |                         | BLM18BB331SN1 | 220   250/ | -           |                  |  |
|               |               |                         | BLM18BD331SN1 | 330±25%    | -           |                  |  |
|               |               |                         | BLM18BD421SN1 | 420±25%    | -           |                  |  |
|               |               |                         | BLM18BB471SN1 | 4=0.0=04   | -           | 50               |  |
|               |               |                         | BLM18BD471SN1 | 470±25%    | -           | 200              |  |
|               |               |                         | BLM18BD601SN1 | 600±25%    | -           | 200              |  |
|               |               |                         | BLM18BD102SN1 | 1000±25%   | -           | 100              |  |
|               |               |                         | BLM18BD152SN1 | 1500±25%   | -           |                  |  |
|               |               |                         | BLM18BD182SN1 | 1800±25%   | -           |                  |  |
|               |               |                         | BLM18BD222SN1 | 2200±25%   | -           | 50               |  |
|               |               |                         | BLM18BD252SN1 | 2500±25%   | _           |                  |  |
|               |               |                         | BLM18RK121SN1 | 120±25%    | _           |                  |  |
|               |               |                         | BLM18RK221SN1 |            | _           |                  |  |
|               | Far Dia       | sital Interfere         | BLM18RK471SN1 | 220±25%    |             | 200              |  |
|               | FOLDIÓ        | jital Interface         |               | 470±25%    | -           | 200              |  |
|               |               |                         | BLM18RK601SN1 | 600±25%    | -           | _                |  |
| 0603          |               |                         | BLM18RK102SN1 | 1000±25%   | -           | 1000             |  |
|               |               |                         | BLM18PG300SN1 | 30 (Typ.)  | -           | 1000             |  |
|               |               |                         | BLM18PG330SN1 | 33±25%     | -           | 3000*            |  |
|               | For La        | arge Current            | BLM18PG600SN1 | 60 (Typ.)  | -           | 500              |  |
|               |               |                         | BLM18PG121SN1 | 120±25%    | -           | 2000*            |  |
|               |               |                         | BLM18PG181SN1 | 180±25%    | -           | 1500*            |  |
|               |               |                         | BLM18HG471SN1 | 470±25%    | 600 (Typ.)  | 200              |  |
|               |               | For Standard            | BLM18HG601SN1 | 600±25%    | 700 (Typ.)  |                  |  |
|               |               |                         | BLM18HG102SN1 | 1000±25%   | 1000 (Typ.) | 100              |  |
|               |               |                         | BLM18HB121SN1 | 120±25%    | 500±40%     | 200              |  |
|               |               |                         | BLM18HB221SN1 | 220±25%    | 1100±40%    | 100              |  |
|               |               | For High Speed          | BLM18HB331SN1 | 330±25%    | 1600±40%    | 50               |  |
|               |               | Signal                  | BLM18HD471SN1 | 470±25%    | 1000 (Typ.) | 100              |  |
|               |               |                         | BLM18HD601SN1 | 600±25%    | 1200 (Typ.) | 100              |  |
|               |               |                         | BLM18HD102SN1 | 1000±25%   | 1700 (Typ.) | 50               |  |
|               |               |                         | BLM18HK331SN1 | 330±25%    | 400±40%     | 200              |  |
|               | CULD          | For Digital             | BLM18HK471SN1 | 470±25%    | 600±40%     | 200              |  |
|               | GHz Range     | Interface               | BLM18HK601SN1 | 600±25%    | 700±40%     | 100              |  |
|               |               |                         | BLM18HK102SN1 | 1000±25%   | 1200±40%    | 50               |  |
|               |               |                         | BLM18EG101TN1 | 100±25%    | 140 (Typ.)  | 2000*            |  |
|               |               |                         | BLM18EG121SN1 | 120±25%    | 145 (Typ.)  | 2000*            |  |
|               |               |                         | BLM18EG221TN1 |            | 300 (Typ.)  | 1000             |  |
|               |               | For Standard            | BLM18EG221SN1 | 220±25%    | 260 (Typ.)  | 2000             |  |
|               |               | For Standard<br>(Low DC | BLM18EG331TN1 | 330±25%    | 450 (Typ.)  | 500              |  |
|               |               | Resistance Type)        | BLM18EG391TN1 |            |             |                  |  |
|               |               |                         | BLM18EG471SN1 | 390±25%    | 520 (Typ.)  | 500              |  |
|               |               |                         |               | 470±25%    | 550 (Typ.)  | 500              |  |
|               |               |                         | BLM18EG601SN1 | 600±25%    | 700 (Typ.)  | 500              |  |
|               |               |                         | BLM18GG471SN1 | 470±25%    | 1800±30%    | 100              |  |



 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$  Continued from the preceding page.

| ze (inches) | Type                              | Part Number   | Impeda      | Rated Current (mA |                   |
|-------------|-----------------------------------|---------------|-------------|-------------------|-------------------|
| te (inches) | Туре                              | Part Number   | at 100MHz   | at 1GHz           | Kateu Current (ii |
|             |                                   | BLM21AG121SN1 | 120±25%     | -                 |                   |
|             |                                   | BLM21AG151SN1 | 150±25%     | -                 |                   |
|             |                                   | BLM21AG221SN1 | 220±25%     | -                 |                   |
|             | For Standard                      | BLM21AG331SN1 | 330±25%     | -                 | 200               |
|             |                                   | BLM21AG471SN1 | 470±25%     | -                 |                   |
|             |                                   | BLM21AG601SN1 | 600±25%     | -                 |                   |
|             |                                   | BLM21AG102SN1 | 1000±25%    | -                 |                   |
|             |                                   | BLM21BB050SN1 | 5±25%       | -                 | 500               |
|             |                                   | BLM21BB600SN1 | 60±25%      | -                 |                   |
|             |                                   | BLM21BB750SN1 | 75±25%      | -                 |                   |
|             |                                   | BLM21BB121SN1 | 4001050/    | -                 |                   |
|             |                                   | BLM21BD121SN1 | 120±25%     | -                 |                   |
|             |                                   | BLM21BB151SN1 | 450:050/    | -                 |                   |
|             |                                   | BLM21BD151SN1 | 150±25%     | -                 |                   |
|             |                                   | BLM21BB201SN1 | 200±25%     | -                 |                   |
|             |                                   | BLM21BB221SN1 |             | -                 |                   |
|             |                                   | BLM21BD221SN1 | 220±25%     | -                 |                   |
|             |                                   | BLM21BB331SN1 | 222.224     | -                 |                   |
|             | For High Speed Signal             | BLM21BD331SN1 | 330±25%     | -                 |                   |
|             | (Sharp impedance characteristics) | BLM21BD421SN1 | 420±25%     | -                 | 200               |
| 0805        |                                   | BLM21BB471SN1 |             | -                 | 1                 |
|             |                                   | BLM21BD471SN1 | 470±25%     | -                 |                   |
|             |                                   | BLM21BD601SN1 | 600±25%     | -                 |                   |
|             |                                   | BLM21BD751SN1 | 750±25%     | -                 |                   |
|             |                                   | BLM21BD102SN1 | 1000±25%    | -                 |                   |
|             |                                   | BLM21BD152SN1 | 1500±25%    | -                 |                   |
|             |                                   | BLM21BD182SN1 | 1800±25%    | -                 |                   |
|             |                                   | BLM21BD222SN1 | 2250 (Typ.) | -                 |                   |
|             |                                   | BLM21BD222TN1 | 2200±25%    | -                 |                   |
|             |                                   | BLM21BD272SN1 | 2700±25%    | -                 |                   |
|             |                                   | BLM21RK121SN1 | 120±25%     | -                 |                   |
|             |                                   | BLM21RK221SN1 | 220±25%     | -                 |                   |
|             | For Digital Interface             | BLM21RK471SN1 | 470±25%     | -                 | 200               |
|             |                                   | BLM21RK601SN1 | 600±25%     | -                 |                   |
|             |                                   | BLM21RK102SN1 | 1000±25%    | -                 |                   |
|             |                                   | BLM21PG220SN1 | 22±25%      | -                 | 6000*             |
|             |                                   | BLM21PG300SN1 | 30 (Typ.)   | -                 | 00000             |
|             | For Large Current                 | BLM21PG600SN1 | 60±25%      | -                 | 3000*             |
|             |                                   | BLM21PG221SN1 | 220±25%     | -                 | 2000*             |
|             |                                   | BLM21PG331SN1 | 330±25%     | -                 | 1500*             |
|             |                                   | BLM31PG330SN1 | 33±25%      | -                 | 6000*             |
|             |                                   | BLM31PG500SN1 | 50 (Typ.)   | -                 | 2222              |
| 1206        | For Large Current                 | BLM31PG121SN1 | 120±25%     | -                 | 3000*             |
|             |                                   | BLM31PG391SN1 | 390±25%     | -                 | 2000*             |
|             |                                   | BLM31PG601SN1 | 600±25%     | -                 | 1500*             |
|             |                                   | BLM41PG600SN1 | 60 (Typ.)   | -                 | 6000*             |
|             |                                   | BLM41PG750SN1 | 75 (Typ.)   | _                 | 3000*             |
| 1806        | For Large Current                 | BLM41PG181SN1 | 180±25%     | -                 | 3000*             |
|             |                                   | BLM41PG471SN1 | 470±25%     | -                 | 2000*             |
|             |                                   | BLM41PG102SN1 | 1000±25%    | -                 | 1500*             |

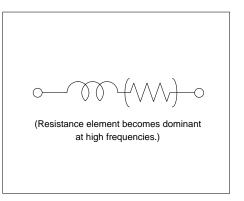
<sup>\*</sup> Please see p.55 "Derating of Rated Current".

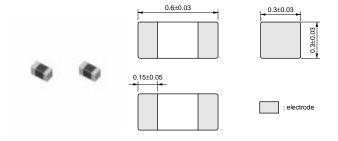
# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)



# Chip Ferrite Beads BLM03/BLM15/BLM18/BLM21/BLM31/BLM41 Series

### ■ Features (BLM\_A Series)

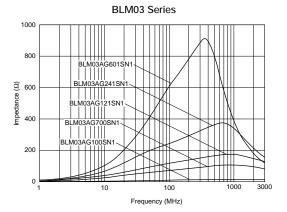

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.

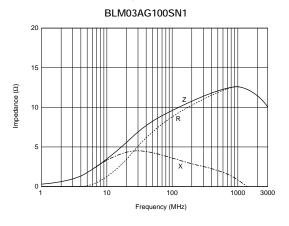

The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

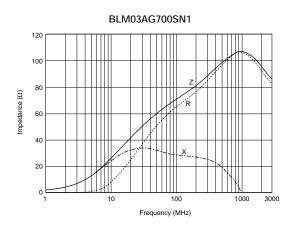
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM\_A series generates an impedance from the relatively low frequencies. Therefore BLM\_A series is effective in noise suppression in a wide frequency range (30MHz to several hundred MHz). The small size of BLM03A series (0.6x0.3mm) is suitable for noise suppression in small equipment such as PA modules for cellular phones.

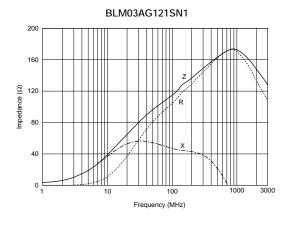
### BLM03A Series (0201 Size)

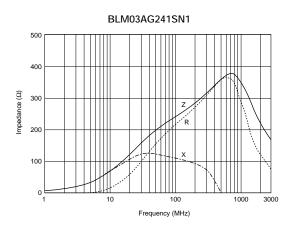
### **■** Equivalent Circuit

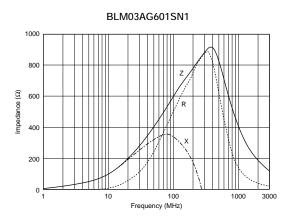


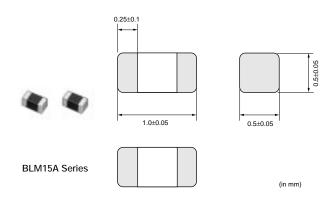


(in mm)


| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM03AG100SN1 | 10 (Typ.)                              | 500                   | 0.1                           | -55 to +125                            |
| BLM03AG700SN1 | 70 (Typ.)                              | 200                   | 0.5                           | -55 to +125                            |
| BLM03AG121SN1 | 120 ±25%                               | 200                   | 0.8                           | -55 to +125                            |
| BLM03AG241SN1 | 240 ±25%                               | 100                   | 1.0                           | -55 to +125                            |
| BLM03AG601SN1 | 600 ±25%                               | 100                   | 2.0                           | -55 to +125                            |


### ■ Impedance-Frequency (Typical)



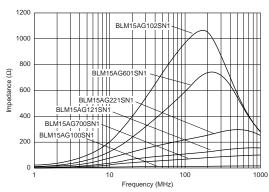




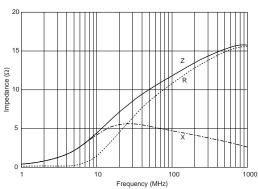


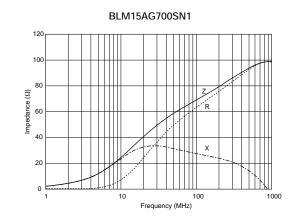




# BLM15A Series (0402 Size)



| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM15AG100SN1 | 10 (Тур.)                              | 1000                  | 0.05                          | -55 to +125                            |
| BLM15AG700SN1 | 70 (Typ.)                              | 500                   | 0.15                          | -55 to +125                            |
| BLM15AG121SN1 | 120 ±25%                               | 500                   | 0.25                          | -55 to +125                            |
| BLM15AG221SN1 | 220 ±25%                               | 300                   | 0.35                          | -55 to +125                            |
| BLM15AG601SN1 | 600 ±25%                               | 300                   | 0.6                           | -55 to +125                            |
| BLM15AG102SN1 | 1000 ±25%                              | 200                   | 1.0                           | -55 to +125                            |


### ■ Impedance-Frequency (Typical)


### BLM15A Series

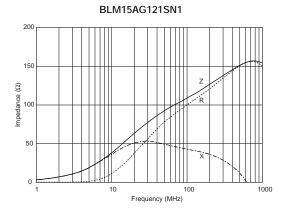


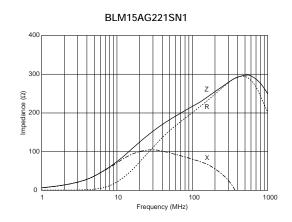
### ■ Impedance-Frequency Characteristics

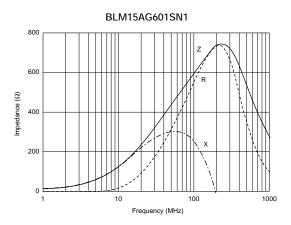
BLM15AG100SN1

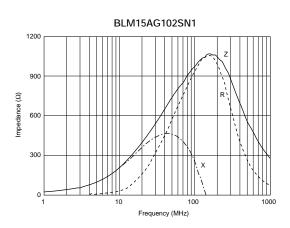




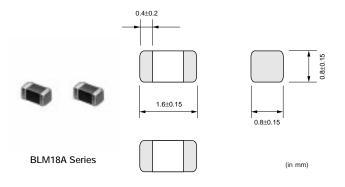

Continued on the following page.





Continued from the preceding page.

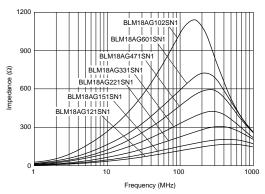
### **■** Impedance-Frequency Characteristics

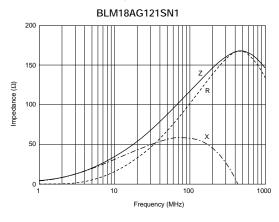


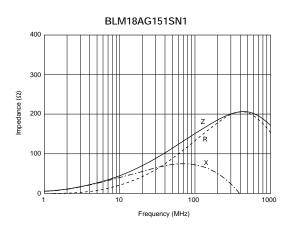


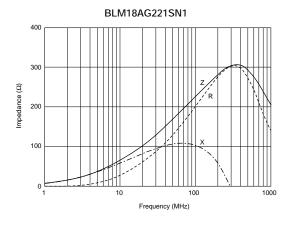


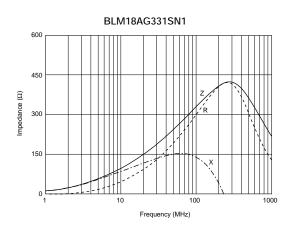


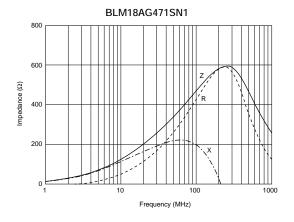


# BLM18A Series (0603 Size)

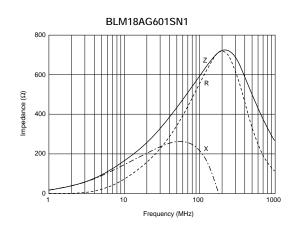




| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current (mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------|-------------------------------|----------------------------------------|
| BLM18AG121SN1 | 120 ±25%                               | 200                | 0.20                          | -55 to +125                            |
| BLM18AG151SN1 | 150 ±25%                               | 200                | 0.25                          | -55 to +125                            |
| BLM18AG221SN1 | 220 ±25%                               | 200                | 0.30                          | -55 to +125                            |
| BLM18AG331SN1 | 330 ±25%                               | 200                | 0.45                          | -55 to +125                            |
| BLM18AG471SN1 | 470 ±25%                               | 200                | 0.50                          | -55 to +125                            |
| BLM18AG601SN1 | 600 ±25%                               | 200                | 0.50                          | -55 to +125                            |
| BLM18AG102SN1 | 1000 ±25%                              | 100                | 0.70                          | -55 to +125                            |

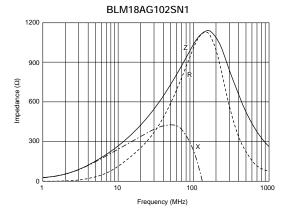

### ■ Impedance-Frequency (Typical)


### BLM18A Series

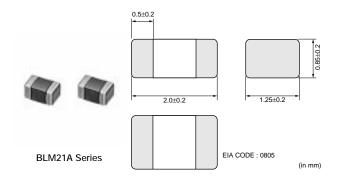




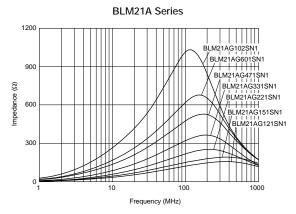



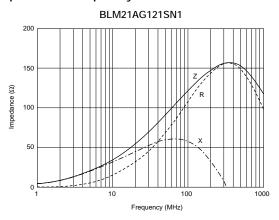


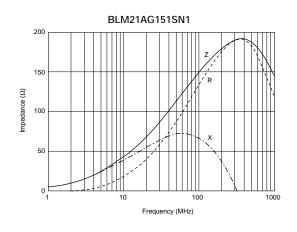



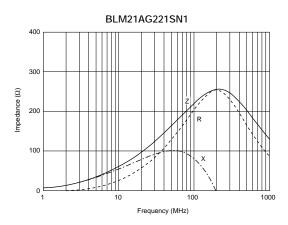


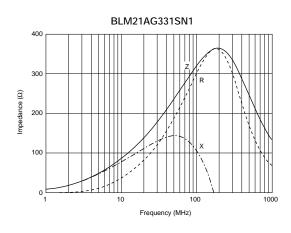

### ■ Impedance-Frequency Characteristics

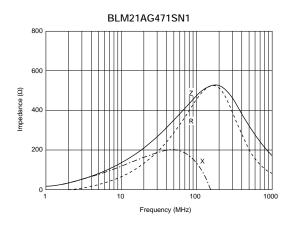


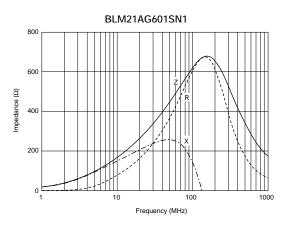


### BLM21A Series (0805 Size)

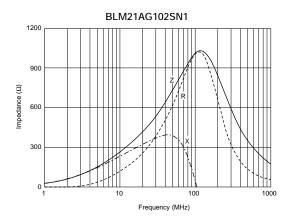




| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM21AG121SN1 | 120 ±25%                               | 200                   | 0.15                          | -55 to +125                            |
| BLM21AG151SN1 | 150 ±25%                               | 200                   | 0.15                          | -55 to +125                            |
| BLM21AG221SN1 | 220 ±25%                               | 200                   | 0.20                          | -55 to +125                            |
| BLM21AG331SN1 | 330 ±25%                               | 200                   | 0.25                          | -55 to +125                            |
| BLM21AG471SN1 | 470 ±25%                               | 200                   | 0.25                          | -55 to +125                            |
| BLM21AG601SN1 | 600 ±25%                               | 200                   | 0.30                          | -55 to +125                            |
| BLM21AG102SN1 | 1000 ±25%                              | 200                   | 0.45                          | -55 to +125                            |


### ■ Impedance-Frequency (Typical)



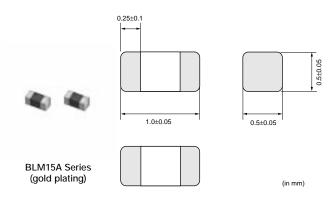








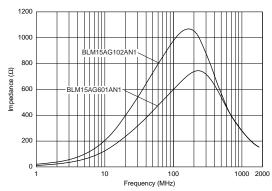




# **BLM15A Series Gold Plating (0402 Size)**

### ■ Features

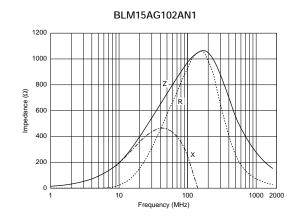
- 1. Au plating for wire bonding mounting
- BLM\_A series generates an impedance from the relatively low frequencies. Therefore BLM\_A series is effective in noise suppression in a wide frequency range (30MHz to several hundred MHz).

### ■ Applications


- 1. Optical transceiver modules
- 2. Optical pickup modules



| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current (mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------|-------------------------------|----------------------------------------|
| BLM15AG601AN1 | 600 ±25%                               | 300                | 0.6                           | -55 to +125                            |
| BLM15AG102AN1 | 1000 ±25%                              | 200                | 1.0                           | -55 to +125                            |


### ■ Impedance-Frequency (Typical)

### BLM15A Series (gold plating)

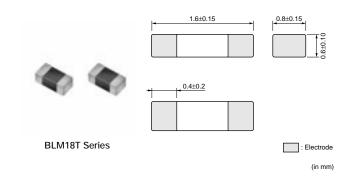


### ■ Impedance-Frequency Characteristics

# BLM15AG601AN1 800 600 400 200 Frequency (MHz)

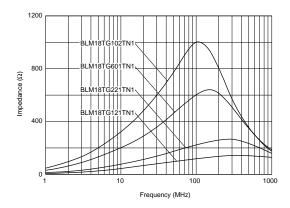




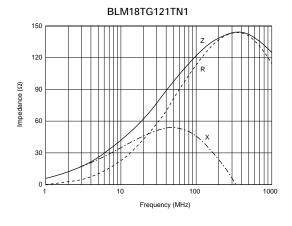

### **BLM18T Series (0603 Size)**

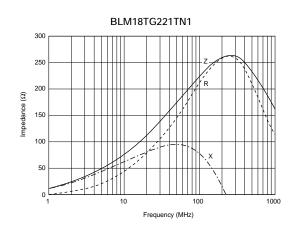
### ■ Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.


The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM\_T series generates an impedance from the relatively low frequencies. Therefore BLM\_T series is effective in noise suppression in a wide frequency range (10MHz to several hundred MHz). BLM\_T series contributes further to miniaturizing portable equipment.



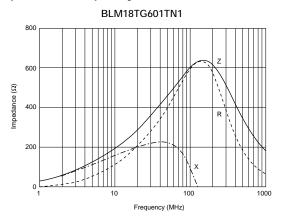


| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM18TG121TN1 | 120 ±25%                               | 200                   | 0.25                          | -55 to +125                            |
| BLM18TG221TN1 | 220 ±25%                               | 200                   | 0.30                          | -55 to +125                            |
| BLM18TG601TN1 | 600 ±25%                               | 200                   | 0.45                          | -55 to +125                            |
| BLM18TG102TN1 | 1000 ±25%                              | 100                   | 0.60                          | -55 to +125                            |

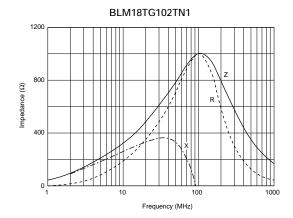
### ■ Impedance-Frequency (Typical)



### ■ Impedance-Frequency Characteristics







Continued on the following page.





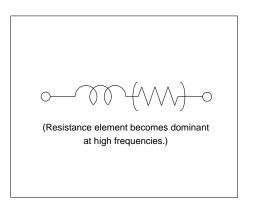
Continued from the preceding page.

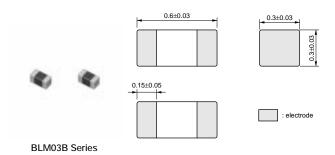




### ■ Features (BLM\_B Series)

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.

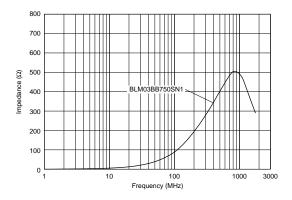

The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

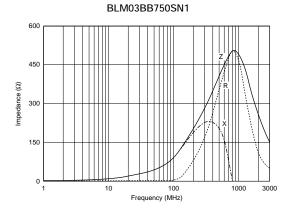

The nickel barrier structure of the external electrodes provides excellent solder heat resistance. The BLM\_B series can minimize attenuation of the signal waveform due to its sharp impedance characteristics. Various impedances are available to match signal frequency.

The small size of BLM03B series (0.6x0.3mm) is suitable for advanced high-density mounting, and is followed on a miniaturization of digital equipment, or module of a functional portion.

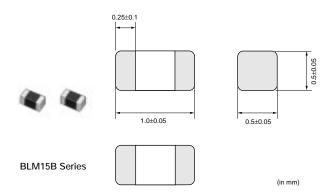
### BLM03B Series (0603 Size)

### **■** Equivalent Circuit



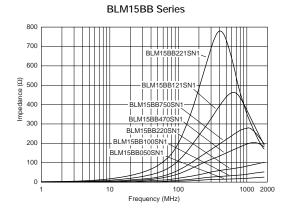



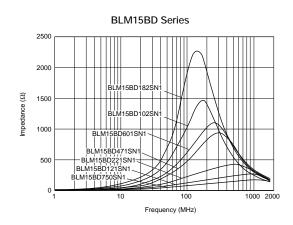

(in mm


| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM03BB750SN1 | 75 ±25%                                | 200                   | 1.4                           | -55 to +125                            |

### ■ Impedance-Frequency (Typical)

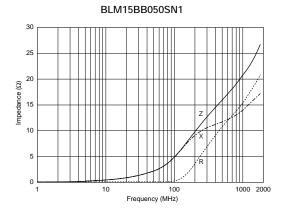


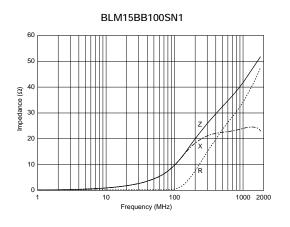


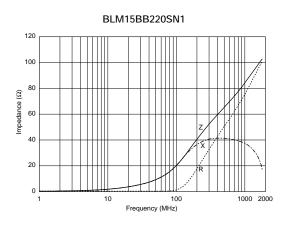


# BLM15B Series (0402 Size)

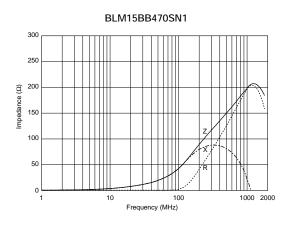


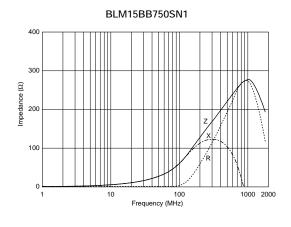
| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current (mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------|-------------------------------|----------------------------------------|
| BLM15BB050SN1 | 5 ±25%                                 | 500                | 0.08                          | -55 to +125                            |
| BLM15BB100SN1 | 10 ±25%                                | 300                | 0.10                          | -55 to +125                            |
| BLM15BB220SN1 | 22 ±25%                                | 300                | 0.20                          | -55 to +125                            |
| BLM15BB470SN1 | 47 ±25%                                | 300                | 0.35                          | -55 to +125                            |
| BLM15BB750SN1 | 75 ±25%                                | 300                | 0.40                          | -55 to +125                            |
| BLM15BD750SN1 | 75 ±25%                                | 300                | 0.20                          | -55 to +125                            |
| BLM15BB121SN1 | 120 ±25%                               | 300                | 0.55                          | -55 to +125                            |
| BLM15BD121SN1 | 120 ±25%                               | 300                | 0.30                          | -55 to +125                            |
| BLM15BB221SN1 | 220 ±25%                               | 200                | 0.80                          | -55 to +125                            |
| BLM15BD221SN1 | 220 ±25%                               | 300                | 0.40                          | -55 to +125                            |
| BLM15BD471SN1 | 470 ±25%                               | 200                | 0.60                          | -55 to +125                            |
| BLM15BD601SN1 | 600 ±25%                               | 200                | 0.65                          | -55 to +125                            |
| BLM15BD102SN1 | 1000 ±25%                              | 200                | 0.90                          | -55 to +125                            |
| BLM15BD182SN1 | 1800 ±25%                              | 100                | 1.40                          | -55 to +125                            |

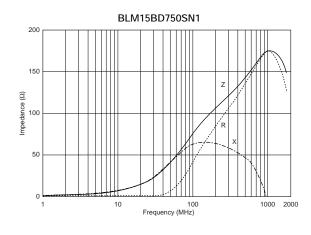

### ■ Impedance-Frequency (Typical)

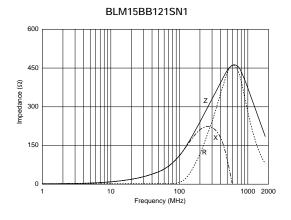


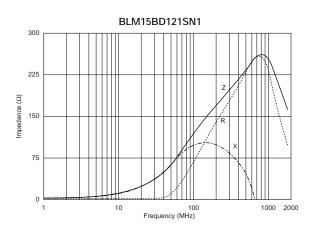





Continued on the following page.

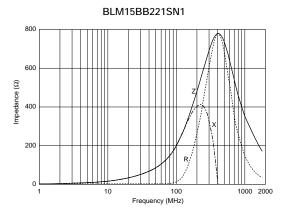


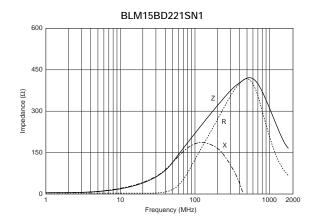



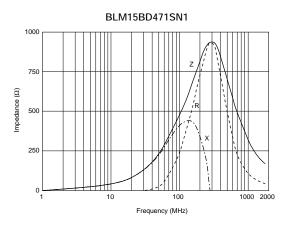



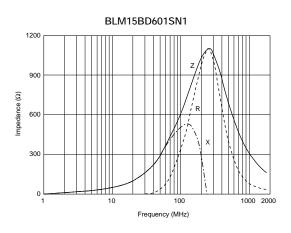



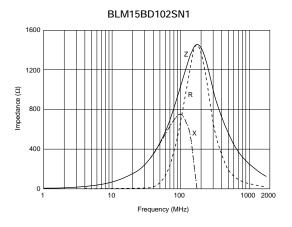


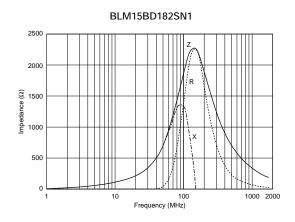



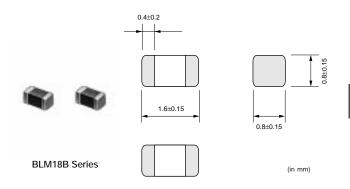





Continued from the preceding page.



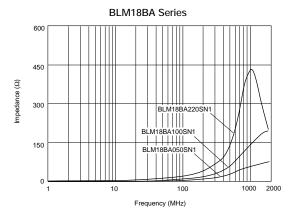


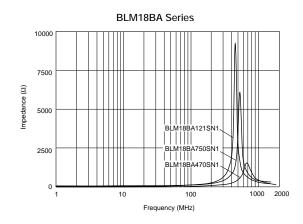


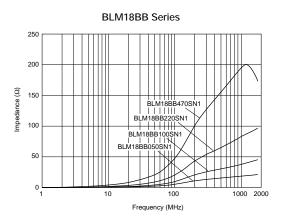



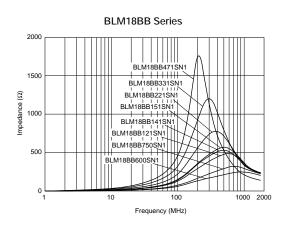


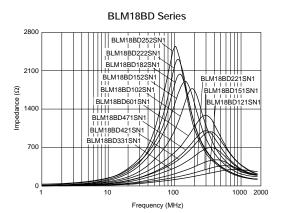


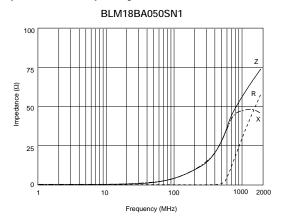



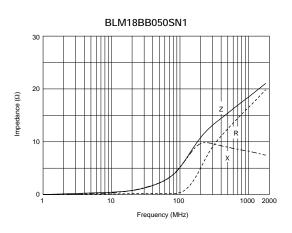


# BLM18B Series (0603 Size)

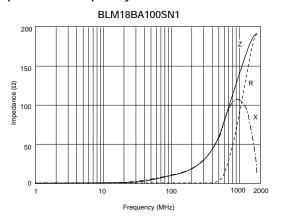


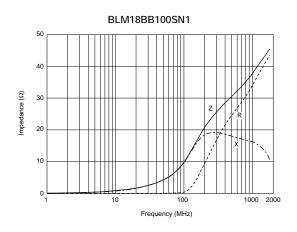


| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current (mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------|-------------------------------|----------------------------------------|
| BLM18BA050SN1 | 5 ±25%                                 | 500                | 0.20                          | -55 to +125                            |
| BLM18BB050SN1 | 5 ±25%                                 | 700                | 0.10                          | -55 to +125                            |
| BLM18BA100SN1 | 10 ±25%                                | 500                | 0.25                          | -55 to +125                            |
| BLM18BB100SN1 | 10 ±25%                                | 500                | 0.15                          | -55 to +125                            |
| BLM18BA220SN1 | 22 ±25%                                | 500                | 0.35                          | -55 to +125                            |
| BLM18BB220SN1 | 22 ±25%                                | 500                | 0.25                          | -55 to +125                            |
| BLM18BA470SN1 | 47 ±25%                                | 300                | 0.55                          | -55 to +125                            |
| BLM18BB470SN1 | 47 ±25%                                | 500                | 0.30                          | -55 to +125                            |
| BLM18BB600SN1 | 60 ±25%                                | 200                | 0.35                          | -55 to +125                            |
| BLM18BA750SN1 | 75 ±25%                                | 300                | 0.70                          | -55 to +125                            |
| BLM18BB750SN1 | 75 ±25%                                | 200                | 0.35                          | -55 to +125                            |
| BLM18BA121SN1 | 120 ±25%                               | 200                | 0.90                          | -55 to +125                            |
| BLM18BB121SN1 | 120 ±25%                               | 200                | 0.50                          | -55 to +125                            |
| BLM18BD121SN1 | 120 ±25%                               | 200                | 0.40                          | -55 to +125                            |
| BLM18BB141SN1 | 140 ±25%                               | 200                | 0.55                          | -55 to +125                            |
| BLM18BB151SN1 | 150 ±25%                               | 200                | 0.55                          | -55 to +125                            |
| BLM18BD151SN1 | 150 ±25%                               | 200                | 0.40                          | -55 to +125                            |
| BLM18BB221SN1 | 220 ±25%                               | 200                | 0.65                          | -55 to +125                            |
| BLM18BD221SN1 | 220 ±25%                               | 200                | 0.45                          | -55 to +125                            |
| BLM18BB331SN1 | 330 ±25%                               | 200                | 0.75                          | -55 to +125                            |
| BLM18BD331SN1 | 330 ±25%                               | 200                | 0.50                          | -55 to +125                            |
| BLM18BD421SN1 | 420 ±25%                               | 200                | 0.55                          | -55 to +125                            |
| BLM18BB471SN1 | 470 ±25%                               | 50                 | 1.00                          | -55 to +125                            |
| BLM18BD471SN1 | 470 ±25%                               | 200                | 0.55                          | -55 to +125                            |
| BLM18BD601SN1 | 600 ±25%                               | 200                | 0.65                          | -55 to +125                            |
| BLM18BD102SN1 | 1000 ±25%                              | 100                | 0.85                          | -55 to +125                            |
| BLM18BD152SN1 | 1500 ±25%                              | 50                 | 1.20                          | -55 to +125                            |
| BLM18BD182SN1 | 1800 ±25%                              | 50                 | 1.50                          | -55 to +125                            |
| BLM18BD222SN1 | 2200 ±25%                              | 50                 | 1.50                          | -55 to +125                            |
| BLM18BD252SN1 | 2500 ±25%                              | 50                 | 1.50                          | -55 to +125                            |

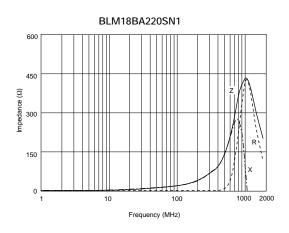

### **■** Impedance-Frequency (Typical)

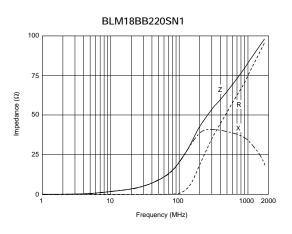


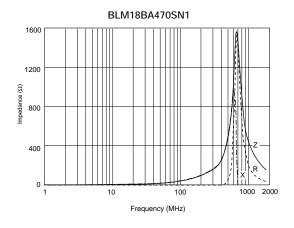



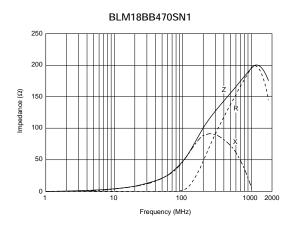



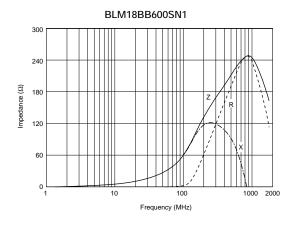



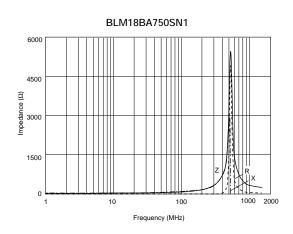



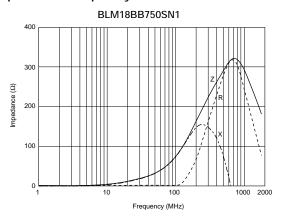



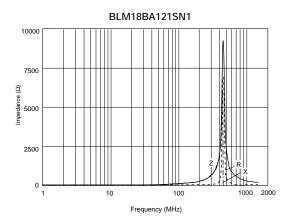



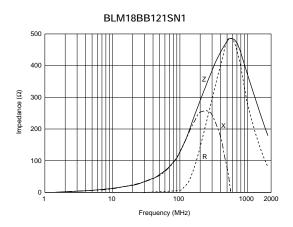



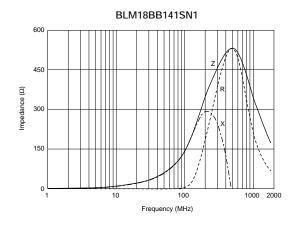



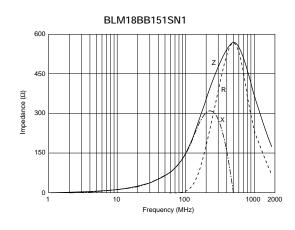



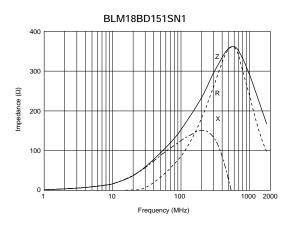



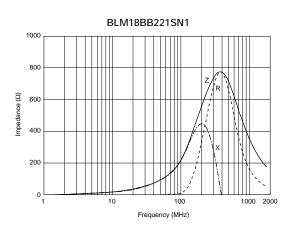


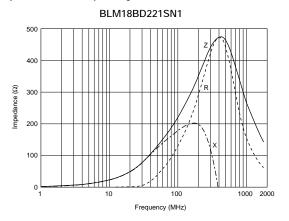


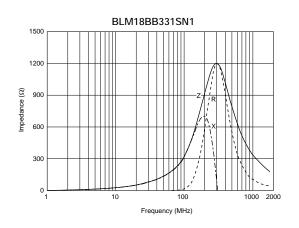


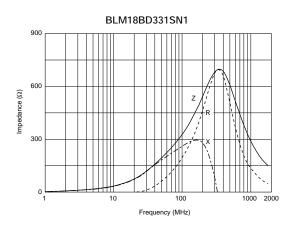



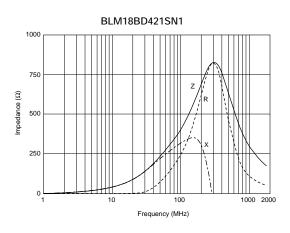



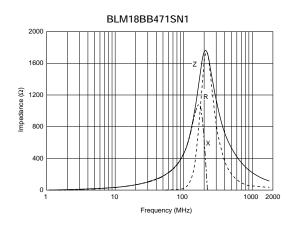



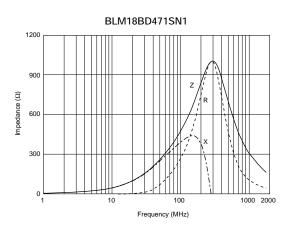



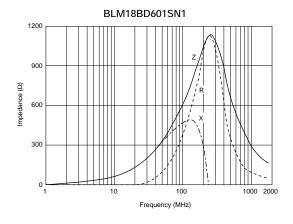



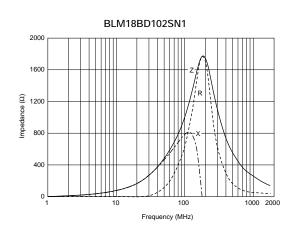



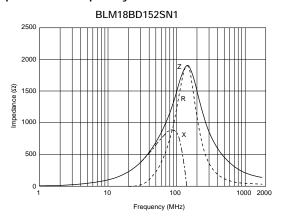



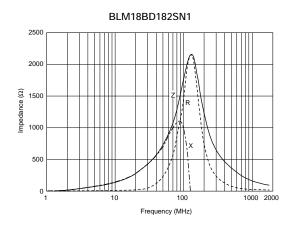



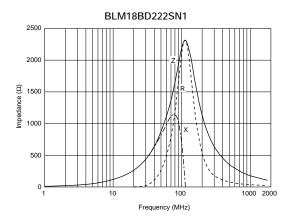



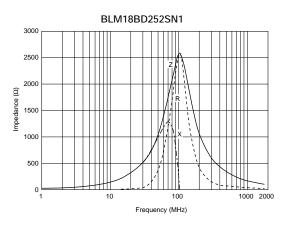





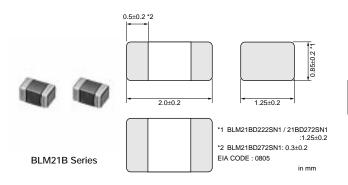



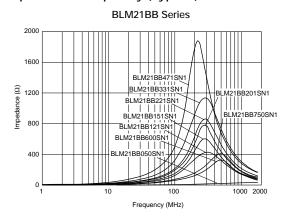

Continued from the preceding page.

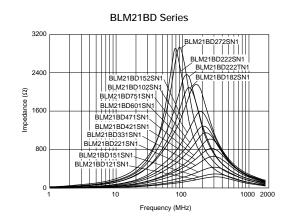








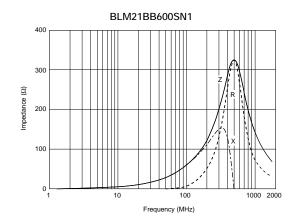


# BLM21B Series (0805 Size)

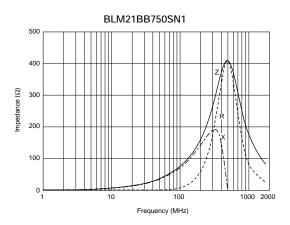


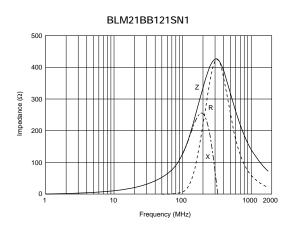
| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current (mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------|-------------------------------|----------------------------------------|
| BLM21BB050SN1 | 5 ±25%                                 | 500                | 0.07                          | -55 to +125                            |
| BLM21BB600SN1 | 60 ±25%                                | 200                | 0.20                          | -55 to +125                            |
| BLM21BB750SN1 | 75 ±25%                                | 200                | 0.25                          | -55 to +125                            |
| BLM21BB121SN1 | 120 ±25%                               | 200                | 0.25                          | -55 to +125                            |
| BLM21BD121SN1 | 120 ±25%                               | 200                | 0.25                          | -55 to +125                            |
| BLM21BB151SN1 | 150 ±25%                               | 200                | 0.25                          | -55 to +125                            |
| BLM21BD151SN1 | 150 ±25%                               | 200                | 0.25                          | -55 to +125                            |
| BLM21BB201SN1 | 200 ±25%                               | 200                | 0.35                          | -55 to +125                            |
| BLM21BB221SN1 | 220 ±25%                               | 200                | 0.35                          | -55 to +125                            |
| BLM21BD221SN1 | 220 ±25%                               | 200                | 0.25                          | -55 to +125                            |
| BLM21BB331SN1 | 330 ±25%                               | 200                | 0.40                          | -55 to +125                            |
| BLM21BD331SN1 | 330 ±25%                               | 200                | 0.30                          | -55 to +125                            |
| BLM21BD421SN1 | 420 ±25%                               | 200                | 0.30                          | -55 to +125                            |
| BLM21BB471SN1 | 470 ±25%                               | 200                | 0.45                          | -55 to +125                            |
| BLM21BD471SN1 | 470 ±25%                               | 200                | 0.35                          | -55 to +125                            |
| BLM21BD601SN1 | 600 ±25%                               | 200                | 0.35                          | -55 to +125                            |
| BLM21BD751SN1 | 750 ±25%                               | 200                | 0.40                          | -55 to +125                            |
| BLM21BD102SN1 | 1000 ±25%                              | 200                | 0.40                          | -55 to +125                            |
| BLM21BD152SN1 | 1500 ±25%                              | 200                | 0.45                          | -55 to +125                            |
| BLM21BD182SN1 | 1800 ±25%                              | 200                | 0.50                          | -55 to +125                            |
| BLM21BD222TN1 | 2200 ±25%                              | 200                | 0.60                          | -55 to +125                            |
| BLM21BD222SN1 | 2250 (Typ.)                            | 200                | 0.60                          | -55 to +125                            |
| BLM21BD272SN1 | 2700 ±25%                              | 200                | 0.80                          | -55 to +125                            |

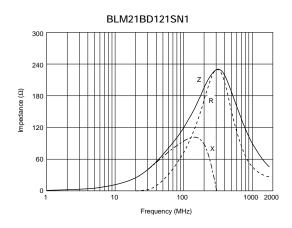
## ■ Impedance-Frequency (Typical)



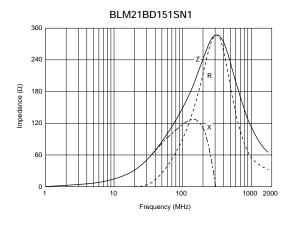


Continued on the following page.

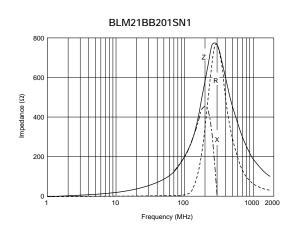




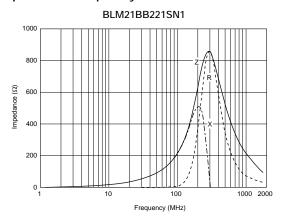


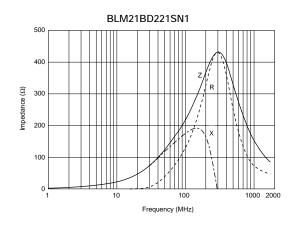


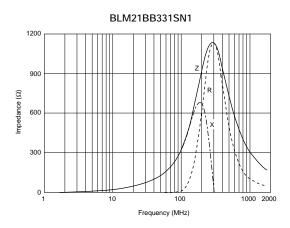



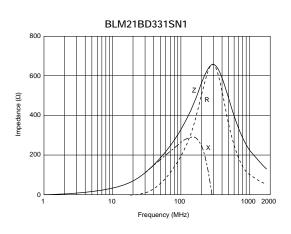


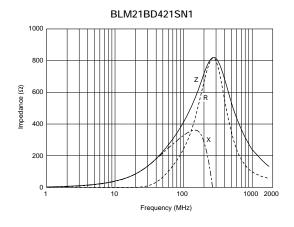


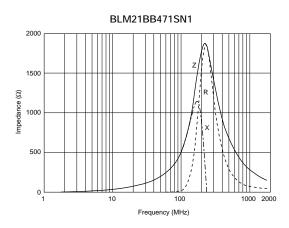



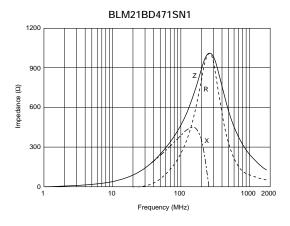



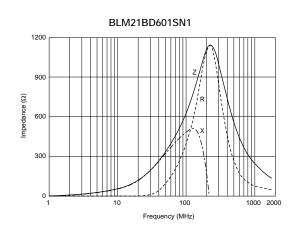



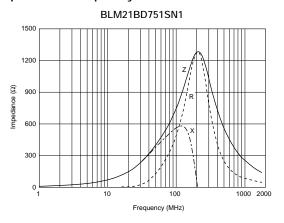



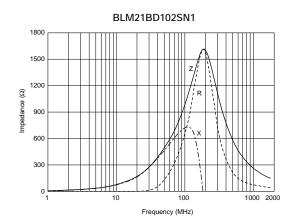



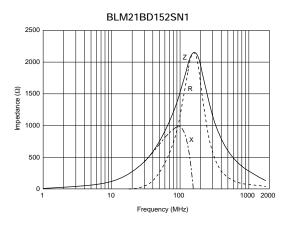



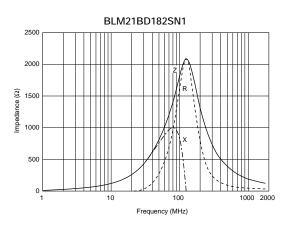


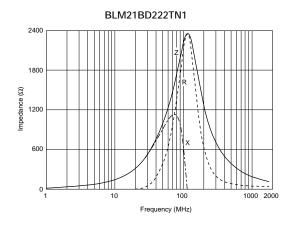


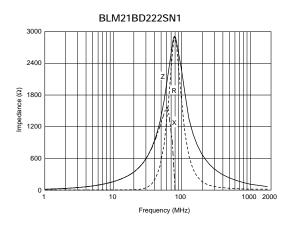



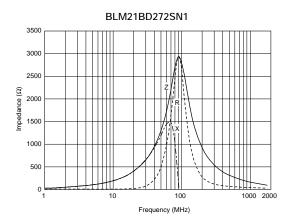





Continued from the preceding page.





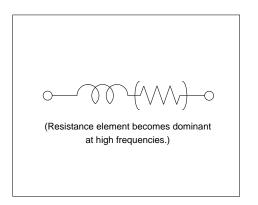


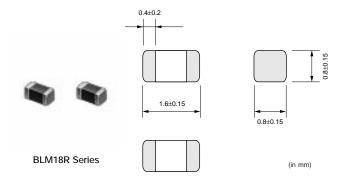







#### ■ Features (BLM\_R Series)

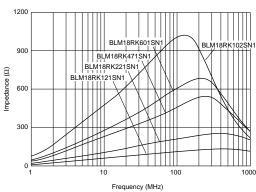

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.

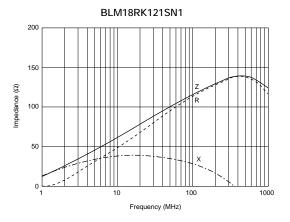

The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

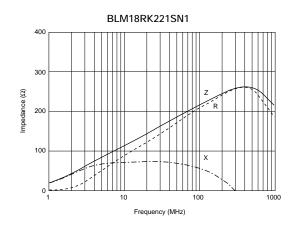
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. The BLM\_R series can be used in a digital Interface. Resistance of BLM\_R series especially grows in the lower frequency range. Therefore BLM\_R series is less effective for digital signal waveform at low frequency range and can suppress the ringing.

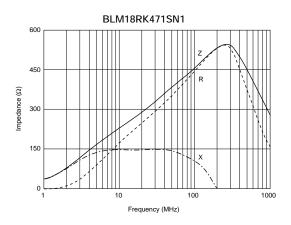
## BLM18R Series (0603 Size)

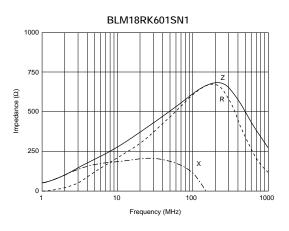
#### **■** Equivalent Circuit

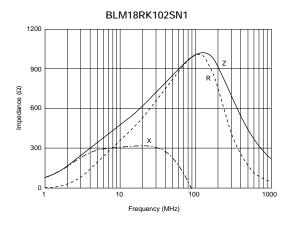




| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |  |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|--|
| BLM18RK121SN1 | 120 ±25%                               | 200                   | 0.25                          | -55 to +125                            |  |
| BLM18RK221SN1 | 220 ±25%                               | 200                   | 0.30                          | -55 to +125                            |  |
| BLM18RK471SN1 | 470 ±25%                               | 200                   | 0.50                          | -55 to +125                            |  |
| BLM18RK601SN1 | 600 ±25%                               | 200                   | 0.60                          | -55 to +125                            |  |
| BLM18RK102SN1 | 1000 ±25%                              | 200                   | 0.80                          | -55 to +125                            |  |

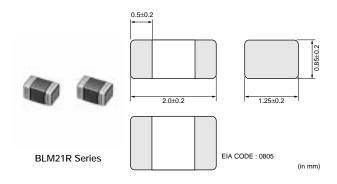

#### ■ Impedance-Frequency (Typical)


#### BLM18R Series





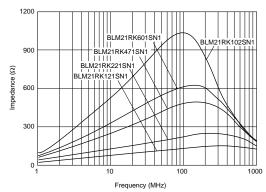


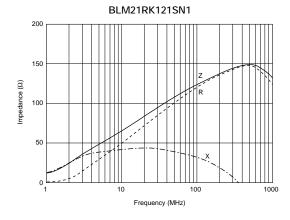


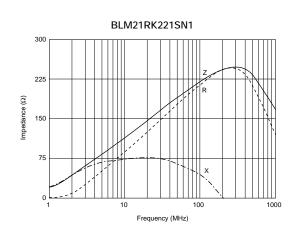



44


# BLM21R Series (0805 Size)




| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM21RK121SN1 | 120 ±25%                               | 200                   | 0.15                          | -55 to +125                            |
| BLM21RK221SN1 | 220 ±25%                               | 200                   | 0.20                          | -55 to +125                            |
| BLM21RK471SN1 | 470 ±25%                               | 200                   | 0.25                          | -55 to +125                            |
| BLM21RK601SN1 | 600 ±25%                               | 200                   | 0.30                          | -55 to +125                            |
| BLM21RK102SN1 | 1000 ±25%                              | 200                   | 0.50                          | -55 to +125                            |

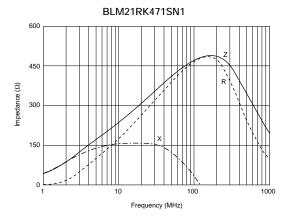

## ■ Impedance-Frequency (Typical)

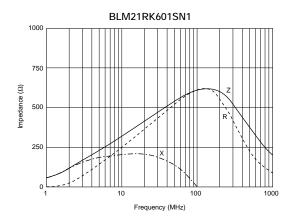
#### BLM21R Series

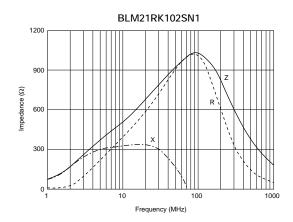


## **■** Impedance-Frequency Characteristics



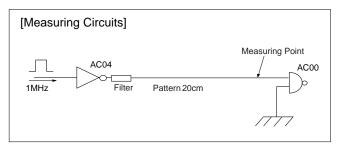


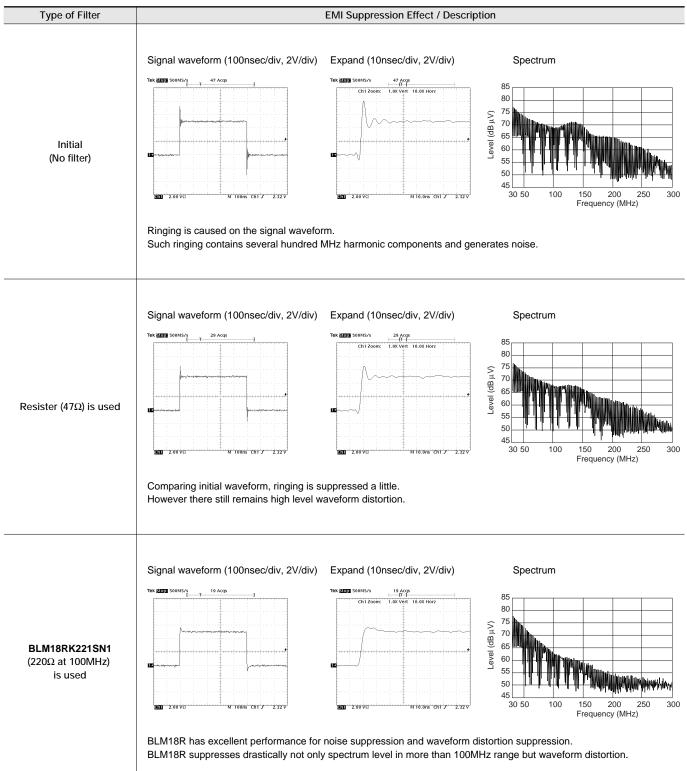


Continued on the following page.






Continued from the preceding page.





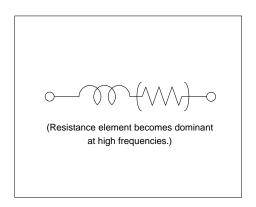

## **Noise Suppression Effect of BLM\_R Series**

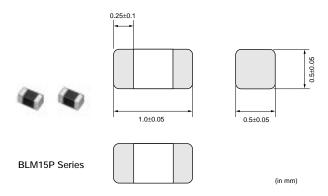
#### ■Waveform Distortion Suppressing Performance of BLM□□R Series





#### ■ Features (BLM\_P Series)

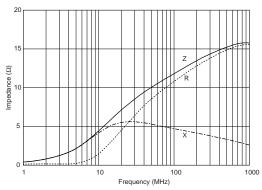

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.


The BLM series is effective in circuits without stable ground lines because the BLM series does not need a connection to ground.

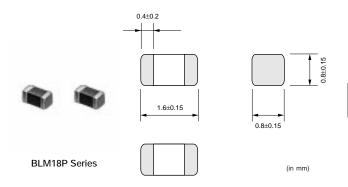
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. The BLM\_P series can be used in high current circuits due to its low DC resistance. It can match power lines to a maximum of 6A DC.

# BLM15P Series (0402 Size)

#### **■** Equivalent Circuit







| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM15PG100SN1 | 10 (Тур.)                              | 1000                  | 0.05                          | -55 to +125                            |

## ■ Impedance-Frequency Characteristics

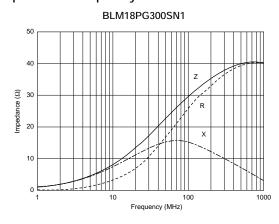
#### BLM15PG100SN1

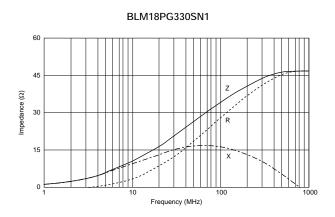


# BLM18P Series (0603 Size)




| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM18PG300SN1 | 30 (Тур.)                              | 1000                  | 0.05                          | -55 to +125                            |
| BLM18PG330SN1 | 33 ±25%                                | 3000                  | 0.025                         | -55 to +125                            |
| BLM18PG600SN1 | 60 (Typ.)                              | 500                   | 0.10                          | -55 to +125                            |
| BLM18PG121SN1 | 120 ±25%                               | 2000                  | 0.05                          | -55 to +125                            |
| BLM18PG181SN1 | 180 ±25%                               | 1500                  | 0.09                          | -55 to +125                            |


At rated current higher than 1500mA, derating is required.


Please refer p. 55, "Derating of Rated Current".

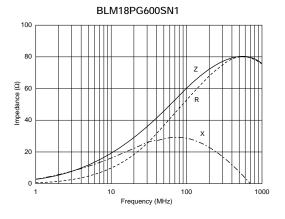
#### **■** Impedance-Frequency (Typical)

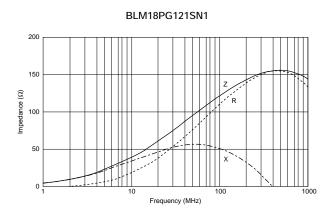


#### **■** Impedance-Frequency Characteristics

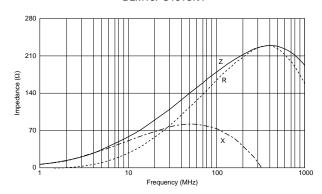




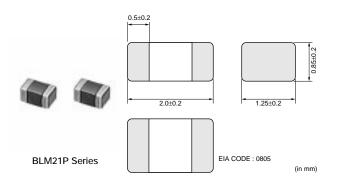

Continued on the following page.







Continued from the preceding page.

#### **■** Impedance-Frequency Characteristics

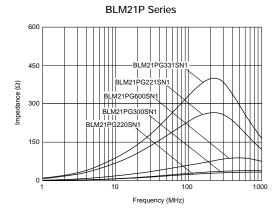


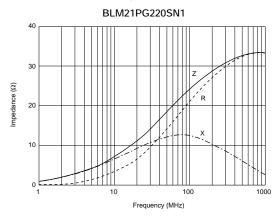


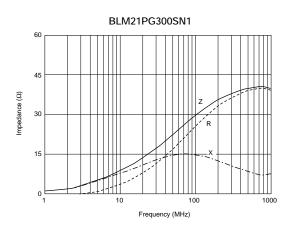


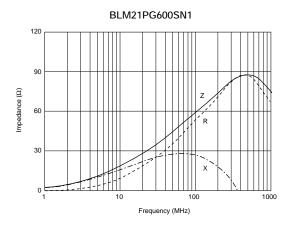


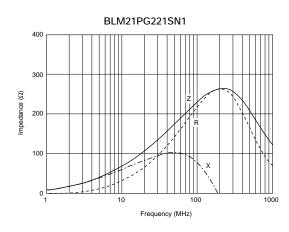

## BLM21P Series (0805 Size)

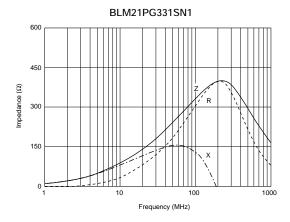




| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM21PG220SN1 | 22 ±25%                                | 6000                  | 0.01                          | -55 to +125                            |
| BLM21PG300SN1 | 30 (Тур.)                              | 3000                  | 0.015                         | -55 to +125                            |
| BLM21PG600SN1 | 60 ±25%                                | 3000                  | 0.025                         | -55 to +125                            |
| BLM21PG221SN1 | 220 ±25%                               | 2000                  | 0.050                         | -55 to +125                            |
| BLM21PG331SN1 | 330 ±25%                               | 1500                  | 0.09                          | -55 to +125                            |

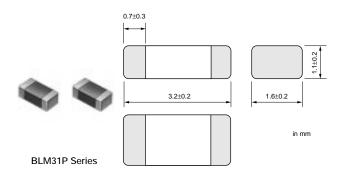

At rated current higher than 1500mA, derating is required. Please refer p. 55, "Derating of Rated Current".





## ■ Impedance-Frequency (Typical)





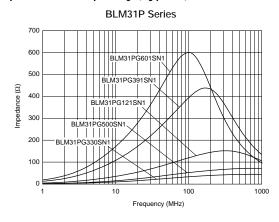





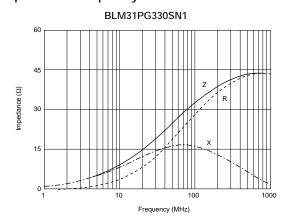


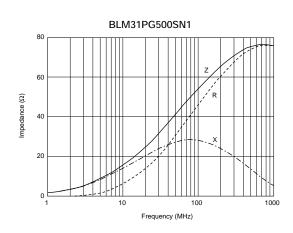



# BLM31P Series (1206 Size)




| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM31PG330SN1 | 33 ±25%                                | 6000                  | 0.01                          | -55 to +125                            |
| BLM31PG500SN1 | 50 (Typ.)                              | 3000                  | 0.025                         | -55 to +125                            |
| BLM31PG121SN1 | 120 ±25%                               | 3000                  | 0.025                         | -55 to +125                            |
| BLM31PG391SN1 | 390 ±25%                               | 2000                  | 0.05                          | -55 to +125                            |
| BLM31PG601SN1 | 600 ±25%                               | 1500                  | 0.09                          | -55 to +125                            |

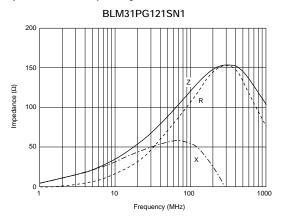

At rated current higher than 1500mA, derating is required.

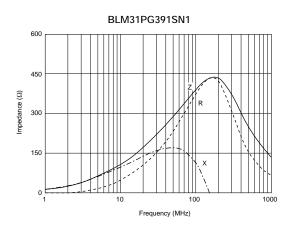

Please refer p. 55, "Derating of Rated Current".

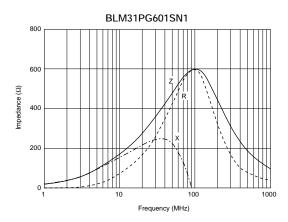
#### ■ Impedance-Frequency (Typical)



#### **■** Impedance-Frequency Characteristics

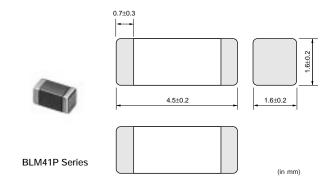




Continued on the following page.











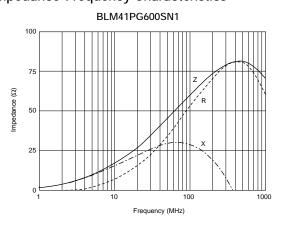


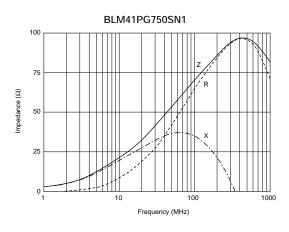

# BLM41P Series (1806 Size)



| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM41PG600SN1 | 60 (Typ.)                              | 6000                  | 0.01                          | -55 to +125                            |
| BLM41PG750SN1 | 75 (Typ.)                              | 3000                  | 0.025                         | -55 to +125                            |
| BLM41PG181SN1 | 180 ±25%                               | 3000                  | 0.025                         | -55 to +125                            |
| BLM41PG471SN1 | 470 ±25%                               | 2000                  | 0.05                          | -55 to +125                            |
| BLM41PG102SN1 | 1000 ±25%                              | 1500                  | 0.09                          | -55 to +125                            |

At rated current higher than 1500mA, derating is required.

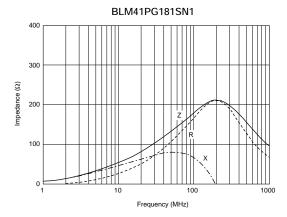

Please refer p. 55, "Derating of Rated Current".

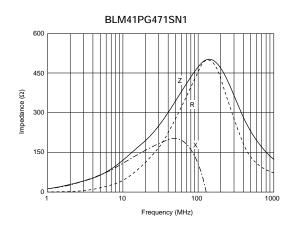

#### ■ Impedance-Frequency (Typical)

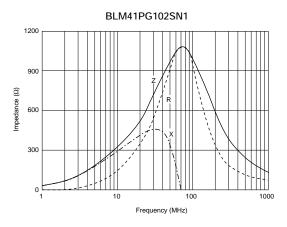
BLM41P Series (80-180ohm) 250 200 ସି <sub>150</sub> Impedance 100 100 1000 Frequency (MHz)

# BLM41P Series (470-1000ohm) 900 Impedance (Ω) 600 300 Frequency (MHz)

#### **■** Impedance-Frequency Characteristics

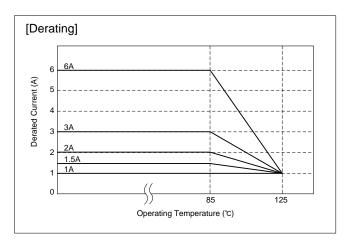




Continued on the following page.












## ■ Notice (Rating)

In operating temperatures exceeding +85℃, derating of current is necessary for chip Ferrite Beads for which rated current is 1500mA or over. Please apply the derating curve shown in chart according to the operating temperature.



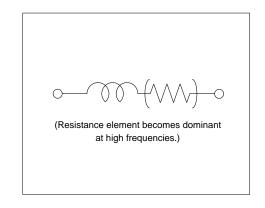
# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

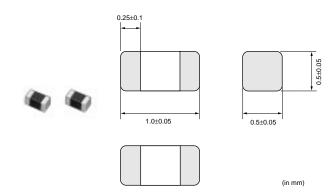


# GHz Noise Suppression Chip Ferrite Beads BLM15H/15E/18H/18E/18G Series

Excellent high frequency impedance characteristics with 0402 (EIA) size.

#### ■ Features

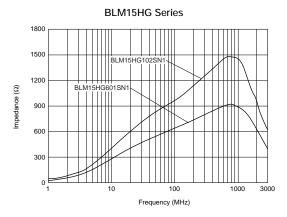

- 1. Small size: 1.0x0.5mm (0402)
- 2. Suitable for noise suppression in 1GHz or higher
- 3. Low DC Resistance/Large Rated Current (BLM15E)
- 4. No Lead production using Ni+Sn plating in termination

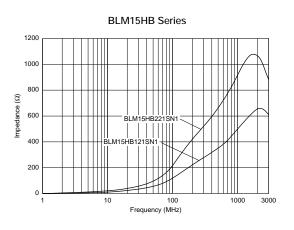

#### ■ Applications

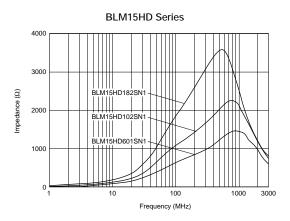
- 1. EMI suppression for Note PC and DSC
- 2. Noise suppression for data line in mobile phone
- 3. Prevention of erroneous operation caused by local oscillation signal in mobile phone
- 4. Optical pickup modules

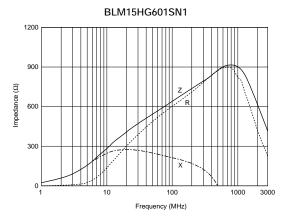
## BLM15H Series (0402 Size)

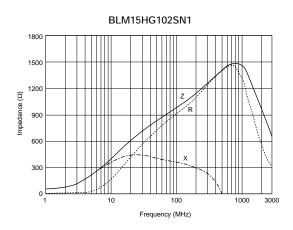
#### **■** Equivalent Circuit

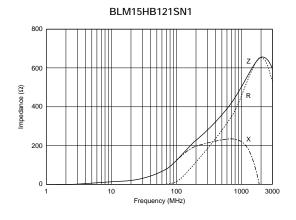


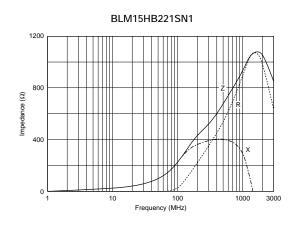





| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Impedance<br>(at 1GHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM15HG601SN1 | 600 ±25%                               | 1000 ±40%                            | 300                   | 0.7                           | -55 to +125                            |
| BLM15HG102SN1 | 1000 ±25%                              | 1400 ±40%                            | 250                   | 1.1                           | -55 to +125                            |
| BLM15HB121SN1 | 120 ±25%                               | 500 ±40%                             | 300                   | 0.7                           | -55 to +125                            |
| BLM15HB221SN1 | 220 ±25%                               | 900 ±40%                             | 250                   | 1.0                           | -55 to +125                            |
| BLM15HD601SN1 | 600 ±25%                               | 1400 ±40%                            | 300                   | 0.85                          | -55 to +125                            |
| BLM15HD102SN1 | 1000 ±25%                              | 2000 ±40%                            | 250                   | 1.25                          | -55 to +125                            |
| BLM15HD182SN1 | 1800 ±25%                              | 2700 ±40%                            | 200                   | 2.2                           | -55 to +125                            |

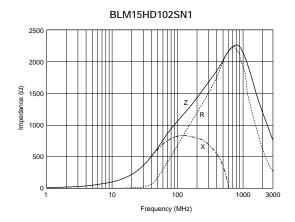


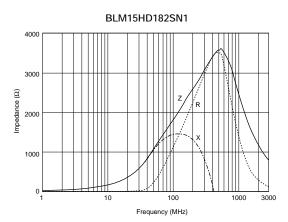


### ■ Impedance-Frequency (Typical)



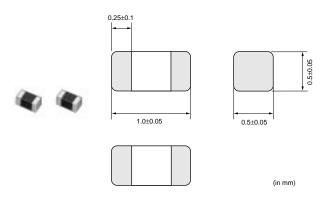





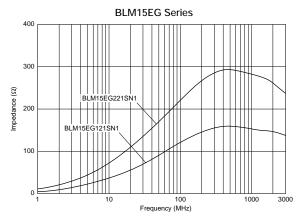


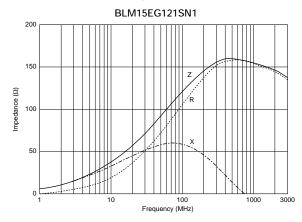








## BLM15E Series (0402 Size)

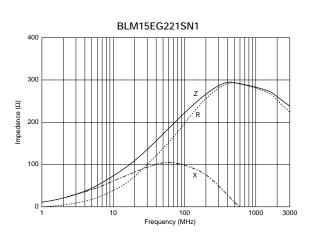


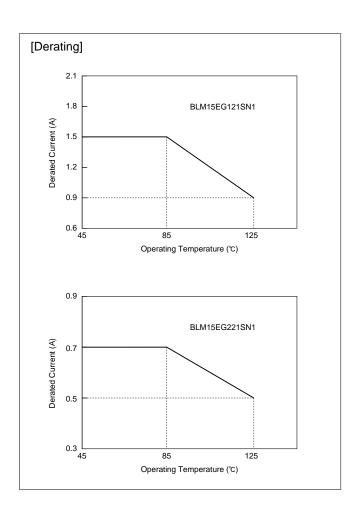

| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Impedance<br>(at 1GHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM15EG121SN1 | 120 ±25%                               | 145 (Typ.)                           | 1500                  | 0.095                         | -55 to +125                            |
| BLM15EG221SN1 | 220 ±25%                               | 270 (Typ.)                           | 700                   | 0.28                          | -55 to +125                            |



#### ■ Impedance-Frequency (Typical)




#### ■ Impedance-Frequency Characteristics




## ■ Notice (Rating)

In operating temperature exceeding +85°C, derating of current is necessary for BLM15E series.

Please apply the derating curve shown in chart according to the operating temperature.

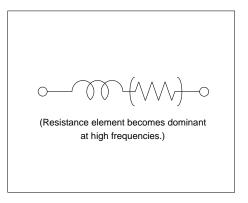


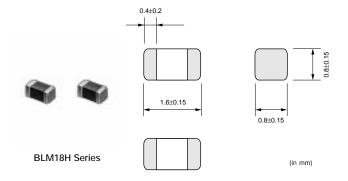


#### ■ BLM18 Series

BLM18H/BLM18E series has a modified internal electrode structure, that minimizes stray capacitance and increases the effective frequency range.

#### ■ Features (BLM18H series)

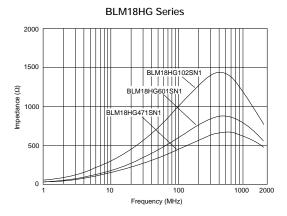

- 1. BLM18H series realizes high impedance at 1GHz and is suitable for noise suppression from 500MHz to GHz range. The impedance value of HG/HD-type is about three times as large as that of A/B-type at 1GHz, though the impedance characteristic of HG/HD-type is similar to A/B-type at 100MHz or less.
- 2. HG-type is effective in noise suppression in wide frequency range (several MHz to several GHz). HB/HD-type for high-speed signal line provides a sharper roll-off after the cut-off frequency. HK-type for digital interface is effective in suppressing the ringing because resistance especially grows in the lower frequency.
- 3. The magnetic shielded structure minimizes crosstalk.

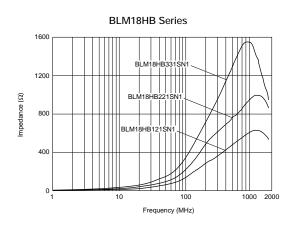

#### ■ Features (BLM18E series)

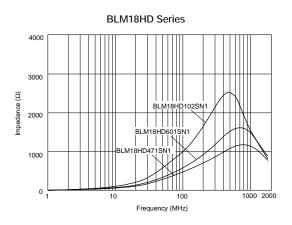
- Low DC Resistance and a large Rated Current are suitable for noise suppression of the driver circuit.
- 2. Excellent direct current characteristics
- 3. Thin type (t=0.5mm) is suitable for small and low profile equipment such as DSC, cellular phones.

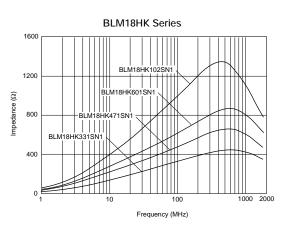
## BLM18H Series (0603 Size)

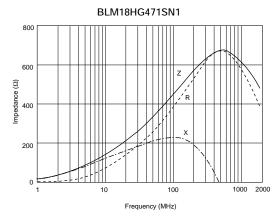
#### **■** Equivalent Circuit

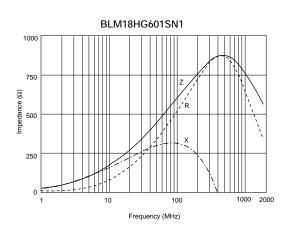


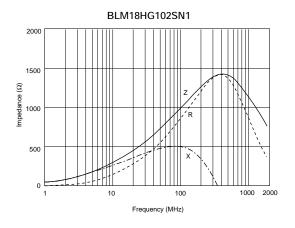



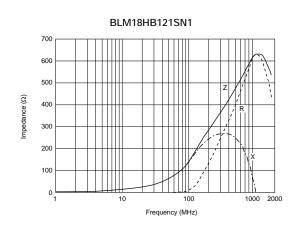


| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Impedance<br>(at 1GHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM18HG471SN1 | 470 ±25%                               | 600 (Typ.)                           | 200                   | 0.85                          | -55 to +125                            |
| BLM18HG601SN1 | 600 ±25%                               | 700 (Typ.)                           | 200                   | 1.00                          | -55 to +125                            |
| BLM18HG102SN1 | 1000 ±25%                              | 1000 (Typ.)                          | 100                   | 1.60                          | -55 to +125                            |
| BLM18HB121SN1 | 120 ±25%                               | 500 ±40%                             | 200                   | 0.50                          | -55 to +125                            |
| BLM18HB221SN1 | 220 ±25%                               | 1100 ±40%                            | 100                   | 0.80                          | -55 to +125                            |
| BLM18HB331SN1 | 330 ±25%                               | 1600 ±40%                            | 50                    | 1.20                          | -55 to +125                            |
| BLM18HD471SN1 | 470 ±25%                               | 1000 (Typ.)                          | 100                   | 1.20                          | -55 to +125                            |
| BLM18HD601SN1 | 600 ±25%                               | 1200 (Typ.)                          | 100                   | 1.50                          | -55 to +125                            |
| BLM18HD102SN1 | 1000 ±25%                              | 1700 (Typ.)                          | 50                    | 1.80                          | -55 to +125                            |
| BLM18HK331SN1 | 330 ±25%                               | 400 ±40%                             | 200                   | 0.50                          | -55 to +125                            |
| BLM18HK471SN1 | 470 ±25%                               | 600 ±40%                             | 200                   | 0.70                          | -55 to +125                            |
| BLM18HK601SN1 | 600 ±25%                               | 700 ±40%                             | 100                   | 0.90                          | -55 to +125                            |
| BLM18HK102SN1 | 1000 ±25%                              | 1200 ±40%                            | 50                    | 1.50                          | -55 to +125                            |



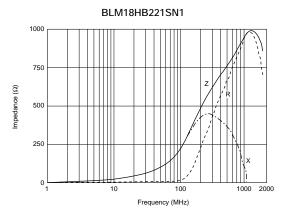


#### ■ Impedance-Frequency (Typical)

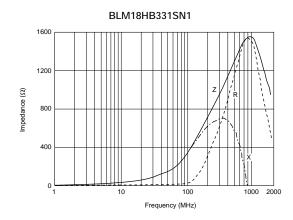


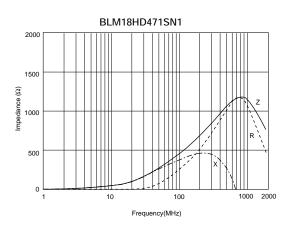



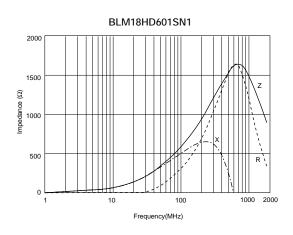



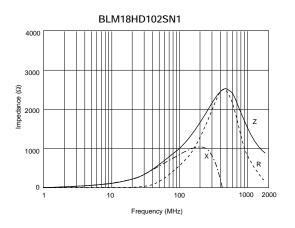


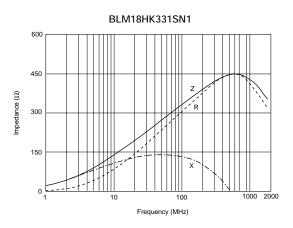



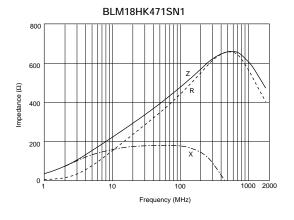



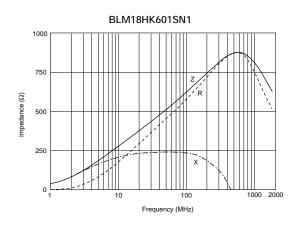



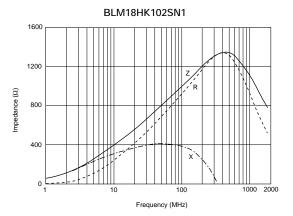



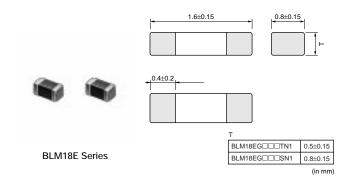





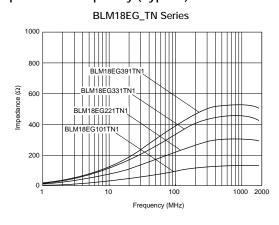


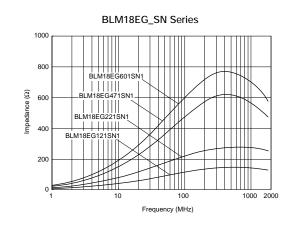



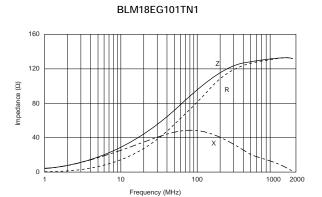


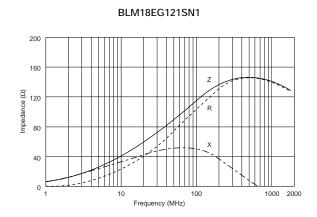


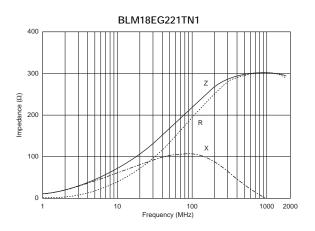


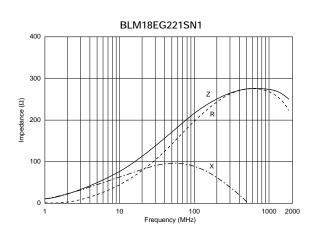


## BLM18E Series (0603 Size)

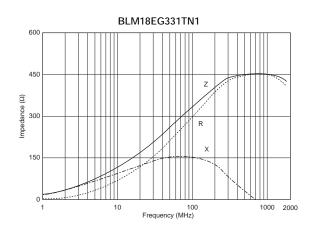


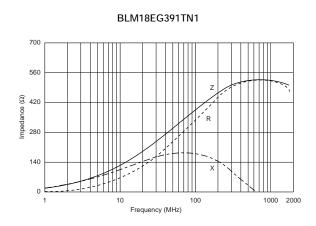


| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Impedance<br>(at 1GHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM18EG101TN1 | 100 ±25%                               | 140 (Typ.)                           | 2000                  | 0.045                         | -55 to +125                            |
| BLM18EG121SN1 | 120 ±25%                               | 145 (Typ.)                           | 2000                  | 0.04                          | -55 to +125                            |
| BLM18EG221SN1 | 220 ±25%                               | 260 (Typ.)                           | 2000                  | 0.05                          | -55 to +125                            |
| BLM18EG221TN1 | 220 ±25%                               | 300 (Typ.)                           | 1000                  | 0.15                          | -55 to +125                            |
| BLM18EG331TN1 | 330 ±25%                               | 450 (Typ.)                           | 500                   | 0.21                          | -55 to +125                            |
| BLM18EG391TN1 | 390 ±25%                               | 520 (Typ.)                           | 500                   | 0.3                           | -55 to +125                            |
| BLM18EG471SN1 | 470 ±25%                               | 550 (Typ.)                           | 500                   | 0.21                          | -55 to +125                            |
| BLM18EG601SN1 | 600 ±25%                               | 700 (Typ.)                           | 500                   | 0.35                          | -55 to +125                            |

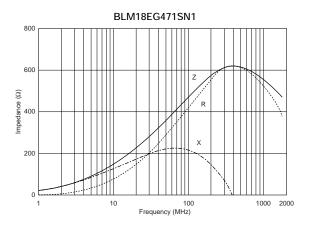

At rated current 2000mA, derating is required. Please refer p. 65, "Derating of Rated Current".

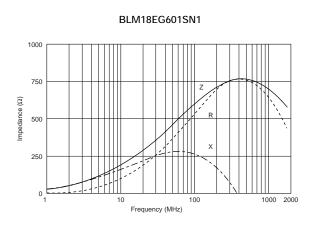

#### ■ Impedance-Frequency (Typical)



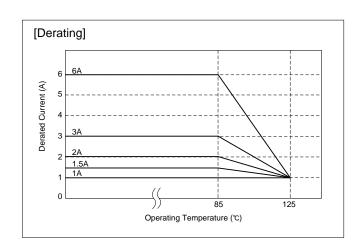














#### ■ Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for chip Ferrite Beads for which rated current is 1500mA or over. Please apply the derating curve shown in chart according to the operating temperature.

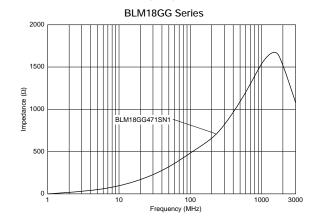


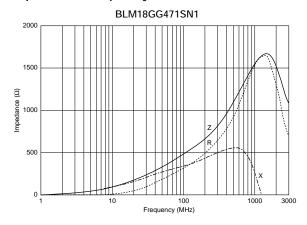
## BLM18G Series (0603 Size)

Chip ferrite beads for high frequency noise suppression over a wide frequency range.

#### ■ Features

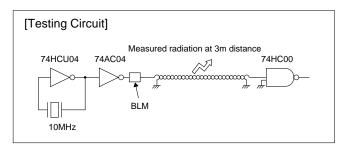
- High impedance characteristic in 1GHz or higher frequency
- 2. High impedance characteristic over a wide frequency band range of 100MHz to 6GHz
- Small decrease in impedance during current loading, resulting in small impedance fluctuation during equipment operation.
- 4. Reflow soldering only


#### Applications


- Noise suppression for PCs with high-speed CPU and high-speed bus, and for interface line of peripheral equipment.
- High harmonic noise suppression for digital equipment with several hundred MHz or higher clock speeds.
- Prevention of erroneous operation caused by local oscillation signals in mobile phone and WLAN module (ensuring self-immunity).
- 4. Bias Tee modules in optical transceivers

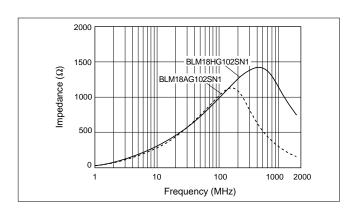
|               | 0.35±0.15 | 0.8±0.15 |
|---------------|-----------|----------|
| BLM18G Series |           | (in mm)  |

| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Impedance<br>(at 1GHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLM18GG471SN1 | 470 ±25%                               | 1800 ±30%                            | 200                   | 1.30                          | -55 to +125                            |


### ■ Impedance-Frequency (Typical)






# **Noise Suppression Effect**

## ■Noise Suppression in UHF Range



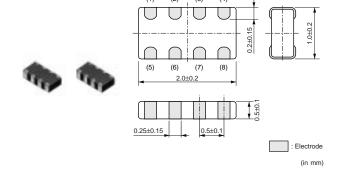
| Type of Filter                                                         | EMI Suppression Effect                                                                            | Description                                                                                           |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Initial<br>(No filter)                                                 | 70<br>60<br>(a) 50<br>9) 40<br>20<br>10<br>300 400 500 600 700 800 900 1000<br>Frequency (MHz)    |                                                                                                       |  |
| Conventional Type <b>BLM18AG102SN1</b> (1000Ω at 100MHz)               | 70<br>60<br>10<br>10<br>300<br>400<br>500<br>600<br>700<br>800<br>900<br>1000<br>Frequency (MHz)  | Current BLM are effective in suppressing noise in the range between 300MHz and 700MHz.                |  |
| for GHz Noize Suppression<br><b>BLM18HG102SN1</b><br>(1000Ω at 100MHz) | 70<br>60<br>10<br>300<br>400<br>500<br>600<br>700<br>800<br>800<br>900<br>1000<br>Frequency (MHz) | In addition to the effectiveness of current BLM, BLM18HG suppresses noise in the range beyond 700MHz. |  |

Comparison between BLM18HG102SN1 and BLM18AG102SN1 (Current Item)





# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)



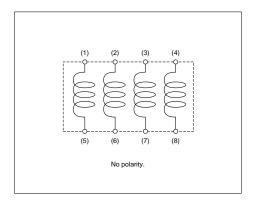

# Chip Ferrite Beads Arrays BLA2AA/BLA2AB/BLA31A/BLA31B Series

#### **BLA2AA/BLA2AB Series**

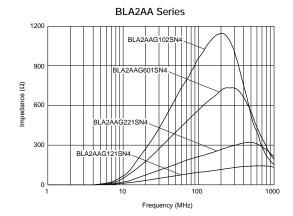
#### ■ Features

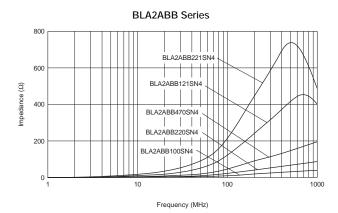
- 1. BLA2AA/2AB series has 4 circuits in 2.0x1.0mm body with 0.5mm pitch.
- 2. Provides attenuation across a broad frequency range. Two types of impedance characteristics are available, one is for general signal line and the other is for high speed signal line.
- 3. Original inner electrode structure enables extra low crosstalk.
- 4. The nickel barrier structure of the external electrodes provides excellent solder heat

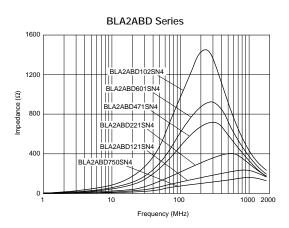


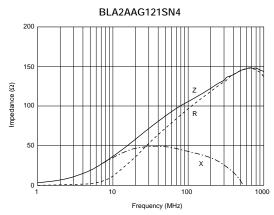

#### Applications

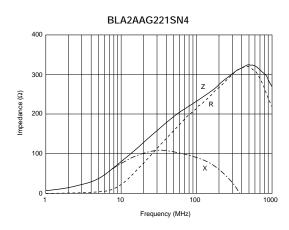
Notebook size PCs, PDAs and other compact size digital equipment

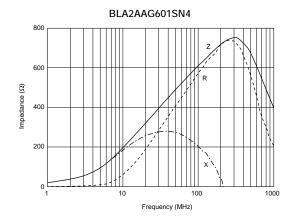

| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current (mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|--------------------|-------------------------------|----------------------------------------|
| BLA2AAG121SN4 | 120 ±25%                               | 100                | 0.50                          | -55 to +125                            |
| BLA2AAG221SN4 | 220 ±25%                               | 50                 | 0.70                          | -55 to +125                            |
| BLA2AAG601SN4 | 600 ±25%                               | 50                 | 1.10                          | -55 to +125                            |
| BLA2AAG102SN4 | 1000 ±25%                              | 50                 | 1.30                          | -55 to +125                            |
| BLA2ABB100SN4 | 10 ±25%                                | 200                | 0.1                           | -55 to +125                            |
| BLA2ABB220SN4 | 22 ±25%                                | 200                | 0.2                           | -55 to +125                            |
| BLA2ABB470SN4 | 47 ±25%                                | 200                | 0.35                          | -55 to +125                            |
| BLA2ABB121SN4 | 120 ±25%                               | 50                 | 0.60                          | -55 to +125                            |
| BLA2ABB221SN4 | 220 ±25%                               | 50                 | 0.90                          | -55 to +125                            |
| BLA2ABD750SN4 | 75 ±25%                                | 100                | 0.20                          | -55 to +125                            |
| BLA2ABD121SN4 | 120 ±25%                               | 100                | 0.35                          | -55 to +125                            |
| BLA2ABD221SN4 | 220 ±25%                               | 100                | 0.40                          | -55 to +125                            |
| BLA2ABD471SN4 | 470 ±25%                               | 100                | 0.65                          | -55 to +125                            |
| BLA2ABD601SN4 | 600 ±25%                               | 100                | 0.80                          | -55 to +125                            |
| BLA2ABD102SN4 | 1000 ±25%                              | 50                 | 1.00                          | -55 to +125                            |

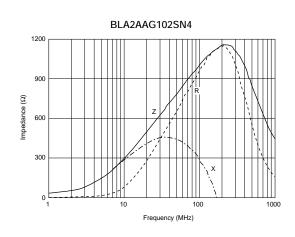

Number of Circuits: 4


## **■** Equivalent Circuit

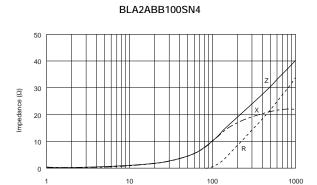




## ■ Impedance-Frequency (Typical)

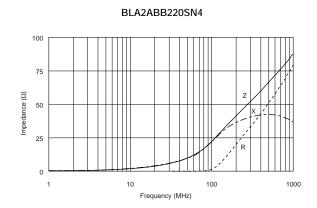


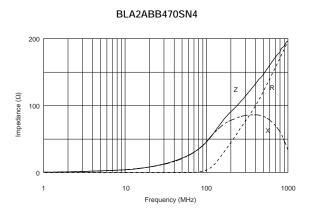



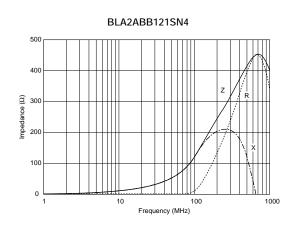


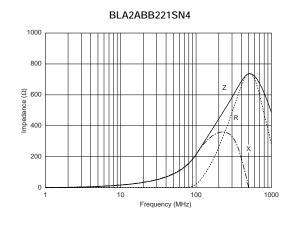



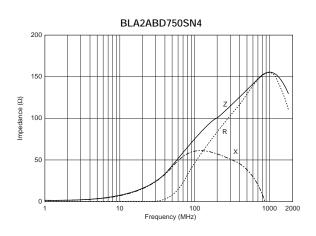


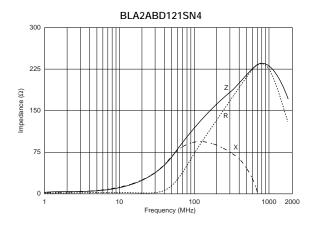



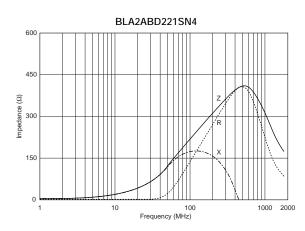





Frequency (MHz)

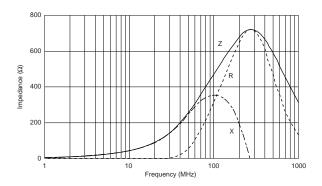


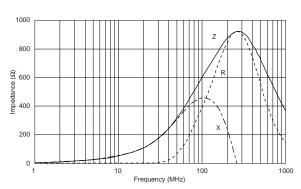




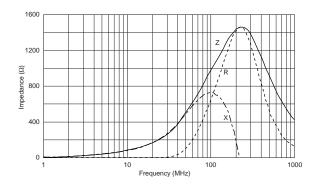






Continued from the preceding page.

## ■ Impedance-Frequency Characteristics


#### BLA2ABD471SN4

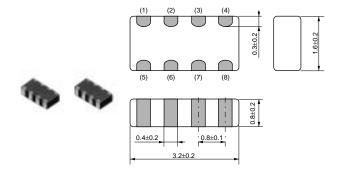


#### BLA2ABD601SN4



#### BLA2ABD102SN4



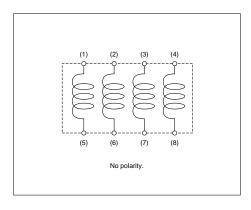

## **BLA31A/BLA31B Series**

The miniaturization of electronic equipment requires high performance EMI filters which enable high density mounting. BLA31A/B series consists of 4 circuits of ferrite beads.

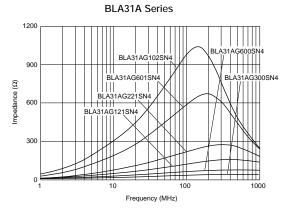
BLA31A/B is suitable for EMI suppression in smaller digital equipment.

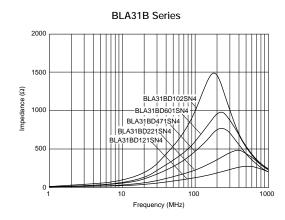
#### ■ Features

- 1. BLA31A/B has 4 circuits in 3.2x1.6mm body with 0.8mm pitch.
- Provides attenuation across a broad frequency range.
   Two types of impedance are available which meet general signal line and high speed signal line.
- 3. Original inner electrode structure enables extra low crosstalk.
- 4. The nickel barrier structure of the external electrodes provides excellent solder heat resistance. Both flow and reflow soldering methods can be employed.

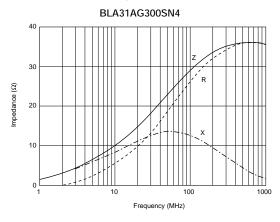


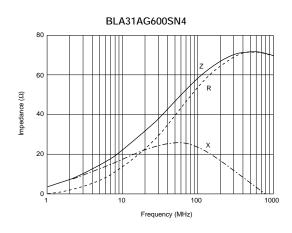

(in mm)

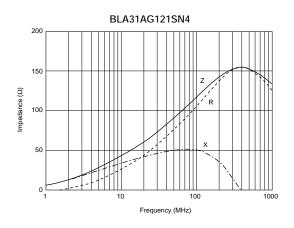

| Part Number   | Impedance<br>(at 100MHz/20°C)<br>(ohm) | Rated Current<br>(mA) | DC Resistance (max.)<br>(ohm) | Operating<br>Temperature Range<br>(°C) |
|---------------|----------------------------------------|-----------------------|-------------------------------|----------------------------------------|
| BLA31AG300SN4 | 30 ±25%                                | 200                   | 0.10                          | -55 to +125                            |
| BLA31AG600SN4 | 60 ±25%                                | 200                   | 0.15                          | -55 to +125                            |
| BLA31AG121SN4 | 120 ±25%                               | 150                   | 0.20                          | -55 to +125                            |
| BLA31AG221SN4 | 220 ±25%                               | 150                   | 0.25                          | -55 to +125                            |
| BLA31AG601SN4 | 600 ±25%                               | 100                   | 0.35                          | -55 to +125                            |
| BLA31AG102SN4 | 1000 ±25%                              | 50                    | 0.45                          | -55 to +125                            |
| BLA31BD121SN4 | 120 ±25%                               | 150                   | 0.30                          | -55 to +125                            |
| BLA31BD221SN4 | 220 ±25%                               | 150                   | 0.35                          | -55 to +125                            |
| BLA31BD471SN4 | 470 ±25%                               | 100                   | 0.40                          | -55 to +125                            |
| BLA31BD601SN4 | 600 ±25%                               | 100                   | 0.45                          | -55 to +125                            |
| BLA31BD102SN4 | 1000 ±25%                              | 50                    | 0.55                          | -55 to +125                            |

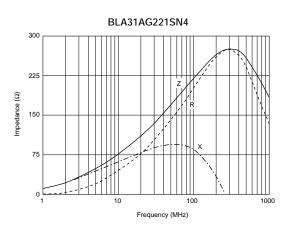

Number of Circuits: 4

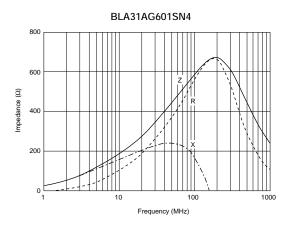
#### **■** Equivalent Circuit

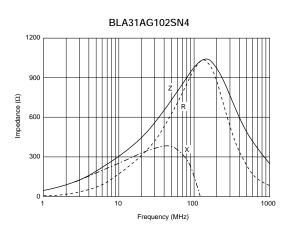




# ■ Impedance-Frequency (Typical)





# ■ Impedance-Frequency Characteristics

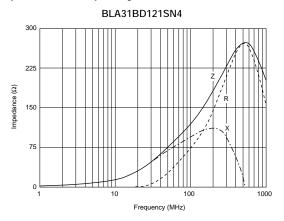


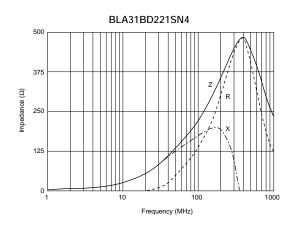


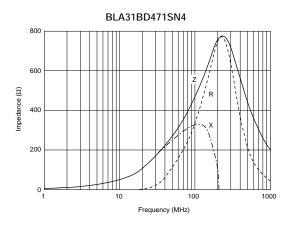


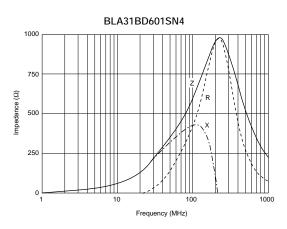


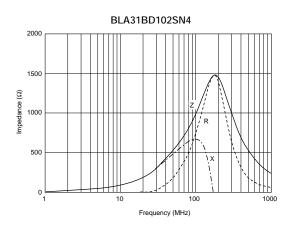




Continued on the following page.





# ■ Impedance-Frequency Characteristics













# Chip EMIFIL® Part Numbering

Chip EMIFIL® Capacitor Type/Capacitor Array Type

(Part Number) NF M 3D CC 102 R 1H 3 L

#### Product ID

| Product ID |              |
|------------|--------------|
| NF         | Chip EMIFIL® |

#### 2Structure

| Code | Structure            |  |
|------|----------------------|--|
| М    | Capacitor Type       |  |
| Α    | Capacitor Array Type |  |

#### 3Dimensions (LXW)

| Code | Dimensions (LXW) | EIA  |
|------|------------------|------|
| 18   | 1.6×0.8mm        | 0603 |
| 21   | 2.0×1.25mm       | 0805 |
| 3D   | 3.2×1.25mm       | 1205 |
| 31   | 3.2×1.6mm        | 1206 |
| 41   | 4.5×1.6mm        | 1806 |
| 55   | 5.7×5.0mm        | 2220 |

#### 4 Features

| Code | Features                         |  |
|------|----------------------------------|--|
| CC   | Capacitor Type for Signal Lines  |  |
| PC   | Capacitor Type for Large Current |  |
| PS   | High Loss Type for Large Current |  |

#### 6 Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

## **6**Characteristics

| Code | Capacitance Change (Temperature Characteristics) |  |
|------|--------------------------------------------------|--|
| В    | ±10%                                             |  |
| F    | +30/-80%                                         |  |
| R    | ±15%                                             |  |
| U    | -750 ±120ppm/°C                                  |  |
| S    | +350 to -1000ppm/°C                              |  |

#### Rated Voltage

| Code | Rated Voltage |  |
|------|---------------|--|
| 0J   | 6.3V          |  |
| 1A   | 10V           |  |
| 1C   | 16V           |  |
| 1E   | 25V           |  |
| 1H   | 50V           |  |
| 2A   | 100V          |  |

#### 8 Electrode/Others (NFM Series)

| Code           | Electrode      | Series             |
|----------------|----------------|--------------------|
| 3 Sn Plating N |                | NFM (Except NFM55) |
| 4              | Solder Coating | NFM55              |

## 8 Number of Circuits (NFA□□CC Series)

| Code | Number of Circuits |  |
|------|--------------------|--|
| 4    | 4 Circuits         |  |

#### Packaging

| Ī | Code | Packaging                    | Series              |
|---|------|------------------------------|---------------------|
|   | L    | Plastic Taping (ø180mm Reel) | NFM3D/NFM41/NFM55   |
|   | В    | Bulk                         | All series          |
|   | D    | Paper Taping (ø180mm Reel)   | NFM18/NFM21/NFA□□CC |



# Chip EMIFIL® LC Combined Type

(Part Number)



#### Product ID

| Product ID |              |
|------------|--------------|
| NF         | Chip EMIFIL® |

#### **2**Structure

| Code | Structure  Monolithic, LC Combined Type  Winding, LC Combined Type |  |
|------|--------------------------------------------------------------------|--|
| L    |                                                                    |  |
| W    |                                                                    |  |
| Е    | Block, LC Combined Type                                            |  |

#### 3Dimensions (LXW)

| Code | Dimensions (LXW) | EIA  |
|------|------------------|------|
| 18   | 1.6×0.8mm        | 0603 |
| 21   | 2.0×1.25mm       | 0805 |
| 31   | 3.2×1.6mm        | 1206 |
| 61   | 6.8×1.6mm        | 2606 |

#### 4 Features

| Code | Features                    |
|------|-----------------------------|
| SP   | π Circuit for Signal Lines  |
| ST   | T Circuit for Signal Lines  |
| PT   | T Circuit for Large Current |
| HT   | T Circuit for Heavy-duty    |

## **5**Cut-off Frequency (**NFL/NFW** Series)

Expressed by three figures. The unit is in hertz (Hz). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

## **⑤**Capacitance (**NFE** Series)

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

#### Packaging

| Code | Packaging                    | Series          |
|------|------------------------------|-----------------|
| K    | Plastic Taping (ø330mm Reel) | NFW31/NFE       |
| L    | Plastic Taping (ø180mm Reel) | NFW31/NFE       |
| В    | Bulk                         | NFL18/NFL21/NFE |
| D    | Paper Taping (ø180mm Reel)   | NFL18/NFL21     |

## **6**Characteristics (**NFL/NFW** Series)

| Code | Characteristics   |
|------|-------------------|
| Х    | Cut-off Frequency |

#### **6**Characteristics (NFE Series)

| Code | Capacitance Change (Temperature Characteristics) |
|------|--------------------------------------------------|
| В    | ±10%                                             |
| С    | ±20%, ±22%                                       |
| D    | +20/-30%, +22/-33%                               |
| Е    | +20/-55%, +22/-56%                               |
| F    | +30/-80%, +22/-82%                               |
| R    | ±15%                                             |
| U    | -750 ±120ppm/ °C                                 |
| Z    | Other                                            |

#### Rated Voltage

| Code | Rated Voltage |
|------|---------------|
| 1A   | 10V           |
| 1C   | 16V           |
| 1E   | 25V           |
| 1H   | 50V           |
| 2A   | 100V          |

#### 8 Electrode

| Code | Electrode                | Series |
|------|--------------------------|--------|
| 3    | Sn Plating               | NFL    |
| 4    | Lead Free Solder Coating | NFW    |
| 9    | Others                   | NFE    |

## Chip EMIFIL® LC Combined Array Type

(Part Number)



#### Product ID

| Product ID |              |
|------------|--------------|
| NF         | Chip EMIFIL® |

#### **2**Structure

| Code | Structure  |
|------|------------|
| Α    | Array Type |

#### 3Dimensions (LXW)

| Code | Dimensions (L×W) |
|------|------------------|
| 21   | 2.0×1.25mm       |

#### 4 Features

| Code | Features                   |
|------|----------------------------|
| SL   | L Circuit for Signal Lines |

#### **5**Cut-off Frequency

Expressed by three figures. The unit is in hertz (Hz). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

#### 6 Features

| Code | Features              |
|------|-----------------------|
| Х    | Expressed by a letter |
| V    |                       |

#### Rated Voltage

| Code | Rated Voltage |
|------|---------------|
| 1A   | 10V           |

#### Number of Circuits

| Code | Number of Circuits |  |  |  |
|------|--------------------|--|--|--|
| 4    | 4 Circuits         |  |  |  |

#### 9Dimensions (T)

| Code | Dimensions (T) |  |  |  |  |
|------|----------------|--|--|--|--|
| 5    | 0.5mm          |  |  |  |  |
| 8    | 0.8mm          |  |  |  |  |

#### Packaging

| Code | Packaging                    |  |  |  |
|------|------------------------------|--|--|--|
| В    | Bulk                         |  |  |  |
| L    | Plastic Taping (ø180mm Reel) |  |  |  |

## Chip EMIFIL® RC Combined Type/RC Combined Array Type

(Part Number)



#### 1 Product ID

| Product ID |              |
|------------|--------------|
| NF         | Chip EMIFIL® |

#### 2Structure

| Code | Structure              |  |  |
|------|------------------------|--|--|
| R    | RC Combined Type       |  |  |
| Α    | RC Combined Array Type |  |  |

#### 3Dimensions (LXW)

| Code | Code Dimensions (LXW) |      |  |  |
|------|-----------------------|------|--|--|
| 21   | 2.0×1.25mm            | 0805 |  |  |
| 31   | 3.2×1.6mm             | 1206 |  |  |

# 4 Features

| Code | Features                          |
|------|-----------------------------------|
| GD   | RC Combined Type for Signal Lines |

#### **5**Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

#### 6 Resistance

Expressed by three figures. The unit is in ohm  $(\Omega)$ . The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures. If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

## Telectrode/Others (NFR Series)

| Code | Electrode  |  |  |  |
|------|------------|--|--|--|
| 2    | Sn Plating |  |  |  |

#### Number of Circuits (NFA□□GD Series)

| Code | Number of Circuits |  |  |
|------|--------------------|--|--|
| 4    | 4 Circuits         |  |  |

## 8 Packaging

| Code                           | Packaging                  | Series     |  |
|--------------------------------|----------------------------|------------|--|
| L Plastic Taping (ø180mm Reel) |                            | NFR        |  |
| <b>B</b> Bulk                  |                            | All Series |  |
| D                              | Paper Taping (ø180mm Reel) | NFA□□GD    |  |





# Chip EMIFIL® Capacitor Type NFM18C/NFM21C/NFM3DC/NFM41C Series

# **NFM18C Series**

The NFM18CC series is a 1.6x0.8mm EMI suppression filter for signal lines which has a three terminal structure using Murata's multilayer technology.

#### ■ Features

- 1. Ultra small size in 1.6x0.8x0.6mm enables high density mounting.
- Three terminal structure with low residual inductance (ESL)\* characteristics achieves large insertion loss characteristics even in high frequency area.
- 3. The NFM18CC series covers capacitance range from 22 to 22,000pF.
- \* Not exceeding one-tenth of monolithic ceramic capacitors (two terminals).

# ■ Applications

EMI suppression of circuit for insertion loss in quantity

Capacitance

(pF)

22 +20%,-20%

47 +20%,-20%

100 +20%,-20%

220 +20%,-20%

470 +20%,-20%

1000 +20%,-20%

2200 +20%,-20%

22000 +20%,-20%

Rated Voltage

(Vdc)

16

16

16

16

16

16

16

700

1000

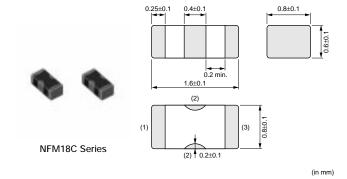
2. Noise suppression up to GHz

Part Number

NFM18CC220U1C3

NFM18CC470U1C3

NFM18CC101R1C3

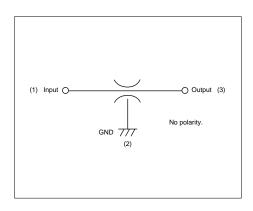

NFM18CC221R1C3

NFM18CC471R1C3

NFM18CC102R1C3

NFM18CC222R1C3

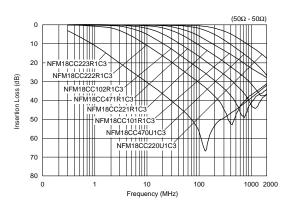
NFM18CC223R1C3




| Rated Current<br>(mA) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |  |
|-----------------------|--------------------------------------------|----------------------------------|--|
| 400                   | 1000                                       | -55 to +125                      |  |
| 400                   | 1000                                       | -55 to +125                      |  |
| 500                   | 1000                                       | -55 to +125                      |  |
| 500 1000              |                                            | -55 to +125                      |  |
| 500                   | 1000                                       | -55 to +125                      |  |
| 600                   | 1000                                       | -55 to +125                      |  |

-55 to +125

-55 to +125


## **■** Equivalent Circuit



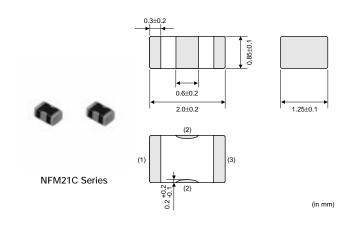
## ■ Insertion Loss Characteristics (Typical)

1000

1000

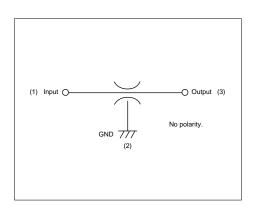


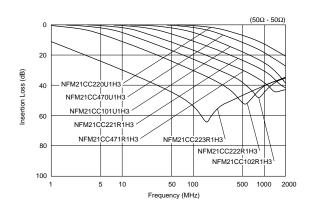
# NFM21C Series


The chip "EMIFIL" NFM21C series is a chip type three terminal EMI suppression filter. It can reduce residual inductance to an extremely low level making it excellent for noise suppression at high frequencies.

#### ■ Features

- 1. Small and low profile of 2.0x1.25x0.85mm enables high density mounting.
- 2. Three terminal structure enables high performance in high frequency range.
- 3. Uses original electrode structure which realizes excellent solderability.
- An electrostatic capacitance range of 22 to 22,000pF enables suppression of noise at specific frequencies.


# ■ Applications


- 1. PCs and peripherals which emit high amount of noise
- Compact size equipment such as PDAs, PC cards and mobile telecommunications equipment
- Severe EMI suppression and high impedance circuits such as digital circuits



| Part Number    | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(mA) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|-----------------------|--------------------------------------------|----------------------------------|
| NFM21CC220U1H3 | 22 +20%,-20%        | 50                     | 700                   | 1000                                       | -55 to +125                      |
| NFM21CC470U1H3 | 47 +20%,-20%        | 50                     | 700                   | 1000                                       | -55 to +125                      |
| NFM21CC101U1H3 | 100 +20%,-20%       | 50                     | 700                   | 1000                                       | -55 to +125                      |
| NFM21CC221R1H3 | 220 +20%,-20%       | 50                     | 700                   | 1000                                       | -55 to +125                      |
| NFM21CC471R1H3 | 470 +20%,-20%       | 50                     | 1000                  | 1000                                       | -55 to +125                      |
| NFM21CC102R1H3 | 1000 +20%,-20%      | 50                     | 1000                  | 1000                                       | -55 to +125                      |
| NFM21CC222R1H3 | 2200 +20%,-20%      | 50                     | 1000                  | 1000                                       | -55 to +125                      |
| NFM21CC223R1H3 | 22000 +20%,-20%     | 50                     | 2000                  | 1000                                       | -55 to +125                      |

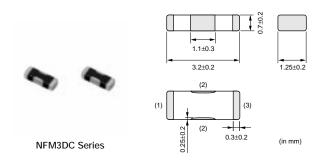
# **■** Equivalent Circuit





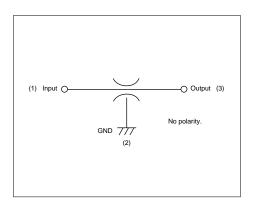


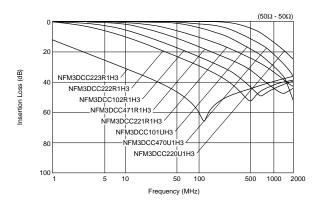
# NFM3DC Series


The chip "EMIFIL" NFM3DC series is a chip type three terminal EMI suppression filter. It can reduce residual inductance to an extremely low level making it excellent for noise suppression at high frequencies.

## ■ Features

An electrostatic capacitance range of 22 to 22,000pF enables suppression of noise at specific frequencies.


# ■ Applications


High noise radiation and high impedance circuits such as digital circuits



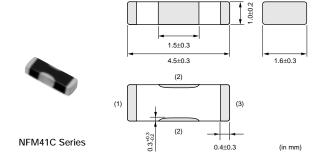
| Part Number    | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(mA) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |  |
|----------------|---------------------|------------------------|-----------------------|--------------------------------------------|----------------------------------|--|
| NFM3DCC220U1H3 | 22 +50%,-20%        | 50                     | 300                   | 1000                                       | -55 to +125                      |  |
| NFM3DCC470U1H3 | 47 +50%,-20%        | 50                     | 300                   | 1000                                       | -55 to +125                      |  |
| NFM3DCC101U1H3 | 100 +50%,-20%       | 50                     | 300                   | 1000                                       | -55 to +125                      |  |
| NFM3DCC221R1H3 | 220 +50%,-20%       | 50                     | 300                   | 1000                                       | -55 to +125                      |  |
| NFM3DCC471R1H3 | 470 +50%,-20%       | 50                     | 300                   | 1000                                       | -55 to +125                      |  |
| NFM3DCC102R1H3 | 1000 +50%,-20%      | 50                     | 300                   | 1000                                       | -55 to +125                      |  |
| NFM3DCC222R1H3 | 2200 +50%,-20%      | 50                     | 300                   | 1000                                       | -55 to +125                      |  |
| NFM3DCC223R1H3 | 22000 +50%,-20%     | 50                     | 300                   | 1000                                       | -55 to +125                      |  |

# **■** Equivalent Circuit



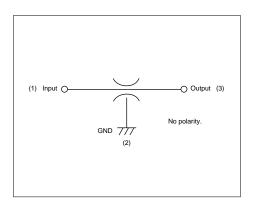


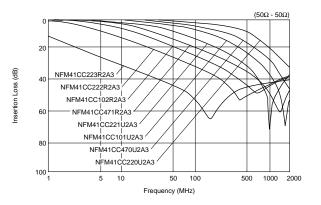
# NFM41C Series


The chip "EMIFIL" NFM41C series is a chip type three terminal EMI suppression filter. It can reduce residual inductance to an extremely low level making it excellent for noise suppression at high frequencies.

## ■ Features

An electrostatic capacitance range of 22 to 22,000pF enables suppression of noise at specific frequencies.


# ■ Applications


High noise radiation and high impedance circuits such as digital circuits



| Part Number    | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(mA) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|-----------------------|--------------------------------------------|----------------------------------|
| NFM41CC220U2A3 | 22 +50%,-20%        | 100                    | 300                   | 10000                                      | -55 to +125                      |
| NFM41CC470U2A3 | 47 +50%,-20%        | 100                    | 300                   | 10000                                      | -55 to +125                      |
| NFM41CC101U2A3 | 100 +50%,-20%       | 100                    | 300                   | 10000                                      | -55 to +125                      |
| NFM41CC221U2A3 | 220 +50%,-20%       | 100                    | 300                   | 10000                                      | -55 to +125                      |
| NFM41CC471R2A3 | 470 +50%,-20%       | 100                    | 300                   | 10000                                      | -55 to +125                      |
| NFM41CC102R2A3 | 1000 +50%,-20%      | 100                    | 300                   | 10000                                      | -55 to +125                      |
| NFM41CC222R2A3 | 2200 +50%,-20%      | 100                    | 300                   | 10000                                      | -55 to +125                      |
| NFM41CC223R2A3 | 22000 +50%,-20%     | 100                    | 300                   | 10000                                      | -55 to +125                      |

# **■** Equivalent Circuit

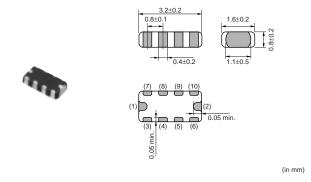








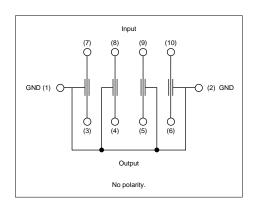
# Chip EMIFIL® Capacitor Array Type NFA31C Series

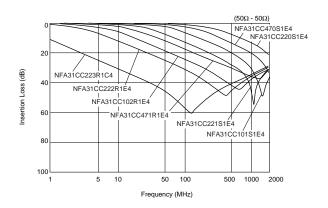

The NFA31C series is a chip EMI suppression filter for surface mount applications by using Murata's ceramic processing technology and filter design technology. The series is well suited for EMI suppression in digital I/O lines of varied electronic equipment such as notebook size PCs.

#### ■ Features

- 1. High density mounting can be realized because of 4 circuits in one package with 0.8mm pitch.
- 2. Suitable for high frequency noise suppression because of low residual inductance of three terminal structure.
- Excellent EMI suppression can be realized because of two terminal simple GNDs for 4 circuits.
- 4. 20 to 22000pF lineups can be used depending on noise frequency.

# ■ Applications


- 1. Personal computers and peripherals
- 2. Telephones, PPCs, communications equipment
- 3. Digital TVs, VCRs




| Part Number    | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(mA) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |  |
|----------------|---------------------|------------------------|-----------------------|--------------------------------------------|----------------------------------|--|
| NFA31CC220S1E4 | 22 +20%,-20%        | 25                     | 200                   | 1000                                       | -40 to +85                       |  |
| NFA31CC470S1E4 | 47 +20%,-20%        | 25                     | 200 1000              |                                            | -40 to +85                       |  |
| NFA31CC101S1E4 | 100 +20%,-20%       | 25                     | 200                   | 1000                                       | -40 to +85                       |  |
| NFA31CC221S1E4 | 220 +20%,-20%       | 25                     | 200                   | 1000                                       | -40 to +85                       |  |
| NFA31CC471R1E4 | 470 +20%,-20%       | 25                     | 200                   | 1000                                       | -40 to +85                       |  |
| NFA31CC102R1E4 | 1000 +20%,-20%      | 25                     | 200                   | 1000                                       | -40 to +85                       |  |
| NFA31CC222R1E4 | 2200 +20%,-20%      | 25                     | 200                   | 1000                                       | -40 to +85                       |  |
| NFA31CC223R1C4 | 22000 +20%,-20%     | 16                     | 200                   | 1000                                       | -40 to +85                       |  |

Number of Circuits: 4

# **■** Equivalent Circuit







# Chip EMIFIL® LC Combined Monolithic Type NFL18ST/NFL18SP/NFL21S Series

# **NFL18ST Series**

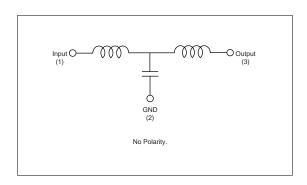
The NFL18ST series is an EMI suppression filter for high speed signal lines, achieving T-type structure in 1.6x0.8mm size with Murata's multilayer technology.

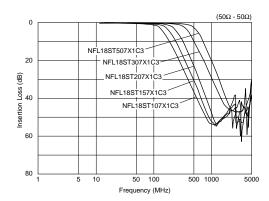
#### ■ Features

- 1. Ultra-small size in 1.6x0.8x0.8mm
- Steep insertion loss characteristics realize excellent noise suppression and prevent distortion of signal waveform.
- By minimizing stray capacitance of inductor, achieves high performance in noise suppression in high frequency range.
- 4. Five different values of cut-off frequency are available, ranging from 100MHz up to 500MHz.
- 5. Since all side electrode structures are the same, it is no polarity.

# Applications

Noise suppression for video signal lines (RGB lines) and high speed clock lines


| 1 | 0.2 min. 0.2 min. (3) (3) (3) (3) (3) (3) (4) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 |
|---|------------------------------------------------------------------------------------------|
|   |                                                                                          |


(in mm)

| Part Number    | Cut-off Frequency<br>(MHz) | Capacitance<br>(pF) | Inductance<br>(nH) | Rated<br>Voltage<br>(Vdc) | Rated<br>Current<br>(mA) | Insulation<br>Resistance<br>(M ohm) | Operating<br>Temperature Range<br>(°C) |
|----------------|----------------------------|---------------------|--------------------|---------------------------|--------------------------|-------------------------------------|----------------------------------------|
| NFL18ST107X1C3 | 100                        | 40 +20%,-20%        | 175 +20%,-20%      | 16                        | 100                      | 1000                                | -55 to 125                             |
| NFL18ST157X1C3 | 150                        | 32 +20%,-20%        | 140 +20%,-20%      | 16                        | 100                      | 1000                                | -55 to 125                             |
| NFL18ST207X1C3 | 200                        | 25 +20%,-20%        | 110 +20%,-20%      | 16                        | 150                      | 1000                                | -55 to 125                             |
| NFL18ST307X1C3 | 300                        | 18 +20%,-20%        | 62 +20%,-20%       | 16                        | 200                      | 1000                                | -55 to 125                             |
| NFL18ST507X1C3 | 500                        | 10 +20%,-20%        | 43 +20%,-20%       | 16                        | 200                      | 1000                                | -55 to 125                             |

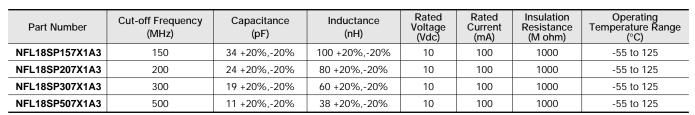
Number of Circuits: 1

# ■ Equivalent Circuit



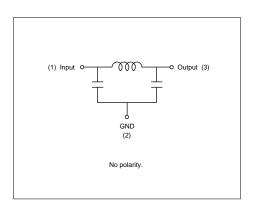


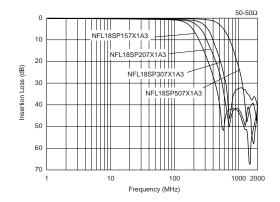
# **NFL18SP Series**

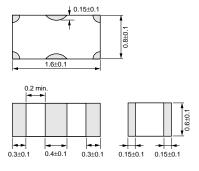

The chip "EMIFIL" NFL18SP series is an EMI suppression filter for high speed signal lines, achieving pi-type structure in 0603 size with Murata's multilayer technology.

#### ■ Features

- 1. Ultra-small size in 1.6x0.8x0.6 mm
- 2. Achieves high performance in noise suppression over wide frequency range
- Steep insertion loss characteristics realize excellent noise suppression and prevent distortion of signal waveform.
- 4. Line up 4 items of cut-off frequency range from 150 to 500MHz





EMI suppression for digital signal line such as RGB and high speed clock lines




Number of Circuits: 1

# **■** Equivalent Circuit

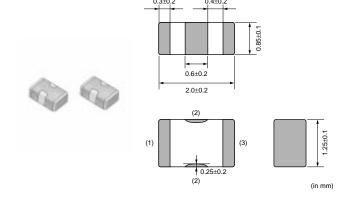








# NFL21S Series

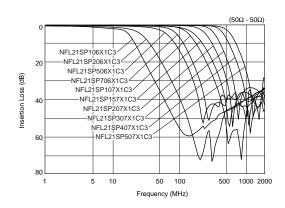

The chip "EMIFIL" NFL21S series is a high performance EMI suppression filter in 2.0x1.25mm size for high speed signal lines by using Murata's processing technology.

#### ■ Features

- 1. Suppresses noise with little attenuation of the signal itself due to its steep filtering characteristics.
- 2. Murata's original internal structure design enables excellent noise suppression up to high frequencies.
- 3. Available in nine different values of cut-off frequency ranging from 10MHz up to 500MHz.

# ■ Applications

Suppression of high magnitude radiated noise generated by high speed digital circuits such as clock and RGB




| Part Number    | Cut-off Frequency<br>(MHz) | Capacitance<br>(pF) | Inductance<br>(nH) | Rated<br>Voltage<br>(Vdc) | Rated<br>Current<br>(mA) | Insulation<br>Resistance<br>(M ohm) | Operating<br>Temperature Range<br>(°C) |
|----------------|----------------------------|---------------------|--------------------|---------------------------|--------------------------|-------------------------------------|----------------------------------------|
| NFL21SP106X1C3 | 10                         | 670 +20%,-20%       | 680 +20%,-20%      | 16                        | 100                      | 1000                                | -55 to 125                             |
| NFL21SP206X1C3 | 20                         | 240 +20%,-20%       | 700 +20%,-20%      | 16                        | 100                      | 1000                                | -55 to 125                             |
| NFL21SP506X1C3 | 50                         | 84 +20%,-20%        | 305 +20%,-20%      | 16                        | 150                      | 1000                                | -55 to 125                             |
| NFL21SP706X1C3 | 70                         | 76 +20%,-20%        | 185 +20%,-20%      | 16                        | 150                      | 1000                                | -55 to 125                             |
| NFL21SP107X1C3 | 100                        | 44 +20%,-20%        | 135 +20%,-20%      | 16                        | 200                      | 1000                                | -55 to 125                             |
| NFL21SP157X1C3 | 150                        | 28 +20%,-20%        | 128 +20%,-20%      | 16                        | 200                      | 1000                                | -55 to 125                             |
| NFL21SP207X1C3 | 200                        | 22 +20%,-20%        | 72 +20%,-20%       | 16                        | 250                      | 1000                                | -55 to 125                             |
| NFL21SP307X1C3 | 300                        | 19 +10%,-10%        | 45 +10%,-10%       | 16                        | 300                      | 1000                                | -55 to 125                             |
| NFL21SP407X1C3 | 400                        | 16 +10%,-10%        | 34 +10%,-10%       | 16                        | 300                      | 1000                                | -55 to 125                             |
| NFL21SP507X1C3 | 500                        | 12 +10%,-10%        | 31 +10%,-10%       | 16                        | 300                      | 1000                                | -55 to 125                             |

Number of Circuits: 1

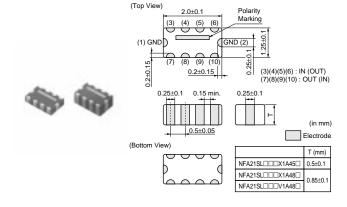
# **■** Equivalent Circuit

# mGND No polarity








# Chip EMIFIL® LC Combined Array Type NFA21S Series

# NFA21SL\_X Series

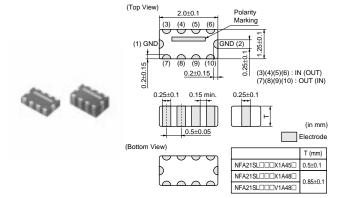
- Features (NFA21S\_X Series)
- 1. Steep insertion loss characteristics
- Suitable for noise suppression in 800MHz or higher frequency
- 3. Size: 2.0x1.25mm
- 4. 4 circuits in one package

## Applications

Noise suppression for LCD line



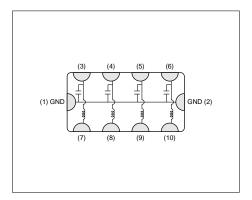
| Part Number     | Cut-off<br>Frequency<br>(MHz) | Insertion Loss<br>at 80MHz | Insertion Loss<br>at 200MHz | Insertion Loss<br>at 300MHz | Insertion Loss<br>at 500MHz (min.)<br>(dB) | Insertion Loss<br>at 800MHz (min.)<br>(dB) | Insertion Loss<br>at 1000MHz (min.)<br>(dB) | Rated<br>Voltage<br>(Vdc) | Rated<br>Current<br>(mA) | Insulation<br>Resistance (min.) | Withstand<br>Voltage |
|-----------------|-------------------------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------|--------------------------|---------------------------------|----------------------|
| NFA21SL806X1A48 | 80                            | 2 to 7                     | -                           | -                           | 25                                         | -                                          | 25                                          | 10                        | 20                       | 1000M                           | 30                   |
| NFA21SL207X1A45 | 200                           | -                          | 2 to 7                      | -                           | 13                                         | 25                                         | 25                                          | 10                        | 100                      | 1000M                           | 30                   |
| NFA21SL207X1A48 | 200                           | -                          | 2 to 7                      | -                           | 13                                         | 25                                         | 25                                          | 10                        | 100                      | 1000M                           | 30                   |
| NFA21SL307X1A45 | 300                           | -                          | -                           | 2 to 7                      | 7                                          | 20                                         | 25                                          | 10                        | 100                      | 1000M                           | 30                   |
| NFA21SL307X1A48 | 300                           | -                          | -                           | 2 to 7                      | 7                                          | 20                                         | 25                                          | 10                        | 100                      | 1000M                           | 30                   |

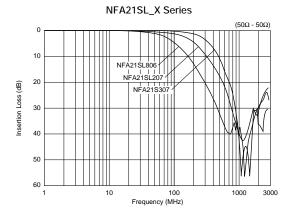

# NFA21SL\_V Series

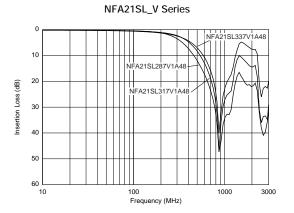
# ■ Features (NFA21S\_V Series)

- 1. Steep insertion loss characteristics
- Suitable for noise suppression in 800MHz or higher frequency
- 3. Size: 2.0x1.25mm
- 4. 4 circuits in one package

# ■ Applications


Noise suppression for LCD line





| Part Number     | Cut-off<br>Frequency<br>(MHz) | Insertion Loss<br>at 280MHz (max.)<br>(dB) | Insertion Loss<br>at 310MHz (max.)<br>(dB) | Insertion Loss<br>at 330MHz (max.)<br>(dB) | Insertion Loss<br>at 800MHz (min.)<br>(dB) | Insertion Loss<br>at 900MHz (min.)<br>(dB) | Rated<br>Voltage<br>(Vdc) | Rated<br>Current<br>(mA) | Insulation<br>Resistance (min.) | Withstand<br>Voltage |
|-----------------|-------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|--------------------------|---------------------------------|----------------------|
| NFA21SL287V1A48 | 280                           | 6                                          | -                                          | -                                          | 25                                         | 25                                         | 10                        | 100                      | 1000M                           | 30                   |
| NFA21SL317V1A48 | 310                           | -                                          | 6                                          | -                                          | 20                                         | 20                                         | 10                        | 100                      | 1000M                           | 30                   |
| NFA21SL337V1A48 | 330                           | -                                          | -                                          | 6                                          | 20                                         | 20                                         | 10                        | 100                      | 1000M                           | 30                   |



# **■** Equivalent Circuit









# Chip EMIFIL® LC Combined Winding Type NFW31S Series

The signal line chip EMI filter NFW31S series consists of high performance EMI suppression filters. They are designed for noise suppression in high speed signal digital circuits in which the signal harmonics are prone to becoming noise sources. These filters achieve a 100dB/dec. (typ.) damping characteristic with Murata's innovative circuit design. This makes these chips effective in applications where the signal and noise frequencies are close to each other.

# (2) \*No polarity.

2.3±0.2

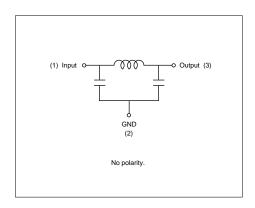


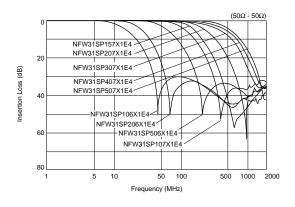
- (1): Input electrode Ground electrode
- (3) : Output electrode

(in mm)

## ■ Features

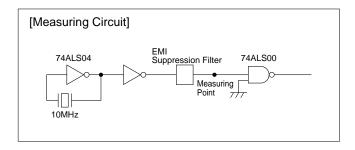
- 1. Suppresses signal noise with little or no attenuation of the signal itself.
- 2. Murata's original internal structure design enables excellent noise suppression up to high frequencies (40dB at 1GHz typ.).
- 3. The NFW31S series is available in 9 different values of cut-off frequency ranging from 10MHz up to 500MHz.


| Part Number    | Nominal Cut-off<br>Freq.<br>(MHz) | Attenuation<br>at 10MHz<br>(dB) | Attenuation<br>at 20MHz<br>(dB) | Attenuation<br>at 50MHz<br>(dB) | Attenuation<br>at 100MHz<br>(dB) | Attenuation<br>at 150MHz<br>(dB) | Attenuation<br>at 200MHz<br>(dB) | Attenuation<br>at 300MHz<br>(dB) | Attenuation<br>at 400MHz<br>(dB) | Attenuation<br>at 500MHz<br>(dB) | Attenuation<br>at 1000MHz<br>(dB) |
|----------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|
| NFW31SP106X1E4 | 10                                | 6 max.                          | 5 min.                          | 25 min.                         | 25 min.                          | -                                | 25 min.                          | -                                | -                                | 30 min.                          | 30 min.                           |
| NFW31SP206X1E4 | 20                                | -                               | 6 max.                          | 5 min.                          | 25 min.                          | -                                | 25 min.                          | -                                | -                                | 30 min.                          | 30 min.                           |
| NFW31SP506X1E4 | 50                                | -                               | -                               | 6 max.                          | 10 min.                          | -                                | 30 min.                          | -                                | -                                | 30 min.                          | 30 min.                           |
| NFW31SP107X1E4 | 100                               | -                               | -                               | -                               | 6 max.                           | -                                | 5 min.                           | -                                | -                                | 20 min.                          | 30 min.                           |
| NFW31SP157X1E4 | 150                               | -                               | -                               | -                               | -                                | 6 max.                           | -                                | 10 min.                          | 20 min                           | 30 min.                          | 30 min.                           |
| NFW31SP207X1E4 | 200                               | -                               | -                               | -                               | -                                | -                                | 6 max.                           | -                                | -                                | 10 min.                          | 30 min.                           |
| NFW31SP307X1E4 | 300                               | -                               | -                               | -                               | -                                | -                                | -                                | 6 max.                           | -                                | 5 min.                           | 15 min.                           |
| NFW31SP407X1E4 | 400                               | -                               | -                               | -                               | -                                | -                                | -                                | -                                | 6 max.                           | -                                | 10 min.                           |
| NFW31SP507X1E4 | 500                               | -                               | -                               | -                               | -                                | -                                | -                                | -                                | -                                | 6 max.                           | 10 min.                           |


Rated Current: 200mA

Rated Voltage: 25Vdc

Operating Temperature Range: -40°C to 85°C


# **■** Equivalent Circuit





# Noise Suppression Effect of NFW31S Series

# ■Example of EMI Suppression in an Actual Circuit

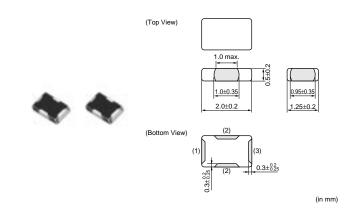


| Type of Filter                                                                    | Signal Wave Form (20ns/div) | EMI Suppression Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Description                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal Waveform<br>and Noise Spectrum<br>before Filter Mounting                   | Signal Waveform (20ns/div)  | 100<br>(180<br>(180<br>(190<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>( |                                                                                                                                                                                                                                        |
| <b>NFW31S</b> Series<br>(Cut-off frequency 50MHz)                                 |                             | Level before filter mounting filter mounting of the property o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The NFW31S's steep attenuation characteristic means excellent EMI suppression without waveform cornering.                                                                                                                              |
| Conventional Chip<br>Solid Type EMI Filter<br>(NFM41CC 470pF)                     |                             | Level before  Level before  Selection of the selection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-terminal capacitors suppress signal frequencies as EMI frequencies so the signal waveform is distorted.                                                                                                                              |
| Filter Combined with Conventional LCs  L: Chip Inductor C: Chip Capacitor (270pF) |                             | Level before filter mounting  100  100  100  100  100  100  100  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Combinations of inductors and capacitors can yield a steep attenuation characteristic, but they require a great deal more mounting space.  Moreover, at high frequencies the EMI suppression is less than that obtained by the NFW31S. |





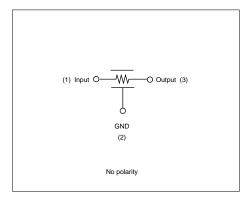
# Chip EMIFIL® RC Combined Type NFR21G Series

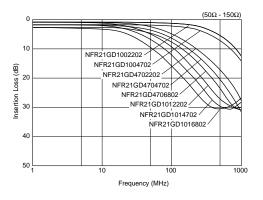

The NFR21G series comprises high performance EMI suppression filters which can suppress distortion of waveform. Various items are to be used, considering circuit impedance and noise condition.

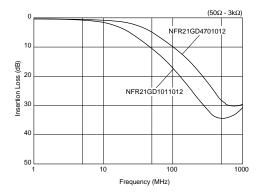
## ■ Features

- 1. Murata's original inner design realizes small and low profile of 2.0x1.25x0.5mm.
- Distributed constant circuit realizes smooth change of impedance which prevents reflection of signal and distortion of wave shape.
- The NFR21G series is effective in a line where ground is not stable, because the resistance element in the filter absorbs noise and returns it to ground line.
- 4. The NFR21G series has no polarity so it can be used in dual direction transport lines.
- 5. The NFR21G series has various lineups of resistance (22 to 100 ohm) and capacitance (10 to 100pF).

#### Applications


Interface lines and clock lines where signals tend to be distorted

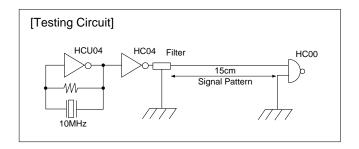




| Part Number    | Capacitance<br>(pF) | Resistance<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(M ohm) | Operating<br>Temperature Range<br>(°C) |
|----------------|---------------------|---------------------|-----------------------|------------------------|----------------------------------|----------------------------------------|
| NFR21GD1002202 | 10 +20%,-20%        | 22 +30%,-30%        | 50                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD1004702 | 10 +20%,-20%        | 47 +30%,-30%        | 35                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD4702202 | 47 +20%,-20%        | 22 +30%,-30%        | 50                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD4704702 | 47 +20%,-20%        | 47 +30%,-30%        | 35                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD4706802 | 47 +20%,-20%        | 68 +30%,-30%        | 30                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD4701012 | 47 +20%,-20%        | 100 +30%,-30%       | 25                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD1012202 | 100 +20%,-20%       | 22 +30%,-30%        | 50                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD1014702 | 100 +20%,-20%       | 47 +30%,-30%        | 35                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD1016802 | 100 +20%,-20%       | 68 +30%,-30%        | 30                    | 50                     | 1000                             | -40 to 85                              |
| NFR21GD1011012 | 100 +20%,-20%       | 100 +30%,-30%       | 25                    | 50                     | 1000                             | -40 to 85                              |

Number of Circuits: 1

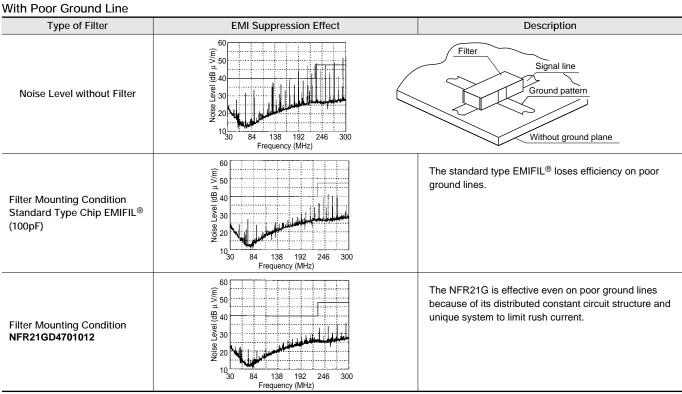
# **■** Equivalent Circuit





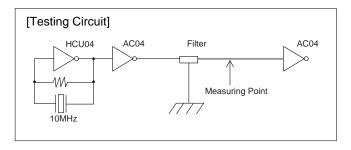



# **Noise Suppression Effect of NFR21G Series**


# ■Effect of Noise Suppression by NFR21G

The NFR21G is effective even if ground line is not stable enough due to its distributed constant circuit structure.




#### With Stable Ground Line

| Type of Filter                                                     | EMI Suppression Effect                                                          | Description                                                                                                                          |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Noise Level without Filter                                         | © 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | Filter  Signal line  Ground pattern  Thru-hole (connection ground pattern with ground plane)  Whole surface (back side) ground plane |
| Filter Mounting Condition<br>Standard Type Chip EMIFIL®<br>(100pF) | 60<br>90 40<br>90 20<br>10<br>30 84 138 192 246 300<br>Frequency (MHz)          | The standard type chip EMIFIL <sup>®</sup> is effective on stable ground lines.                                                      |
| Filter Mounting Condition NFR21GD4701012                           | 60<br>80<br>90<br>90<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | The NFR21G has some advantages to standard type EMIFIL® on stable ground lines.                                                      |

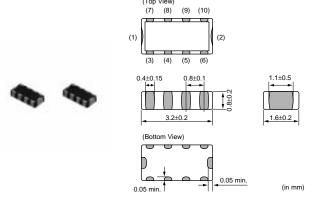


# Noise Suppression Effect of NFR21G Series

# ■Waveform Distortion Suppressing Function by NFR21G



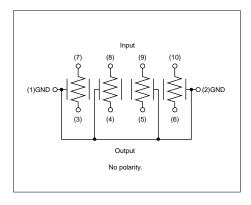
| Type of Filter                            | EMI Suppression Effect                | Description                                                                                                                                  |
|-------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Initial Waveform (no filter)              | Voltage Waveform  ↑:1V/div →:20ns/div | Resonance between the internal capacitance of the IC and the inductance of the print pattern causes waveform overshooting and undershooting. |
| When Ordinary Capacitor<br>Filter is Used | Voltage Waveform  ↑:1V/div →:20ns/div | Ordinary capacitor filters have no waveform distortion suppressing capability, and they cannot suppress disturbances in the waveforms.       |
| NFR21G                                    | Voltage Waveform  ↑:1V/div →:20ns/div | The waveform distortion suppressing function of the NFR21G minimizes disturbances of waveforms.                                              |



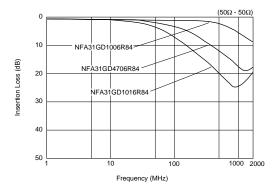

# Chip EMIFIL® RC Combined Array Type NFA31G Series

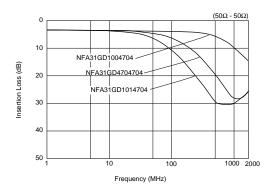
NFA31G series is a high performance EMI suppression filter array with a 4-circuit noise filter in 3.2x1.6mm size. NFA31G realizes high density mounting.

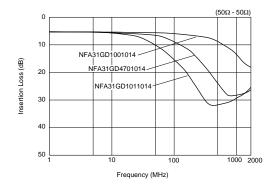
## ■ Features


- 1. NFA31G is a 4-circuit noise filter in 3.2x1.6mm size with 0.8mm pitch. High density mounting is available.
- 2. Three terminal structure enables excellent high frequency performance.
- Distributed constant circuit realizes smooth change of impedance which prevents reflection of signal and distortion of wave shape.
- 4. NFA31G series is effective in lines where ground is not stable, because the resistance element in the filter absorbs noise and returns it to ground line.




| Part Number    | Capacitance<br>(pF) | Resistance<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(M ohm) | Operating<br>Temperature Range<br>(°C) |
|----------------|---------------------|---------------------|-----------------------|------------------------|----------------------------------|----------------------------------------|
| NFA31GD1006R84 | 10 +20%,-20%        | 6.8 +40%,-40%       | 50                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD1004704 | 10 +20%,-20%        | 47 +30%,-30%        | 20                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD1001014 | 10 +20%,-20%        | 100 +30%,-30%       | 15                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD4706R84 | 47 +20%,-20%        | 6.8 +40%,-40%       | 50                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD4704704 | 47 +20%,-20%        | 47 +30%,-30%        | 20                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD4701014 | 47 +20%,-20%        | 100 +30%,-30%       | 15                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD1016R84 | 100 +20%,-20%       | 6.8 +40%,-40%       | 50                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD1014704 | 100 +20%,-20%       | 47 +30%,-30%        | 20                    | 6                      | 1000                             | -40 to 85                              |
| NFA31GD1011014 | 100 +20%,-20%       | 100 +30%,-30%       | 15                    | 6                      | 1000                             | -40 to 85                              |


Number of Circuits: 4


# **■** Equivalent Circuit





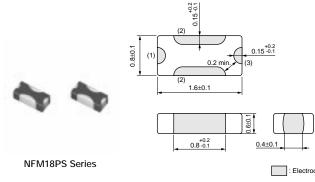








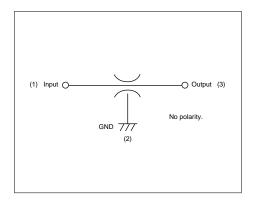
# Chip EMIFIL® for Large Current NFM18P/21P/3DP/41P/55P Series

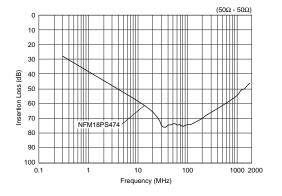

# **NFM18PS Series**

## ■ Features

- 1. Excellent noise suppression characteristics in high frequency band.
- 2. Rated current of 2A is achieved in small size of
- 3. Suitable for noise suppression in IC power line.

# Applications


For IC power lines of digital equipment such as DVDs, DSCs, Mobile Phones, Digital TVs




(in mm)

| Part Number    | Capacitance<br>(μF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFM18PS474R0J3 | 0.47 +20%,-20%      | 6.3                    | 2                    | 1000                                       | -55 to +125                      |

# **■** Equivalent Circuit





(in mm)

# **NFM18PC Series**

NFM18PC series is a high performance EMI suppression filter in 1.6x0.8mm size for high-speed IC power supply lines by using Murata processing technology.

#### ■ Features

- 1. Ultra-small size in 1.6x0.8mm
- 2. Three terminal structure with low residual (ESL)\* and large capacitance 1 micro F (max.) realize large insertion loss characteristics over wide frequency range.
- 3. Large rated current 2A is suitable for noise suppression of circuits which require large current.
- 4. The NFM18P series has line up of capacitance 0.1 to 1.0 micro F.
- \* Not exceeding one-tenth of monolithic ceramic capacitors (two terminal).

## Applications

1. Noise suppression for large capacitance circuits such as high speed IC power lines

Capacitance

(μF)

0.1 +20%,-20%

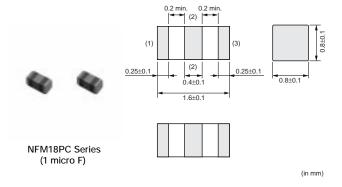
0.22 +20%,-20%

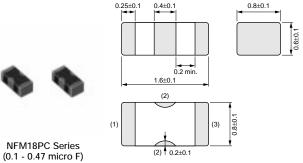
0.47 +20%,-20%

1.0 +20%,-20%

Rated Voltage

(Vdc)


16


6.3

6.3

6.3

2. Control change of voltage for high speed IC





Rated Curren

(A)

2

2

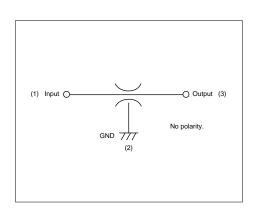
2

2

| nt | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----|--------------------------------------------|----------------------------------|
|    | 1000                                       | -55 to +125                      |
|    | 1000                                       | -55 to +125                      |
|    | 1000                                       | -55 to +125                      |

-55 to +105

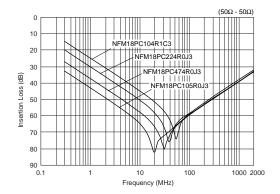
## **■** Equivalent Circuit


Part Number

NFM18PC104R1C3

NFM18PC224R0J3

NFM18PC474R0J3

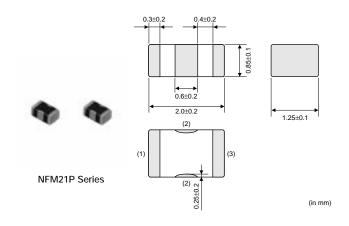

NFM18PC105R0J3



## ■ Insertion Loss Characteristics

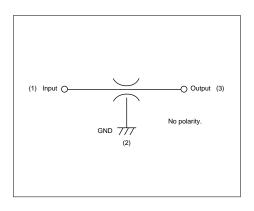
500

#### NFM18P Series



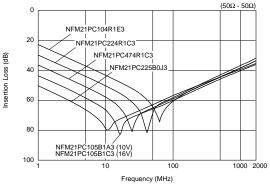

# NFM21P Series

NFM21P is a three terminal structure component. This product can be applied to large current DC power lines. NFM21P is suitable for noise suppression of DC power lines where relatively large current operates.


#### ■ Features

- 1. The rated current of 4A is suitable for IC's individual power lines.
- 2. Small dimension enables higher density packaging. NFM21P is much smaller size (2.0x1.25x0.85mm).
- Murata's original internal electrode structure design realizes excellent EMI suppression effects from low frequency to high frequency.



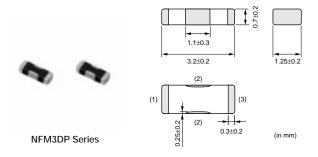

| Part Number    | Capacitance<br>(μF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFM21PC104R1E3 | 0.1 +20%,-20%       | 25                     | 2                    | 1000                                       | -55 to +125                      |
| NFM21PC224R1C3 | 0.22 +20%,-20%      | 16                     | 2                    | 1000                                       | -55 to +125                      |
| NFM21PC474R1C3 | 0.47 +20%,-20%      | 16                     | 2                    | 1000                                       | -55 to +125                      |
| NFM21PC105B1A3 | 1.0 +20%,-20%       | 10                     | 4                    | 500                                        | -40 to +85                       |
| NFM21PC105B1C3 | 1.0 +20%,-20%       | 16                     | 4                    | 500                                        | -40 to +85                       |
| NFM21PC225B0J3 | 2.2 +20%,-20%       | 6.3                    | 4                    | 200                                        | -40 to +85                       |

# **■** Equivalent Circuit



## ■ Insertion Loss Characteristics

# NFM21P Series

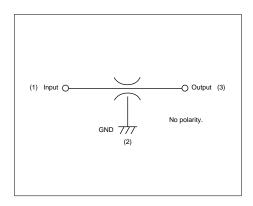



# NFM3DP Series

The chip "EMIFIL" NFM3DP is a chip type three terminal capacitor with high rated current of 2A. This series is suited for noise suppression in DC power supply lines of digital instruments.

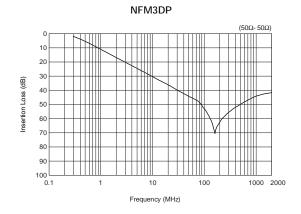
## ■ Features

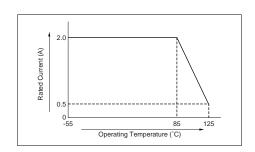
- 1. Large rated current (2A) is suitable for application in DC power lines.
- 2. Small size (3.2x1.25mm) and low profile (0.7mm max.)




## ■ Applications

- 1. Personal computers, word processors and peripherals
- 2. Telephones, PPCs, communications equipment, etc.
- 3. Digital TVs, VCRs
- 4. Telecommunications equipment


| Part Number    | Capacitance<br>(μF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFM3DPC223R1H3 | 0.022 +20%,-20%     | 50                     | 2                    | 1000                                       | -55 to +85                       |


# **■** Equivalent Circuit



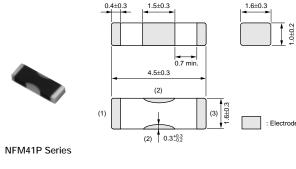
# ■ Notice (Rating)

When the NFM3DP series is used in operating temperatures exceeding +85°C, derating of current is necessary. Please apply the derating curve shown in chart according to the operating temperature.





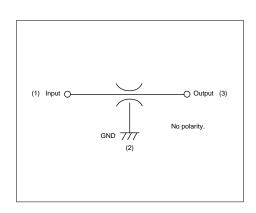
# NFM41P Series

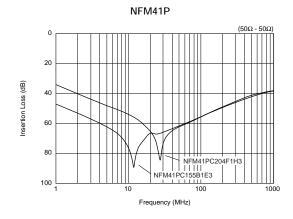

The chip "EMIFIL" NFM41P series consists of three terminal structure. These components are able to be applied to large current DC power lines. NFM41P series are suitable in noise suppression in DC lines where relatively large currents operate.

## ■ Features

- 1. Large rated current 6A (max.) is suitable for the application in DC power lines.
- 2. High electrostatic capacitance and remarkable high frequency performance are effective for immunity against surge noise and pulse noise.

# ■ Applications


- 1. Personal computers, word processors and peripherals
- 2. Telephones, PPCs, communication equipment, etc.
- 3. Digital TVs, VCRs
- 4. Telecommunications equipment




(in mm)

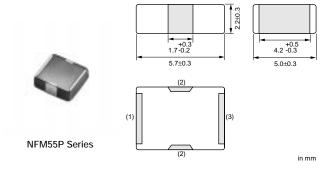
| Part Number    | Capacitance<br>(μF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFM41PC204F1H3 | 0.2 +80%,-20%       | 50                     | 2                    | 1000                                       | -55 to +85                       |
| NFM41PC155B1E3 | 1.5 +20%,-20%       | 25                     | 6                    | 300                                        | -55 to +85                       |

# **■** Equivalent Circuit



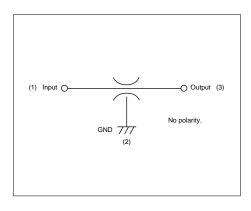


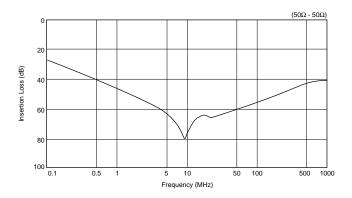
# NFM55P Series


The chip solid "EMIFIL" NFM55P is a chip type three terminal capacitor with high rated current of 6A. This series is suited for noise suppression in DC power lines where high rated current and large capacitance is required.

## ■ Features

- Large rated current (6A) and low voltage drop due to a small DC resistance (0.01 ohm) are suitable for the application in DC power line.
- High electrostatic capacitance and remarkable high frequency performance are effective for the immunity against the surge noise and the pulse noise.
- 3. Only reflow soldering should be applied.


# ■ Applications


- 1. Personal computers, Word processors and Peripherals
- 2. Telephones, PPCs, Communications equipment, etc.
- 3. Digital TVs, VCRs
- 4. Telecommunication equipment



| Part Number    | Capacitance<br>(μF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFM55PC155F1H4 | 1.5 +80%,-20%       | 50                     | 6                    | 100                                        | -55 to +85                       |

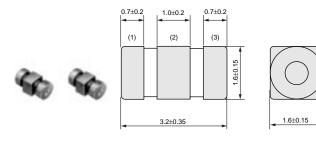
# **■** Equivalent Circuit







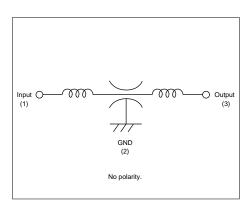


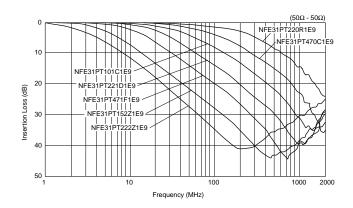

# Chip EMIFIL® LC Combined Type for Large Current NFE31P/NFE61P Series

# NFE31P Series

The chip "EMIFIL" NFE31P is a small size T-type circuit EMI suppression filter.

## ■ Features


- Its large rated current of 6A and low voltage drop due to small DC resistance are suitable for DC power line use.
- 2. The feedthrough capacitor realizes excellent high frequency characteristics.
- 3. The structure incorporates built-in ferrite beads which minimize resonance with surrounding circuits.
- 4. 22 to 2,200pF lineups can be used in signal lines.

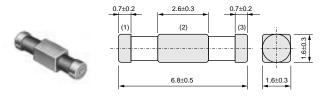



(in mm)

| Part Number    | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFE31PT220R1E9 | 22 +30%,-30%        | 25                     | 6                    | 1000                                       | -40 to +85                       |
| NFE31PT470C1E9 | 47 +50%,-20%        | 25                     | 6                    | 1000                                       | -40 to +85                       |
| NFE31PT101C1E9 | 100 +80%,-20%       | 25                     | 6                    | 1000                                       | -40 to +85                       |
| NFE31PT221D1E9 | 220 +50%,-20%       | 25                     | 6                    | 1000                                       | -40 to +85                       |
| NFE31PT471F1E9 | 470 +50%,-20%       | 25                     | 6                    | 1000                                       | -40 to +85                       |
| NFE31PT152Z1E9 | 1500 +50%,-20%      | 25                     | 6                    | 1000                                       | -40 to +85                       |
| NFE31PT222Z1E9 | 2200 +50%,-50%      | 25                     | 6                    | 1000                                       | -40 to +85                       |

# **■** Equivalent Circuit

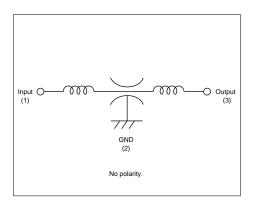


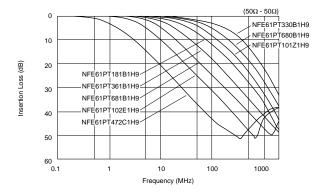



# NFE61P Series

The chip "EMIFIL" NFE61P is a T-type circuit EMI suppression filter.

## ■ Features


- Its large rated current of 2A and low voltage drop due to small DC resistance are suitable for DC power line use.
- 2. The feedthrough capacitor realizes excellent high frequency characteristics.
- 3. The structure incorporates built-in ferrite beads which minimize resonance with surrounding circuits.
- 4. 33 to 4700pF lineups can be used in signal lines.




(in mm)

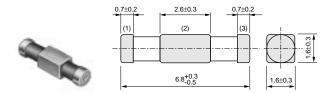
| Part Number    | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFE61PT330B1H9 | 33 +30%,-30%        | 50                     | 2                    | 1000                                       | -25 to +85                       |
| NFE61PT680B1H9 | 68 +30%,-30%        | 50                     | 2                    | 1000                                       | -25 to +85                       |
| NFE61PT101Z1H9 | 100 +30%,-30%       | 50                     | 2                    | 1000                                       | -25 to +85                       |
| NFE61PT181B1H9 | 180 +30%,-30%       | 50                     | 2                    | 1000                                       | -25 to +85                       |
| NFE61PT361B1H9 | 360 +20%,-20%       | 50                     | 2                    | 1000                                       | -25 to +85                       |
| NFE61PT681B1H9 | 680 +30%,-30%       | 50                     | 2                    | 1000                                       | -25 to +85                       |
| NFE61PT102E1H9 | 1000 +80%,-20%      | 50                     | 2                    | 1000                                       | -25 to +85                       |
| NFE61PT472C1H9 | 4700 +80%,-20%      | 50                     | 2                    | 1000                                       | -25 to +85                       |

# **■** Equivalent Circuit





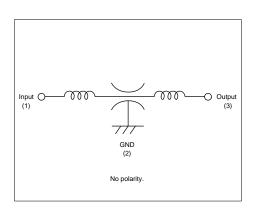


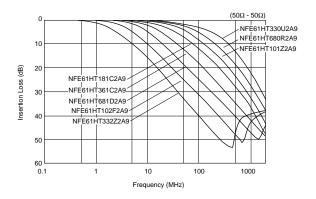



# Chip EMIFIL® LC Combined Type for Large Current NFE61H Series

The T-type chip EMI Filter NFE61H series consists of a feedthrough capacitor and ferrite beads. Extending the operating conditions of NFE61P, NFE61H series can be used in an application set under severe operating conditions.

#### ■ Features


- These filters have an extended operating temperature range of -55 to +125 degree C.
- Its large rated current of 2A and low voltage drop due to small DC resistance are suitable for DC power line use.
- 3. The feedthrough capacitor realizes excellent high frequency characteristics.
- 4. The structure incorporates built-in ferrite beads which minimize resonance with surrounding circuits.
- 5. 33 to 3300pF lineups can be used in signal lines.




(in mm)

| Part Number    | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Insulation Resistance<br>(min.)<br>(M ohm) | Operating Temperature Range (°C) |
|----------------|---------------------|------------------------|----------------------|--------------------------------------------|----------------------------------|
| NFE61HT330U2A9 | 33 +30%,-30%        | 100                    | 2                    | 1000                                       | -55 to +125                      |
| NFE61HT680R2A9 | 68 +30%,-30%        | 100                    | 2                    | 1000                                       | -55 to +125                      |
| NFE61HT101Z2A9 | 100 +30%,-30%       | 100                    | 2                    | 1000                                       | -55 to +125                      |
| NFE61HT181C2A9 | 180 +30%,-30%       | 100                    | 2                    | 1000                                       | -55 to +125                      |
| NFE61HT361C2A9 | 360 +20%,-20%       | 100                    | 2                    | 1000                                       | -55 to +125                      |
| NFE61HT681D2A9 | 680 +30%,-30%       | 100                    | 2                    | 1000                                       | -55 to +125                      |
| NFE61HT102F2A9 | 1000 +80%,-20%      | 100                    | 2                    | 1000                                       | -55 to +125                      |
| NFE61HT332Z2A9 | 3300 +80%,-20%      | 100                    | 2                    | 1000                                       | -55 to +125                      |

## **■** Equivalent Circuit









# Chip Common Mode Choke Coils Part Numbering

#### Chip Common Mode Choke Coils

(Part Number) DL W 21 S N 371 S Q 2 L

#### Product ID

| Product ID |                              |
|------------|------------------------------|
| DL         | Chip Common Mode Choke Coils |

#### 2Structure

| Code           | Structure       |  |
|----------------|-----------------|--|
| W Winding Type |                 |  |
| М              | Monolithic Type |  |
| Р              | Film Type       |  |

#### 3Dimensions (LXW)

| Code | Dimensions (LXW) | EIA  |
|------|------------------|------|
| 11   | 1.25×1.0mm       | 0504 |
| 21   | 2.0×1.2mm        | 0805 |
| 31   | 3.2×1.6mm        | 1206 |
| 2A   | 2.0×1.0mm        | 0804 |
| 2H   | 2.5×2.0mm        | 1008 |
| 5A   | 5.0×3.6mm        | 2014 |
| 5B   | 5.0×5.0mm        | 2020 |

#### **4**Туре

| Code | Туре                                               |
|------|----------------------------------------------------|
| s    | Magnetically Shielded One Circuit Type             |
| D    | Magnetically Shielded Two Circuit Type             |
| Н    | Open Magnetic One Circuit Type                     |
| G    | Magnetically Monolithic Type (sectional winding)   |
| Т    | Magnetically Shielded One Circuit Low Profile Type |

# **5**Category

| Code | Category       |  |
|------|----------------|--|
| N    | Standard Type  |  |
| Н    | For Automotive |  |

#### **6**Impedance

Typical impedance at 100MHz is expressed by three figures. The unit is in ohm  $(\Omega)$ . The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

#### **⑦**Circuit

| Code | Circuit                |  |  |  |  |
|------|------------------------|--|--|--|--|
| S    |                        |  |  |  |  |
| М    | Expressed by a letter. |  |  |  |  |
| Н    |                        |  |  |  |  |

#### 8 Features

| Code | Features               |
|------|------------------------|
| L    |                        |
| Q    | Expressed by a letter. |
| Z    |                        |

## Number of Signal Lines

| Code | Number of Signal Lines |  |
|------|------------------------|--|
| 2    | Two Lines              |  |
| 3    | Three Lines            |  |
| 4    | Four Lines             |  |

#### Packaging

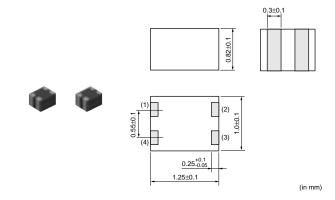
| Code | Packaging                    | Series               |
|------|------------------------------|----------------------|
| K    | Plastic Taping (ø330mm Reel) | DLW5AH/DLW5BS/DLW5BT |
| L    | Plastic Taping (ø180mm Reel) | All Series           |
| В    | Bulk                         | All Series           |





# Chip Common Mode Choke Coils Film Type DLP11S/DLP31S Series

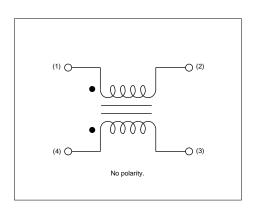
# **DLP11S Series**


## ■ Features

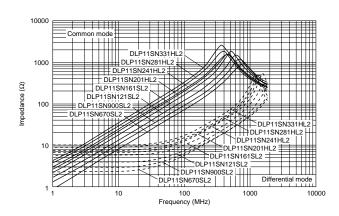
- Small size and tight dimensional tolerance
   Size: 1.25x1.0x0.82mm Tolerance: +-0.1mm
- 2. Useful impedance line-up from 67ohm to 330 ohm
- DLP11S series enables noise suppression for differential signal line without distortion in high-speed signal transmission due to its high coupling
- 4. DLP11SN\_HL2 series match with line impedance

# ■ Applications

Common mode noise suppression of high speed differential signal lines for USB, IEEE1394, LVDS.


- 1. Note PCs, PDAs
- 2. Cellular phones
- 3. Digital Still Cameras, Digital Video Cameras




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|-----------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLP11SN670SL2 | 67 ±20%                                             | 180                   | 5                      | 100                                        | 12.5                       | 1.3 ±25%               |
| DLP11SN900SL2 | 90 ±20%                                             | 160                   | 5                      | 100                                        | 12.5                       | 1.4 ±25%               |
| DLP11SN121SL2 | 120 ±20%                                            | 140                   | 5                      | 100                                        | 12.5                       | 2.0 ±25%               |
| DLP11SN161SL2 | 160 ±20%                                            | 120                   | 5                      | 100                                        | 12.5                       | 2.7 ±25%               |
| DLP11SN201HL2 | 200 ±20%                                            | 110                   | 5                      | 100                                        | 12.5                       | 3.1 ±25%               |
| DLP11SN241HL2 | 240 ±20%                                            | 100                   | 5                      | 100                                        | 12.5                       | 3.5 ±25%               |
| DLP11SN281HL2 | 280 ±20%                                            | 90                    | 5                      | 100                                        | 12.5                       | 4.2 ±25%               |
| DLP11SN331HL2 | 330 ±20%                                            | 80                    | 5                      | 100                                        | 12.5                       | 4.9 ±25%               |

Operating Temperature Range: -40°C to 85°C

# **■** Equivalent Circuit

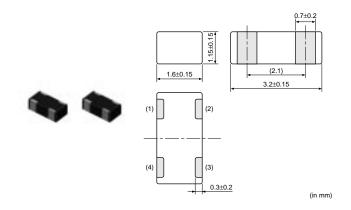


# ■ Impedance-Frequency (Typical)





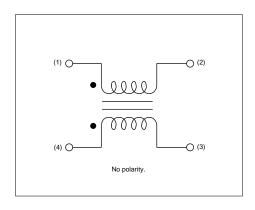
# **DLP31S Series**


DLP31S series is chip common mode choke coil that realizes high impedance in a small size with ferrite material technology and film processing technology. DLP31S series has excellent performance at high frequency range. It is suitable for differential signal line application.

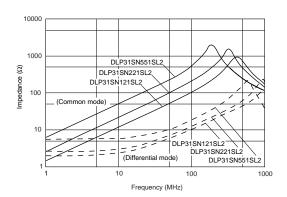
#### ■ Features

- 1. Small size, low profile, SMD. 3.2x1.6x1.15mm (Tolerance: 0.15mm)
- 2. High common mode impedance (550 ohm at 100MHz typ.) in small size.
- 3. DLP31S suppresses high frequency noise that was unable to be suppressed with existing common mode choke coils. Suitable for differential signal lines like USB, because DLP31S does not provide distortion to high speed signal transmission due to its high coupling (coupling coefficient: 0.98 min.)

# Applications


- 1. USB lines of PCs, peripheral equipment
- 2. LVDS lines of Note-PCs, LCDs
- 3. USB lines of digital AV equipment such as digital cameras




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|-----------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLP31SN121SL2 | 120 ±20%                                            | 100                   | 16                     | 100                                        | 40                         | 2.0 max.               |
| DLP31SN221SL2 | 220 ±20%                                            | 100                   | 16                     | 100                                        | 40                         | 2.5 max.               |
| DLP31SN551SL2 | 550 ±20%                                            | 100                   | 16                     | 100                                        | 40                         | 3.6 max.               |

Operating Temperature Range: -40°C to 85°C

# **■** Equivalent Circuit



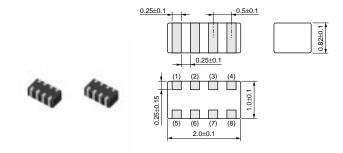
## ■ Impedance-Frequency (Typical)





# Chip Common Mode Choke Coils Arrays Film Type DLP2AD/31D Series

# **DLP2AD Series**

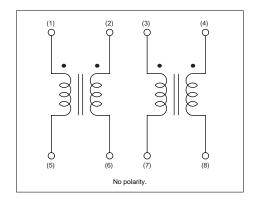

## ■ Features

- 1. 2 components are included in 2.0x1.0mm size
- 2. Low profile: typ. 0.82mm
- 3. High common mode impedance characteristics (max. 280 ohm, at 100MHz)
- 4. DLP2AD can suppress common mode noise without damage to signal wave.
- 5. DLP2AD match with line impedance.

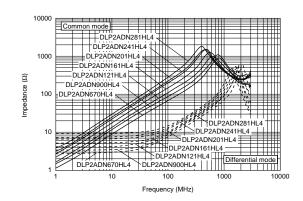
## ■ Applications

Common mode noise suppression of high speed differential signal lines for USB, IEEE1394 LVDS, DVI, HDMI

- 1. Main board of personal computers, Note PCs
- 2. Printers, Scanners
- 3. LCD monitors
- 4. Game equipment
- 5. PC peripheral equipment




|  |  | (in mm) |  |
|--|--|---------|--|
|  |  |         |  |
|  |  |         |  |
|  |  |         |  |


| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|-----------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLP2ADN670HL4 | 67 ±20%                                             | 140                   | 5                      | 100                                        | 12.5                       | 1.3 ±25%               |
| DLP2ADN900HL4 | 90 ±20%                                             | 130                   | 5                      | 100                                        | 12.5                       | 1.7 ±25%               |
| DLP2ADN121HL4 | 120 ±20%                                            | 120                   | 5                      | 100                                        | 12.5                       | 2.0 ±25%               |
| DLP2ADN161HL4 | 160 ±20%                                            | 100                   | 5                      | 100                                        | 12.5                       | 2.5 ±25%               |
| DLP2ADN201HL4 | 200 ±20%                                            | 90                    | 5                      | 100                                        | 12.5                       | 3.2 ±25%               |
| DLP2ADN241HL4 | 240 ±20%                                            | 80                    | 5                      | 100                                        | 12.5                       | 3.8 ±25%               |
| DLP2ADN281HL4 | 280 ±20%                                            | 80                    | 5                      | 100                                        | 12.5                       | 4.6 ±25%               |

Operating Temperature Range: -40°C to 85°C

# **■** Equivalent Circuit



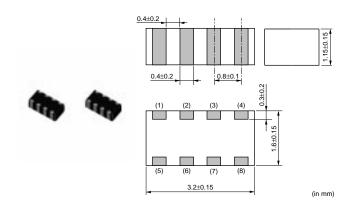
# ■ Impedance-Frequency (Typical)





# **DLP31D Series**

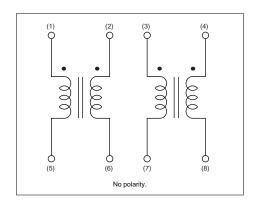
DLP31D series is chip common mode choke coil array which realizes high coupling and high impedance in a small size with ferrite material technology and thin film processing technology.

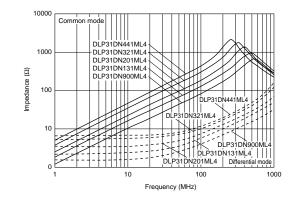

#### ■ Features

- 1. 2 components are included in 3.2x1.6mm
- 2. Thin type 1.15mm
- 3. High common mode Impedance characteristics (max. 440 ohm, at 100MHz)
- 4. The DLP31D can suppress common mode noise without damage to signal wave.

### ■ Applications

Common mode noise suppression of high speed differential signal lines for USB, IEEE1394, LVDS


- 1. Main board of personal computers, note PCs
- 2. Printers, Scanners
- 3. LCD monitors
- 4. Game equipment
- 5. PC peripheral equipment




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|-----------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLP31DN900ML4 | 90 ±20%                                             | 160                   | 10                     | 100                                        | 25                         | 1.1 max.               |
| DLP31DN131ML4 | 130 ±20%                                            | 120                   | 10                     | 100                                        | 25                         | 1.6 max.               |
| DLP31DN201ML4 | 200 ±20%                                            | 100                   | 10                     | 100                                        | 25                         | 2.2 max.               |
| DLP31DN321ML4 | 320 ±20%                                            | 80                    | 10                     | 100                                        | 25                         | 3.5 max.               |
| DLP31DN441ML4 | 440 ±20%                                            | 70                    | 10                     | 100                                        | 25                         | 4.3 max.               |

Operating Temperature Range: -40°C to  $85^{\circ}\text{C}$ 

### **■** Equivalent Circuit









# Chip Common Mode Choke Coils Monolithic Type DLM11G/DLM2HG Series

# **DLM11G Series**

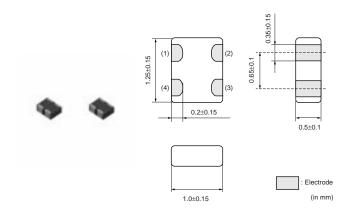
Small size chip common mode choke coil. Suitable for noise suppression at audio line for mobile phone.

#### ■ Features

- 1. Small size: 1.25x1.0x0.5mm
- 2. Noise suppression for personal mobile equipment
- Enables suppression of both differential mode and common mode noise.

Common mode impedance:

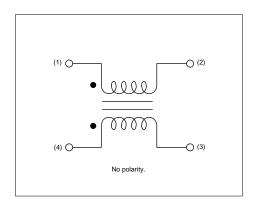
600 ohm at 100MHz (typ.)

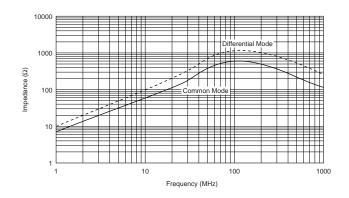

Differential mode impedance:

1200 ohm at 100MHz (typ.)

4. Available for high density mounting (Narrow pitch)

### ■ Applications


- Audio line for mobile phones (Microphones, Speakers, Headphones)
- 2. Handsets
- Personal mobile equipment (PDAs, Digital still cameras, MD players)




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current (mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|--------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLM11GN601SZ2 | 600 ±25%                                            | 100                | 5                      | 100                                        | 25                         | 0.8 max.               |

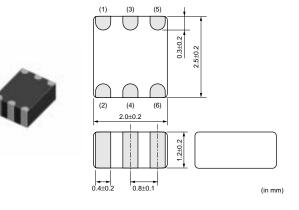
Operating Temperature Range: -40°C to 85°C

### **■** Equivalent Circuit





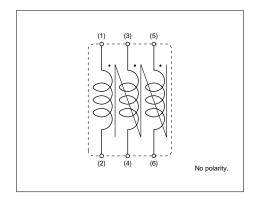
# **DLM2HG Series**

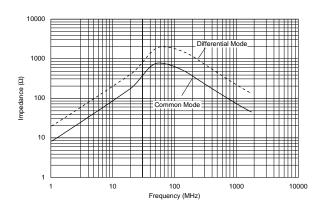

DLM2HG Series is a high quality noise suppression filter for headphone lines of high quality digital music equipment.

#### ■ Features

- 1. Low distortion in audio signal, low crosstalk
- 2. Effective in noise suppression both of common mode and of differential mode
- 3. Small size, low profile, SMD 2.5x2.0x1.2mm

### ■ Applications


- Headphone lines of digital music equipment such as DVDs, MD players
- 2. Headphone lines of Note-PCs, PDAs




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|-----------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLM2HGN601SZ3 | 600 ±25%                                            | 100                   | 16                     | 100                                        | 100                        | 0.40 max.              |

Operating Temperature Range: -40°C to 85°C

# ■ Equivalent Circuit







# Chip Common Mode Choke Coils Winding Type DLW21S/DLW21H/DLW31S Series

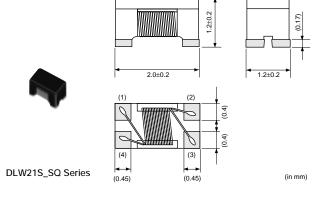
# **DLW21S Series**

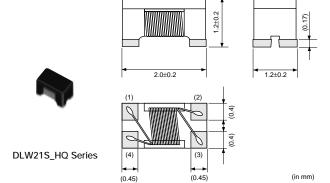
#### ■ Features (DLW21S\_SQ Series)

- DLW21S series realizes small size and low profile.
   2.0x1.2x1.2mm
- 2. High common mode impedance at high frequency effects excellent noise suppression performance.
- Various common mode impedance items of 67 to 370 ohm can be used, considering noise level and signal frequency.
- DLW21S series enables noise suppression for differential signal line without distortion in high speed signal transmission due to its high coupling.
- 5. Small dimension enables higher density packaging.

# ■ Applications

- 1. USB lines of PC, Peripheral equipment
- 2. LVDS lines of Note-PCs, LCDs
- 3. USB lines of Small digital AV equipment such as digital cameras

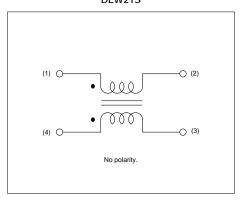

#### ■ Features (DLW21S\_HQ Series)


- 1. Small size: 2.0x1.2x1.2mm
- Common mode impedance items of 67, 90 and 120 ohm, and they can be used for various differential signal lines.
- 3. DLW21S\_H series match with line impedance of 100 ohm line.
- 4. DLW21S\_H series can suppress noise for the high-speed differential signal lines which are used in digital AV interfaces, such as HDMI and DVI, without damage to the signal wave.

# ■ Applications

Common mode noise suppression of high speed differential signal lines for HDMI, DVI, USB2.0, IEEE1394, LVDS.

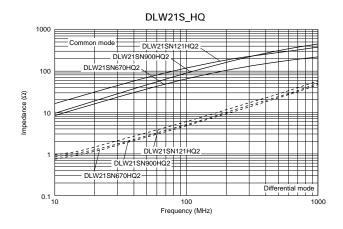
- 1. DVD Recorders
- 2. LCD TVs, LCD monitors
- 3. PCs







| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current (mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|--------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLW21SN670SQ2 | 67 ±25%                                             | 400                | 50                     | 10                                         | 125                        | 0.25 max.              |
| DLW21SN900SQ2 | 90 ±25%                                             | 330                | 50                     | 10                                         | 125                        | 0.35 max.              |
| DLW21SN121SQ2 | 120 ±25%                                            | 370                | 50                     | 10                                         | 125                        | 0.30 max.              |
| DLW21SN181SQ2 | 180 ±25%                                            | 330                | 50                     | 10                                         | 125                        | 0.35 max.              |
| DLW21SN261SQ2 | 260 ±25%                                            | 300                | 50                     | 10                                         | 125                        | 0.40 max.              |
| DLW21SN371SQ2 | 370 ±25%                                            | 280                | 50                     | 10                                         | 125                        | 0.45 max.              |
| DLW21SN670HQ2 | 67 ±25%                                             | 320                | 20                     | 10                                         | 50                         | 0.31 max.              |
| DLW21SN900HQ2 | 90 ±25%                                             | 280                | 20                     | 10                                         | 50                         | 0.41 max.              |
| DLW21SN121HQ2 | 120 ±25%                                            | 280                | 20                     | 10                                         | 50                         | 0.41 max.              |


#### **■** Equivalent Circuit

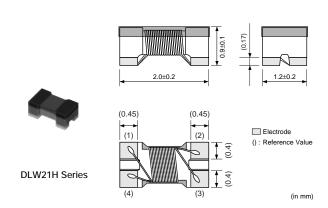
#### DLW21S



### ■ Impedance-Frequency (Typical)






# **DLW21H Series**

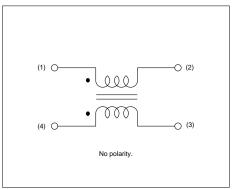
#### ■ Features

- Small size and low profile (2.0x1.2x0.9mm).
   Excellent noise suppression for sets of small and thin size.
- 2. High common mode impedance at high frequency effects excellent noise suppression performance.
- Various common mode impedance from 67 to 180 ohm can be used, selected depending on noise level and signal frequency.
- Suitable for differential signal line like USB2.0, IEEE1394 and LVDS, because DLW21H does not provide distortion to high speed signal transmission due to its high coupling. (USB2.0: DLW21HN900SQ2)
- 5. Small dimension enables higher density mounting

### ■ Applications

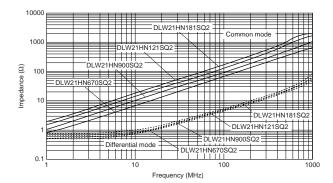
Common mode noise suppression of signal lines in high speed and high density digital equipment such as PCs and peripherals and telecommunication equipment.




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current (mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|--------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLW21HN670SQ2 | 67 ±25%                                             | 330                | 50                     | 10                                         | 125                        | 0.35 max.              |
| DLW21HN900SQ2 | 90 ±25%                                             | 330                | 50                     | 10                                         | 125                        | 0.35 max.              |
| DLW21HN121SQ2 | 120 ±25%                                            | 280                | 50                     | 10                                         | 125                        | 0.45 max.              |
| DLW21HN181SQ2 | 180 ±25%                                            | 250                | 50                     | 10                                         | 125                        | 0.50 max.              |

Operating Temperature Range: -40°C to  $85^{\circ}$ C




#### **■** Equivalent Circuit

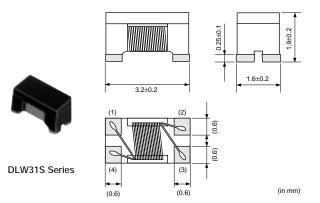
# DLW21H



#### ■ Impedance-Frequency (Typical)

#### DLW21H

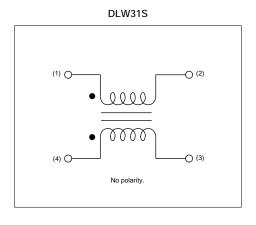


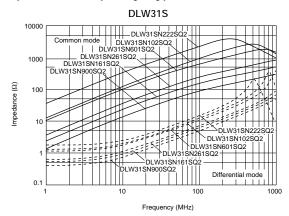

# **DLW31S Series**

#### ■ Features

- 1. DLW31S realizes small size and low profile. 3.2x1.6x1.9mm.
- 2. High common mode impedance at high frequency effects excellent noise suppression performance.
- 3. Various common mode impedance items of 90 to 2200 ohm can be used, considering noise level and signal frequency.
- DLW31S series enables noise suppression for differential signal lines without distortion in high speed signal transmission due to its high coupling.
- 5. Small dimension enables higher density packaging.

# ■ Applications


- 1. USB lines of PCs, Peripheral equipment
- 2. LVDS lines of Note-PCs, LCDs




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current<br>(mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|-----------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLW31SN900SQ2 | 90 ±25%                                             | 370                   | 50                     | 10                                         | 125                        | 0.3 max.               |
| DLW31SN161SQ2 | 160 ±25%                                            | 340                   | 50                     | 10                                         | 125                        | 0.4 max.               |
| DLW31SN261SQ2 | 260 ±25%                                            | 310                   | 50                     | 10                                         | 125                        | 0.5 max.               |
| DLW31SN601SQ2 | 600 ±25%                                            | 260                   | 50                     | 10                                         | 125                        | 0.8 max.               |
| DLW31SN102SQ2 | 1000 ±25%                                           | 230                   | 50                     | 10                                         | 125                        | 1.0 max.               |
| DLW31SN222SQ2 | 2200 ±25%                                           | 200                   | 50                     | 10                                         | 125                        | 1.2 max.               |

Operating Temperature Range: -40°C to 85°C

### **■** Equivalent Circuit



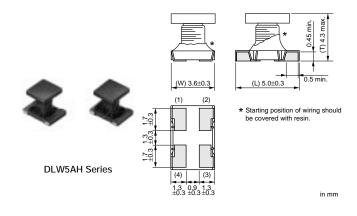


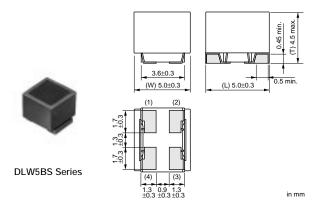




# Chip Common Mode Choke Coils Winding Type for Large Current DLW5AH/5BS/5BT Series

# **DLW5AH/5BS Series**

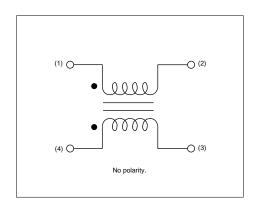

The DLW5AH/5BS series is a high performance wound type chip common mode choke coil.

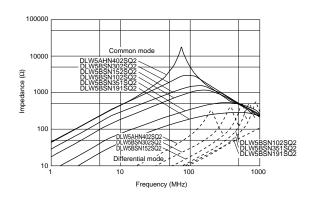

#### ■ Features

- 1. High impedance (max. of 4000ohm at 100MHz: DLW5AH) enables great noise suppression.
- 2. Large rated current (max. of 5A) is suitable for power line use.
- 3. DLW5AH/BS series does not damage high speed signal due to high coupling common mode choke coil structure.
- 4. Automatic mounting can be applied.

# Applications

- 1. DC power lines in AC adapters of Portable equipment
- 2. DC power lines of DC-DC converters, battery chargers



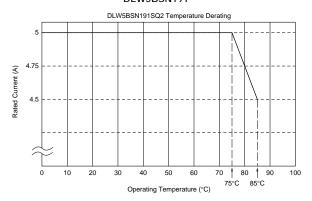




| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current (mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|--------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLW5AHN402SQ2 | 4000 (Typ.)                                         | 200                | 50                     | 10                                         | 125                        | 3.0 max.               |
| DLW5BSN191SQ2 | 190 (Typ.)                                          | 5000               | 50                     | 10                                         | 125                        | 0.02 max.              |
| DLW5BSN351SQ2 | 350 (Typ.)                                          | 2000               | 50                     | 10                                         | 125                        | 0.04 max.              |
| DLW5BSN102SQ2 | 1000 (Typ.)                                         | 1500               | 50                     | 10                                         | 125                        | 0.06 max.              |
| DLW5BSN152SQ2 | 1500 (Typ.)                                         | 1000               | 50                     | 10                                         | 125                        | 0.1 max.               |
| DLW5BSN302SQ2 | 3000 (Typ.)                                         | 500                | 50                     | 10                                         | 125                        | 0.3 max.               |

Operating Temperature Range: -25°C to 85°C

### **■** Equivalent Circuit









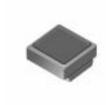

### ■ Derating of Rated Current

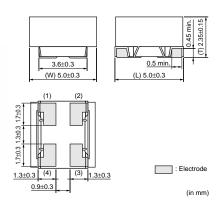
#### DLW5BSN191



# **DLW5BT Series**

Low profile (h=2.5mm) chip common mode choke coil. Suitable for noise suppression at DC power line.


### ■ Features

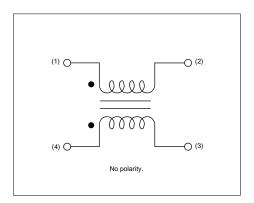

- 1. Low profile (h=2.5mm)
- 2. Small size (5.0x5.0mm) and high rated current (1.5 to 6A)
- 3. High common mode Impedance (max. 1400 ohm, at 100MHz)

# ■ Applications

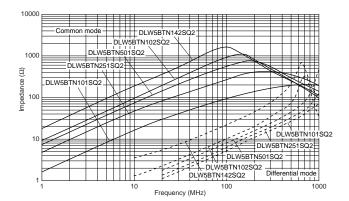
Noise suppression for power line

- Power line equipment DC-DC converters battery chargers
- 2. Portable equipment
  PDAs (Personal Digital Assistance)
  note PCs
  printers



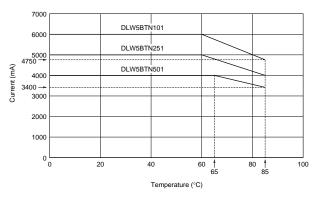



| Part Number   | Common Mode Impedance<br>(at 100MHz, 20°C)<br>(ohm) | Rated Current (mA) | Rated Voltage<br>(Vdc) | Insulation Resistance<br>(min.)<br>(M ohm) | Withstand Voltage<br>(Vdc) | DC Resistance<br>(ohm) |
|---------------|-----------------------------------------------------|--------------------|------------------------|--------------------------------------------|----------------------------|------------------------|
| DLW5BTN101SQ2 | 100 (Typ.)                                          | 6000               | 50                     | 10                                         | 125                        | 0.009 ±40%             |
| DLW5BTN251SQ2 | 250 (Typ.)                                          | 5000               | 50                     | 10                                         | 125                        | 0.014 ±40%             |
| DLW5BTN501SQ2 | 500 (Typ.)                                          | 4000               | 50                     | 10                                         | 125                        | 0.019 ±40%             |
| DLW5BTN102SQ2 | 1000 (Typ.)                                         | 2000               | 50                     | 10                                         | 125                        | 0.024 ±40%             |
| DLW5BTN142SQ2 | 1400 (Typ.)                                         | 1500               | 50                     | 10                                         | 125                        | 0.040 ±40%             |


Operating Temperature Range: -25°C to 85°C



# **■** Equivalent Circuit




# ■ Impedance-Frequency (Typical)



# ■ Derating of Rated Current

# DLW5BTN101/251/501





# Ferrite Beads Inductors Part Numbering

#### Ferrite Beads Inductors

(Part Number)

BL 02 RN 2 R1 M 2 B

### ●Product ID

| Product ID |                         |
|------------|-------------------------|
| BL         | Ferrite Beads Inductors |

#### 2Series

| Code | Series          |
|------|-----------------|
| 01   | Beads ø3.6      |
| 02   | Beads ø3.4      |
| 03   | Beads ø2.3 max. |

#### **3**Beads Core Material

| Code | Beads Core Material |
|------|---------------------|
| RN   | Standard Type       |

#### **4** Numbers of Beads Core

| Code | Numbers of Beads Core |
|------|-----------------------|
| 1    | 1                     |
| 2    | 2                     |

#### **5**Lead Type

| Code | Lead Type                                  | Series    |
|------|--------------------------------------------|-----------|
| A1   | Axial Straight Type                        | BL01      |
| A2   | Axial Crimp Type                           | BL01      |
| R1   | Radial Straight Type                       | BL02/BL03 |
| R2   | Radial Straight and Wave Formed Leads Type | BL02      |
| R3   | Radial Crimp Type                          | BL02      |
|      |                                            |           |

#### **6**Lead Length, Space

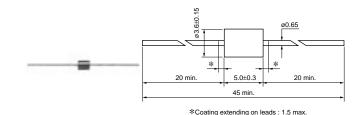
| Code | Lead Length, Space                  | Series |
|------|-------------------------------------|--------|
| Α    | Bulk, Axial Type, 3.7mm             |        |
| D    | Bulk, Axial Type, 45.0mm            | DI 04  |
| E    | Taping Axial Type, 26.0mm           | BL01   |
| F    | Taping, Axial Type, 52.0mm          |        |
| J    | Bulk, Radial Type, 5.0mm            |        |
| М    | Bulk, Radial Type, 10.0mm           |        |
| N    | Taping, Radial Type, 16.5mm BL02/BL |        |
| Р    | Taping, Radial Type, 18.5mm         |        |
| Q    | Taping, Radial Type, 20.0mm         |        |

#### **7**Lead Diameter

| Code | Lead Diameter |  |
|------|---------------|--|
| 1    | ø0.60mm       |  |
| 2    | ø0.65mm       |  |

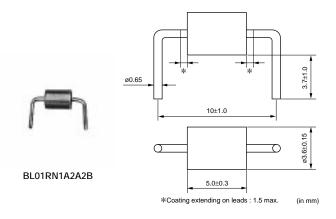
#### 8 Packaging

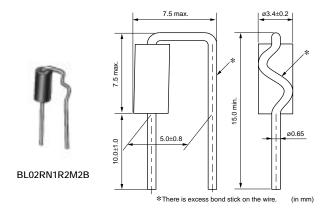
| Code | Packaging             | Series     |
|------|-----------------------|------------|
| Α    | Ammo Pack BL01/BL02   |            |
| В    | Bulk                  | All Series |
| J    | J Paper Reel (ø320mm) |            |

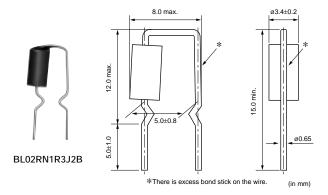




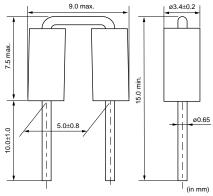

# Ferrite Beads Inductors BL01/BL02/BL03 Series


#### ■ Features

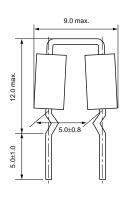

BL01/02/03 series are ferrite beads with lead wires to produce a high frequency loss for suppression of noise. Simple construction and easy-to-use, effective for low impedance circuits such as power supplies and grounds. Effective also for preventing overshoot and undershoot of digital signal in clocks or the like, and suppressing the higher harmonic wave. Suitable for prevention of abnormal oscillation at high frequency amplifying circuit.

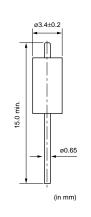



BL01RN1A1D2B

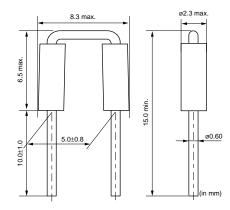

(in mm)





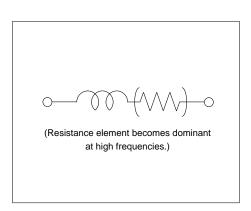


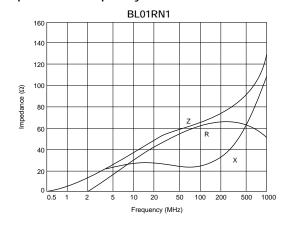


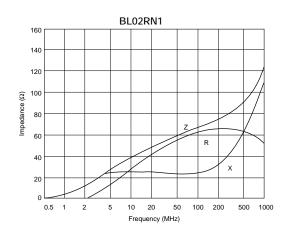








| Part Number  | Rated Current<br>(A) | Operating<br>Temperature Range<br>(°C) |  |
|--------------|----------------------|----------------------------------------|--|
| BL01RN1A1D2B | 7                    | -40 to +85                             |  |
| BL01RN1A1E1A | 6                    | -40 to +85                             |  |
| BL01RN1A1F1J | 6                    | -40 to +85                             |  |
| BL01RN1A2A2B | 7                    | -40 to +85                             |  |
| BL02RN1R2M2B | 7                    | -40 to +85                             |  |
| BL02RN1R2N1A | 6                    | -40 to +85                             |  |
| BL02RN1R2P1A | 6                    | -40 to +85                             |  |
| BL02RN1R2Q1A | 6                    | -40 to +85                             |  |
| BL02RN1R3J2B | 7                    | -40 to +85                             |  |
| BL02RN1R3N1A | 6                    | -40 to +85                             |  |
| BL02RN2R1M2B | 7                    | -40 to +85                             |  |
| BL02RN2R1N1A | 6                    | -40 to +85                             |  |
| BL02RN2R1P1A | 6                    | -40 to +85                             |  |
| BL02RN2R1Q1A | 6                    | -40 to +85                             |  |
| BL02RN2R3J2B | 7                    | -40 to +85                             |  |
| BL02RN2R3N1A | 6                    | -40 to +85                             |  |
| BL03RN2R1M1B | 6                    | -40 to +85                             |  |
| BL03RN2R1N1A | 6                    | -40 to +85                             |  |
| BL03RN2R1P1A | 6                    | -40 to +85                             |  |
| BL03RN2R1Q1A | 6                    | -40 to +85                             |  |


Please refer p.165, "Ferrite Beads Inductors Packaging" for Dimensions of Part Numbers except 'B' for the last code.

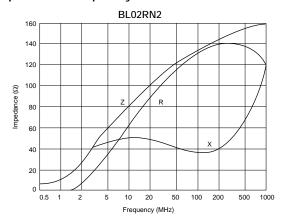
# **■** Equivalent Circuit

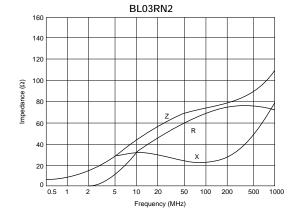


# **■** Impedance-Frequency Characteristics






Continued on the following page.






Continued from the preceding page.

# ■ Impedance-Frequency Characteristics







# Disc Type EMIFIL® Part Numbering

Disc Type  $\mathsf{EMIFIL}^{\texttt{®}}$ 

(Part Number) DS S 9 H B3 2E 271 Q55 B

#### Product ID

| Product ID |                           |
|------------|---------------------------|
| DS         | Three-terminals Capacitor |

#### **2**Structure

| Code | Structure                   |  |
|------|-----------------------------|--|
| N    | No Ferrite Beads Type       |  |
| s    | Built-in Ferrite Beads Type |  |
| T    | with Ferrite Beads Type     |  |

### Style

| Code | Style               |  |
|------|---------------------|--|
| 6    | Diameter 8.0mm Type |  |
| 9    | Diameter 9.5mm Type |  |

#### 4 Category

| Code | Category        |  |  |
|------|-----------------|--|--|
| N    | for General Use |  |  |
| Н    | for Heavy-duty  |  |  |

#### **5**Temperature Characteristics

| Code | Capacitance Change                            |  |  |
|------|-----------------------------------------------|--|--|
| В3   | ±10% (Temperature Range : -25°C to +85°C)     |  |  |
| C5   | ±22% (Temperature Range : -25°C to +85°C)     |  |  |
| D3   | +20/-30% (Temperature Range : -25°C to +85°C) |  |  |
| E3   | +20/-55% (Temperature Range : -25°C to +85°C) |  |  |
| E5   | +22/-56% (Temperature Range : -25°C to +85°C) |  |  |
| F3   | +30/-80% (Temperature Range : -25°C to +85°C) |  |  |
| Z8   | +30/-85% (Temperature Range : -10°C to +60°C) |  |  |

#### 6 Rated Voltage

| Code | Rated Voltage |  |
|------|---------------|--|
| 1C   | 16V           |  |
| 1H   | 50V           |  |
| 2A   | 100V          |  |
| 2E   | 250V          |  |

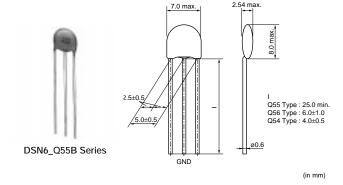
#### Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

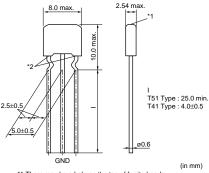
## 8Lead Type/Packaging

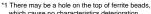
| Code | Lead Type | Lead Length* (in mm) | Packaging           | Series                           |
|------|-----------|----------------------|---------------------|----------------------------------|
| Q55B |           | 25.0 min.            |                     | All series                       |
| Q50B |           | 4.0±0.5              |                     | DST9N/H                          |
| Q52B | Straight  | 6.0±1.0              |                     | DST9N                            |
| Q54B |           | 4.0±0.5              | Bulk                | DSN6/9, DSS6/9                   |
| Q56B |           | 6.0±1.0              |                     | D3N0/9, D330/9                   |
| T41B | In advan  | 4.0±0.5              |                     | DSS6N                            |
| T51B | Incrimp   | 25.0 min.            | D330N               |                                  |
| Q91J | Straight  | 20.0±1.0             |                     |                                  |
| Q92J |           | 16.5±1.0             | Paper Reel (ø320mm) | DSS9N/H                          |
| Q93J |           | 18.5±1.0             |                     |                                  |
| Q91A |           | 20.0±1.0             |                     | DS□6, DSN9N/H                    |
| Q92A |           | 16.5±1.0             |                     | All paries aveant DCCON//I       |
| Q93A |           | 18.5±1.0             | Ammo Pack           | All series except <b>DSS9N/H</b> |
| U21A |           | 16.5±1.0             |                     | Decen                            |
| U31A | Incrimp   | 18.5±1.0             | DSS6N               | DOSON                            |

<sup>\*</sup>Lead Distance between Reference and Bottom Planes except Bulk.



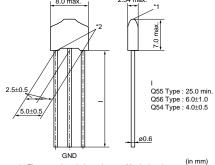




# Disc Type EMIFIL® DSN6/DSS6 Series


#### ■ Features

DS\_6 is a compact, high performance lead type EMI suppression filter which can be mounted 2.54mm pitch. Its three terminal structure enables nice high frequency performance.









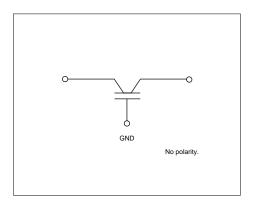

which cause no characteristics deterioration.
\*2 Bottom of the ferrite beads may not be level with each other.



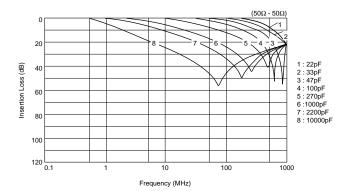


\*1 There may be a hole on the top of ferrite bead

which cause no characteristics deterioration.
\*2 Bottom of the ferrite beads may not be level with each other.


# **DSN6 Series**

| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range (°C) |
|--------------|---------------------|------------------------|----------------------|----------------------------------|
| DSN6NC51H220 | 22 +20%,-20%        | 50                     | 6                    | -25 to +85                       |
| DSN6NC51H330 | 33 +20%,-20%        | 50                     | 6                    | -25 to +85                       |
| DSN6NC51H470 | 47 +20%,-20%        | 50                     | 6                    | -25 to +85                       |
| DSN6NC51H101 | 100 +20%,-20%       | 50                     | 6                    | -25 to +85                       |
| DSN6NC51H271 | 270 +20%,-20%       | 50                     | 6                    | -25 to +85                       |
| DSN6NC51H102 | 1000 +20%,-20%      | 50                     | 6                    | -25 to +85                       |
| DSN6NC51H222 | 2200 +20%,-20%      | 50                     | 6                    | -25 to +85                       |
| DSN6NZ81H103 | 10000 +80%,-20%     | 50                     | 6                    | -25 to +85                       |

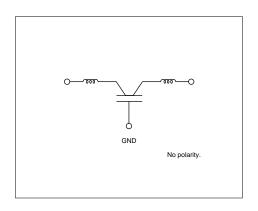

Please refer to Part Numbering for Type and Length of Lead.



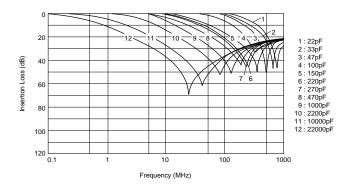
# **■** Equivalent Circuit



# ■ Insertion Loss Characteristics (Typical)




# **Built-in Ferrite Beads DSS6 Series Incrimp Type**

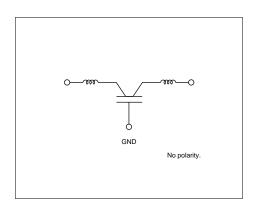

| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range (°C) |
|--------------|---------------------|------------------------|----------------------|----------------------------------|
| DSS6NC52A220 | 22 +20%,-20%        | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A330 | 33 +20%,-20%        | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A470 | 47 +20%,-20%        | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A101 | 100 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A151 | 150 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A221 | 220 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A271 | 270 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A471 | 470 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A102 | 1000 +20%,-20%      | 100                    | 6                    | -25 to +85                       |
| DSS6NE52A222 | 2200 +80%,-20%      | 100                    | 6                    | -25 to +85                       |
| DSS6NZ82A103 | 10000 +30%,-30%     | 100                    | 6                    | -25 to +85                       |
| DSS6NF31C223 | 22000 +80%,-20%     | 16                     | 6                    | -25 to +85                       |

Please refer to Part Numbering for Type and Length of Lead.

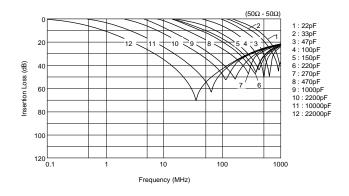
# ■ Equivalent Circuit



# ■ Insertion Loss Characteristics (Typical)




# Built-in Ferrite Beads DSS6 Series Straight Type


| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range (°C) |
|--------------|---------------------|------------------------|----------------------|----------------------------------|
| DSS6NC52A220 | 22 +20%,-20%        | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A330 | 33 +20%,-20%        | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A470 | 47 +20%,-20%        | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A101 | 100 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A151 | 150 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A221 | 220 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A271 | 270 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A471 | 470 +20%,-20%       | 100                    | 6                    | -25 to +85                       |
| DSS6NC52A102 | 1000 +20%,-20%      | 100                    | 6                    | -25 to +85                       |
| DSS6NE52A222 | 2200 +80%,-20%      | 100                    | 6                    | -25 to +85                       |
| DSS6NZ82A103 | 10000 +30%,-30%     | 100                    | 6                    | -25 to +85                       |
| DSS6NF31C223 | 22000 +80%,-20%     | 16                     | 6                    | -25 to +85                       |

Please refer to Part Numbering for Type and Length of Lead.

# **■** Equivalent Circuit



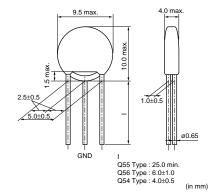
# ■ Insertion Loss Characteristics (Typical)



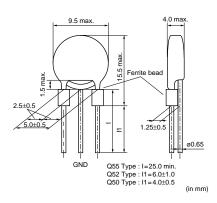


# Disc Type EMIFIL® Broad Type DSN9/DSS9/DST9 Series

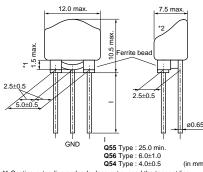
#### ■ Features


DS\_9 is a basic type EMI suppression filter which can obtain high insertion loss in a wide frequency range. Its three terminal structure enables nice high frequency performance. DSS9NP32A222/DSS9NT31H223 are low distortion types for audio circuits.

### ■ Supplement


Diameter of lead is 0.6mm for taping type.

Taping type is three terminal in line arrangement.









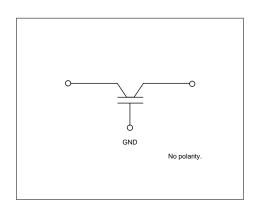




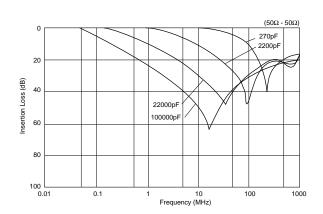

- \*1 Coating extending on leads does not exceed the tangent line
- Exposed electrode, if any, is covered by solder, etc.

  \*2 There should not be the exposure of the ferrite bead if a hole is in top of filter, the ferrite bead should not be exposed.




# **DSN9 Series**

| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range<br>(°C) |
|--------------|---------------------|------------------------|----------------------|-------------------------------------|
| DSN9NC52A271 | 270 +20%,-20%       | 100                    | 7                    | -25 to +85                          |
| DSN9NC52A222 | 2200 +20%,-20%      | 100                    | 7                    | -25 to +85                          |
| DSN9NC51H223 | 22000 +50%,-20%     | 50                     | 7                    | -25 to +85                          |
| DSN9NC51C104 | 100000 +20%,-20%    | 16                     | 7                    | -25 to +85                          |


Rated current is 6A for taping type.

Please refer to Part Numbering for Type and Length of Lead.

# **■** Equivalent Circuit



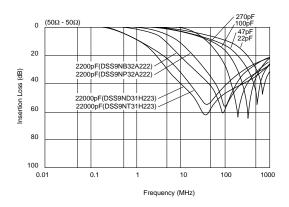
# ■ Insertion Loss Characteristics (Typical)



# **Built-in Ferrite Beads DSS9 Series**


| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range<br>(°C) |
|--------------|---------------------|------------------------|----------------------|-------------------------------------|
| DSS9NC52A220 | 22 +20%,-20%        | 100                    | 7                    | -25 to +85                          |
| DSS9NC52A470 | 47 +20%,-20%        | 100                    | 7                    | -25 to +85                          |
| DSS9NC52A101 | 100 +20%,-20%       | 100                    | 7                    | -25 to +85                          |
| DSS9NC52A271 | 270 +20%,-20%       | 100                    | 7                    | -25 to +85                          |
| DSS9NC52A222 | 2200 +20%,-20%      | 100                    | 7                    | -25 to +85                          |
| DSS9NP32A222 | 2200 +20%,-20%      | 100                    | 7                    | -25 to +85                          |
| DSS9NC51H223 | 22000 +50%,-20%     | 50                     | 7                    | -25 to +85                          |
| DSS9NT31H223 | 22000 +50%,-20%     | 50                     | 7                    | -25 to +85                          |

Rated current is 6A for taping type.


 ${\tt DSS9NP32A222/DSS9NT31H223} \ are \ low \ distortion \ types \ for \ audio \ IF \ circuits.$ 

Please refer to Part Numbering for Type and Length of Lead.

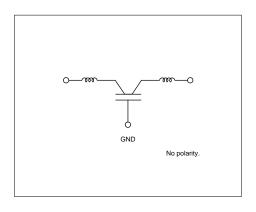
# **■** Equivalent Circuit



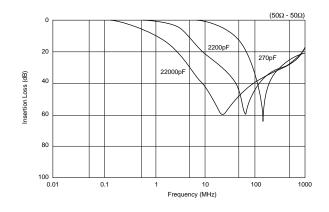
# ■ Insertion Loss Characteristics (Typical)






# With Ferrite Beads DST9 Series

| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range<br>(°C) |
|--------------|---------------------|------------------------|----------------------|-------------------------------------|
| DST9NC52A271 | 270 +20%,-20%       | 100                    | 7                    | -25 to +85                          |
| DST9NC52A222 | 2200 +20%,-20%      | 100                    | 7                    | -25 to +85                          |
| DST9NC51H223 | 22000 +50%,-20%     | 50                     | 7                    | -25 to +85                          |


Rated current is 6A for taping type.

Please refer to Part Numbering for Type and Length of Lead.

# **■** Equivalent Circuit



# ■ Insertion Loss Characteristics (Typical)

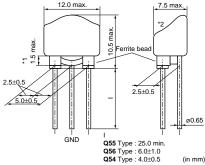




# Disc Type EMIFIL® Heavy-duty Type DSN9H/DSS9H/DST9H Series

#### ■ Features

DS\_9H is a basic type EMI suppression filter which can obtain high insertion loss in a wide frequency range. Its three terminal structure enables nice high frequency performance. High rated voltage of 250Vdc and wide operating temperature range from -40 degree C to 105 degree C are suitable for high reliability circuits.

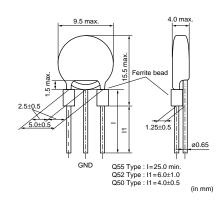

### ■ Supplement

Diameter of lead is 0.6mm for taping type. Taping type is three terminal in line arrangement.



1 0+0 5 GND Q55 Type : 25.0 min. Q56 Type : 6.0±1.0 Q54 Type : 4.0±0.5





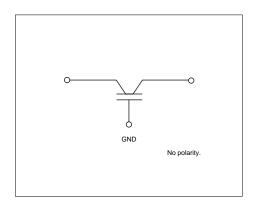

- \*1 Coating extending on leads does not exceed the tangent line.

  Exposed electrode, if any, is covered by solder, etc.

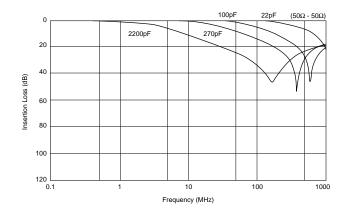
  \*2 There should not be the exposure of the ferrite bead if a hole
- is in top of filter, the ferrite bead should not be exposed






# **DSN9H Series**

| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range (°C) |
|--------------|---------------------|------------------------|----------------------|----------------------------------|
| DSN9HB32E220 | 22 +20%,-20%        | 250                    | 6                    | -40 to +105                      |
| DSN9HB32E101 | 100 +20%,-20%       | 250                    | 6                    | -40 to +105                      |
| DSN9HB32E271 | 270 +20%,-20%       | 250                    | 6                    | -40 to +105                      |
| DSN9HB32E222 | 2200 +20%,-20%      | 250                    | 6                    | -40 to +105                      |

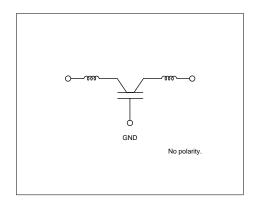

Please refer to Part Numbering for Type and Length of Lead.



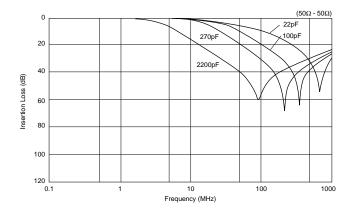
### **■** Equivalent Circuit



# ■ Insertion Loss Characteristics (Typical)




# **Built-in Ferrite Beads DSS9H Series**

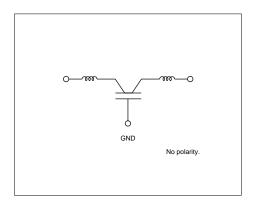

| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range<br>(°C) |
|--------------|---------------------|------------------------|----------------------|-------------------------------------|
| DSS9HB32E220 | 22 +20%,-20%        | 250                    | 6                    | -40 to +105                         |
| DSS9HB32E101 | 100 +20%,-20%       | 250                    | 6                    | -40 to +105                         |
| DSS9HB32E271 | 270 +20%,-20%       | 250                    | 6                    | -40 to +105                         |
| DSS9HB32E222 | 2200 +20%,-20%      | 250                    | 6                    | -40 to +105                         |

Please refer to Part Numbering for Type and Length of Lead.

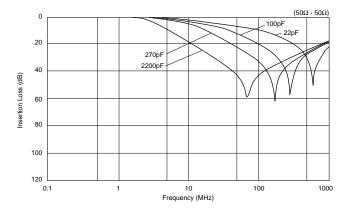
# **■** Equivalent Circuit



# ■ Insertion Loss Characteristics (Typical)




# With Ferrite Beads DST9H Series


| Part Number  | Capacitance<br>(pF) | Rated Voltage<br>(Vdc) | Rated Current<br>(A) | Operating Temperature Range (°C) |
|--------------|---------------------|------------------------|----------------------|----------------------------------|
| DST9HB32E220 | 22 +20%,-20%        | 250                    | 6                    | -40 to +105                      |
| DST9HB32E101 | 100 +20%,-20%       | 250                    | 6                    | -40 to +105                      |
| DST9HB32E271 | 270 +20%,-20%       | 250                    | 6                    | -40 to +105                      |
| DST9HB32E222 | 2200 +20%,-20%      | 250                    | 6                    | -40 to +105                      |

Please refer to Part Numbering for Type and Length of Lead.

# ■ Equivalent Circuit



# ■ Insertion Loss Characteristics (Typical)





# Lead Type EMIGUARD® (EMIFIL® with Varistor Function) Part Numbering

Lead Type EMIGUARD® (EMIFIL® with Varistor Function)

(Part Number) VF S 6 V D8 1E 221 T51 B

#### Product ID

| Product ID |                     |
|------------|---------------------|
| VF         | EMIGUARD® Lead Type |

#### **2**Structure

| Code | Structure                   |
|------|-----------------------------|
|      |                             |
| 8    | Built-in Ferrite Beads Type |
| R    | with Resistance             |

### Style

| Code | Style                         |
|------|-------------------------------|
| 3    |                               |
| 6    | Size is expressed by a figure |
| 9    |                               |

#### 4 Features

| Code | Features               |
|------|------------------------|
| V    | with Varistor Function |

#### **5**Temperature Characteristics

| Code | Capacitance Change                          |
|------|---------------------------------------------|
| D8   | +20/-30% (Temperature Range : -40°C~+105°C) |
| D3   | +20/-30% (Temperature Range : -25°C~+85°C)  |

#### **6**Rated Voltage

| Code | Rated Voltage |  |  |  |  |
|------|---------------|--|--|--|--|
| 1E   | 25V           |  |  |  |  |
| 1B   | 12V           |  |  |  |  |

#### Capacitance

Expressed by three figures. The unit is in pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

#### 8Lead Type/9Packaging

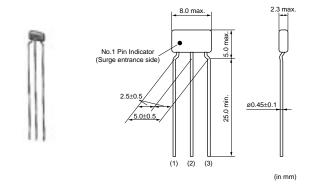
| Code | Lead Type | Lead Length* | Packaging           | Series    |
|------|-----------|--------------|---------------------|-----------|
| T51B | Incrimp   | 25.0mm min.  | Bulk                | VFR3/VFS6 |
| U31A | Inclinp   | 18.5+/-1.0mm | Ammo Pack           | VFK3/VF30 |
| Q55B |           | 25.0mm min.  | Bulk                |           |
| Q91J | Straight  | 20.0+/-1.0mm |                     | VFS9      |
| Q92J |           | 16.5+/-1.0mm | Paper Reel (ø320mm) | VF39      |
| Q93J |           | 18.5+/-1.0mm |                     |           |

<sup>\*</sup>Lead Distance between Reference and Bottom Planes except Bulk.





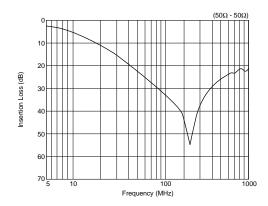
# Lead Type EMIGUARD® (EMIFIL® with Varistor Function) VFR3V/VFS6V/VFS9V Series


# for Semiconductor Protection VFR3V Series

#### ■ Features

The VFR3V series is designed for ESD surge protection of IC. It efficiently absorbs ESD surges rushed into IC's I/O terminal.

### ■ Applications


Elimination of noise and protection of semiconductors in office equipment, including computers and peripheral equipment, copy machines, and communication terminals.



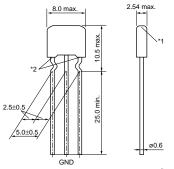
| Part Number  | Rated<br>Voltage<br>(Vdc) | Varistor Voltage<br>(Vdc) | Capacitance<br>(pF) | Rated<br>Current<br>(mA) | Peak<br>Pulse Current<br>(A) | Operating<br>Temperature Range<br>(°C) |
|--------------|---------------------------|---------------------------|---------------------|--------------------------|------------------------------|----------------------------------------|
| VFR3VD31E131 | 25                        | 50 +20%,-20%              | 130 +20%,-20%       | 20                       | 30                           | -25 to 85                              |

Please refer to Part Numbering for Type and Length of Lead.

#### ■ Insertion Loss Characteristics



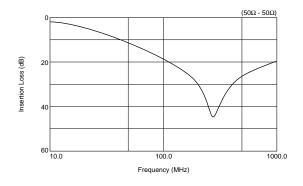
# for Signal-Line VFS6V Series


#### ■ Features

The VFS6V series is designed for surge protection of signal line. It protects electric circuit from surges such as static electricity and suppresses EMI noise. Built-in ferrite bead gives excellent EMI suppression.

### ■ Applications

Elimination of noise and protection of electric circuits in office equipment, including computers and peripheral equipment, copy machines, and communication terminals.






| Part Number  | Rated<br>Voltage<br>(Vdc) | Varistor Voltage<br>(Vdc) | Capacitance<br>(pF) | Rated<br>Current<br>(A) | Peak<br>Pulse Current<br>(A) | Operating<br>Temperature Range<br>(°C) |
|--------------|---------------------------|---------------------------|---------------------|-------------------------|------------------------------|----------------------------------------|
| VFS6VD81E221 | 25                        | 50 +20%,-20%              | 220 +20%,-20%       | 6                       | 100                          | -40 to 105                             |

Please refer to Part Numbering for Type and Length of Lead.

#### ■ Insertion Loss Characteristics



<sup>\*1</sup> There may be a hole on the top of ferrite beads, which cause no characteristics deterioration.
\*2 Bottom of the ferrite beads may not be level with each other.

# ■ Features

The VFS9V series is designed for surge protection of the power supply. It protects electric circuits from surge such as static electricity and suppresses EMI noise. Its large capacitance value enables high insertion loss for EMI noise.

for Large-Current VFS9V Series

#### ■ Applications

For circuit protection and noise suppression in electronics equipment such as computers and DC motors,



2.5±0.5

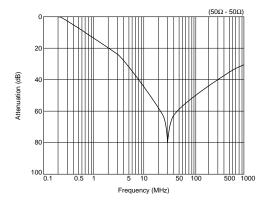
12.0 max

\*1 Coating extending on leads does not exceed the tangent line. Exposed electrode, if any, is covered by solder, etc. \*2 There should not be the exposure of the ferrite bead if a hole is in top of filter, the ferrite bead should not be exposed.

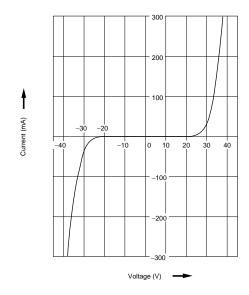
and in electronics systems installed in cars such as car audio equipment and engine controllers.

### ■ Supplement

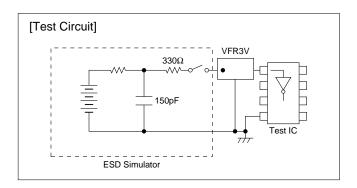
Diameter of lead is 0.6mm for taping type. Taping type is three terminal in line arrangement.

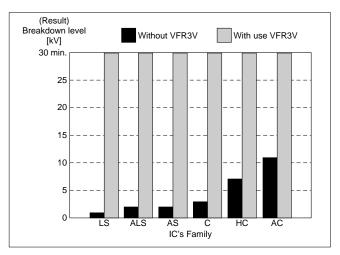

| Part Number  | rt Number Rated Varistor Voltage (Vdc) (Vdc) |              | Capacitance<br>(pF) | Rated<br>Current<br>(A) | Operating<br>Temperature Range<br>(°C) |
|--------------|----------------------------------------------|--------------|---------------------|-------------------------|----------------------------------------|
| VFS9VD31B223 | 12                                           | 22 +20%,-20% | 22000 +50%,-20%     | 7                       | -40 to 100                             |

Rated current is 6A for taping type.

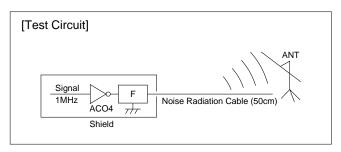

Rated current of taping type is 6A because diameter of lead is 0.6mm.

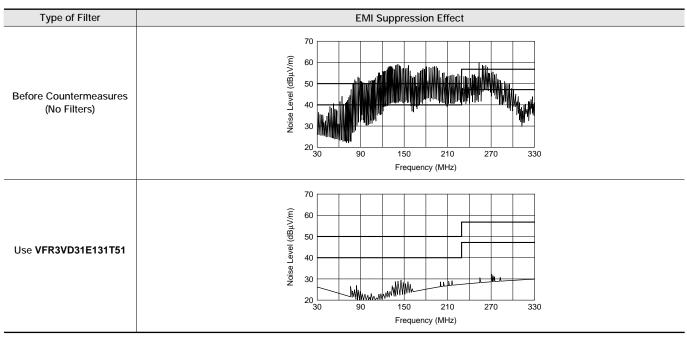
Please refer to Part Numbering for Type and Length of Lead.


### ■ Insertion Loss Characteristics




# ■ Voltage-Current Characteristics

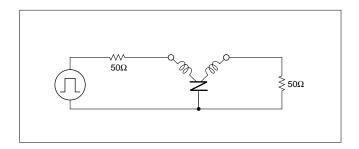


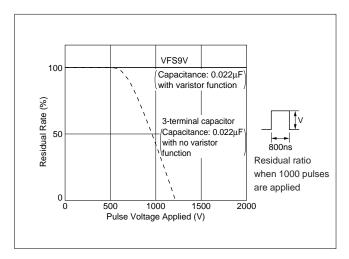


- **■**Example of IC Protection (VFR3V)
- Testing Method
- 1. Put ESD surge to IC (7404 family) input terminal with ESD simulator based on IEC 801-2.
- 2. Check IC's operation.
- If IC's operation is normal, increase ESD voltage in 1kV steps.
- 4. Continue above steps 1 to 3 till IC's operation becomes abnormal.
- Result



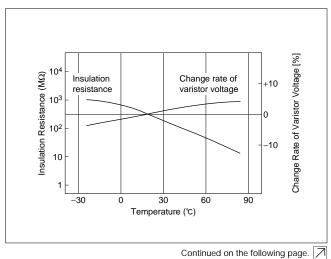


# **■**Example of EMI Suppression Effect




#### ■Features (VFS9V)


| Items                       | Test methods                                                                                                                                                                                            | Rated values                                                    |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Overload                    | 1.4 times the varistor voltage (V <sub>1</sub> ) is applied for 5 minutes at room temperature.                                                                                                          |                                                                 |
| Surge Test (1)              | At room temperature. Surges are applied are 10 <sup>5</sup> times every 2 seconds. Then after 1 or 2                                                                                                    | Items Specifications                                            |
|                             | hours, the sample is measured.                                                                                                                                                                          | Rated Capacitance Change Within±15%                             |
| Surge Test (2)              | At room temperature. Capacitor                                                                                                                                                                          | Insulation Resistance 500kΩ min.                                |
|                             | "C" is charged with 70V, then discharged to apply the voltage to the sample. Tested once                                                                                                                | Rated of Change in Varistor Voltage V <sub>1</sub> * Within±15% |
|                             | (resuming JASO A-1).                                                                                                                                                                                    | Voltage Rate 1.30 max.                                          |
| High<br>Temperature<br>Load | At a temperature of 85±3°C. The varistor voltage V <sub>1</sub> is continuously applied to the sample for 1000 to 1024 hours.  Then it is left at room temperature, for 4 to 24 hours before measuring. | *V1 : Voltage when 1mA is applied                               |

■Pulse-Voltage Breakdown Characteristic (VFS9V) The VFS9V EMIGUARD® use a self healing varistorcapacitor, so that it can be used under a 500 to 600V surge which would break conventional disk type EMI filters. As shown in figure below the EMIGUARD® withstands 2000V impulses applied 1000 times.





**■**Temperature Characteristics of Varistor Voltage-Insulation Resistance (VFS9V)





Continued from the preceding page.

# ■ Noise Absorption Effect of EMIGUARD® (VFS9V)

| Type of Filter                 | EMI Suppression Effect                                   | Description                                                                               |
|--------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------|
| without EMIGUARD®              | 1 : 200V/div<br>: 10ms/div<br>90<br>80<br>20<br>10<br>0% | Waveform when EMIGUARD <sup>®</sup> is not used. (Surge from a noise simulator)           |
| with EMIGUARD®  D 2235 12-22 © | 1 : 200V/div<br>: 10ms/div<br>90<br>80<br>20<br>10<br>0% | Waveform after the noise passed through EMIGUARD <sup>®</sup> . Little noise is recorded. |

# **■**Comparative Data (VFS9V)

1. Absorption of quick-rising, high-frequency noise (10ns/div, 100V/div)

| Type of Filter                                  | EMI Suppression Effect             | Description                                                                                                                                                                    |
|-------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| without Filters                                 | 50ns                               | Description                                                                                                                                                                    |
| Conventional varistor                           | 100<br>90<br>80<br>80<br>80<br>60% | As with the two terminal capacitor                                                                                                                                             |
| Two terminal capacitor (with varistor function) | 100<br>90<br>80<br>0<br>0%         | The two terminal capacitor is influenced by lead line inductance, leaving behind some of the rising and falling edges. The residual noise can cause the system to malfunction. |
| VFS9V                                           | 100<br>90<br>80<br>20<br>0%        | The three terminal structure eliminates most of the lead line inductance. This allows the VFS9V to completely absorb the rising and falling edges of the applied pulses.       |

Continued on the following page.





Continued from the preceding page.

2. Absorption of wide-pulse noise (50ns/div, 200V/div)

| Type of Filter                               | EMI Suppression Effect            | Description                                                                                                                                                              |
|----------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| without Filters                              | 200ns                             |                                                                                                                                                                          |
| Two terminal capacitor                       | 100<br>90<br>80<br>20<br>10<br>0% | In capacitors the voltage of the residual surge (1300V) is higher than that of the above example. The wave height is almost the same as the original.                    |
| Three terminal capacitor (with ferrite bead) | 100<br>90<br>80<br>20<br>10<br>0% | Conventional EMI filters do not work for wide-pulse noise because capacitors are saturated. In this example, the residual 1200V surge can cause the system to breakdown. |
| VFS9V                                        | 100<br>90<br>80<br>20<br>10<br>0% | Bypassing the high voltage to the ground, voltage can be suppressed.                                                                                                     |

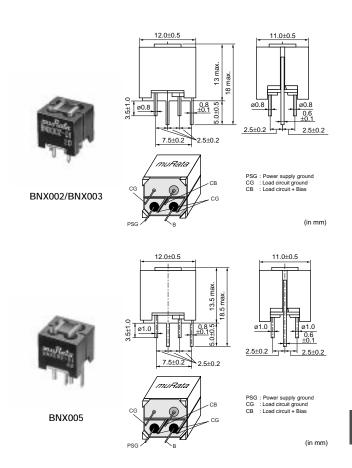




# **Block Type EMIFIL® BNX Series**

# **BNX Series**

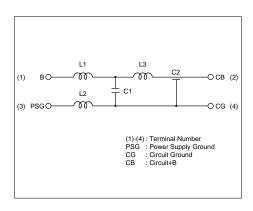
The block type "EMIFIL" BNX series incorporates through-type capacitor, monolithic chip capacitors and bead. The BNX is high performance for use in DC power circuits.


#### ■ Features

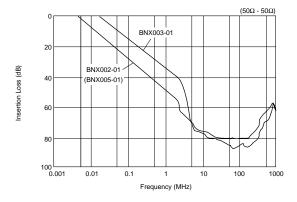
- 1. The filter enables obtaining high insertion loss in wide frequency ranges from 0.5MHz to 1GHz.
- 2. Only one filter block enables noise suppression of both the positive and negative lines.
- 3. There are no connection routes in the current circuits, thus ensuring highly reliable performance.

#### ■ Applications

Noise suppression for DC power lines of large screen displays


- 1. PDPs
- 2. LCD-TVs




| Part Number | Rated<br>Voltage<br>(Vdc) | Withstand<br>Voltage<br>(Vdc) | Rated<br>Current<br>(A) | Insulation<br>Resistance (min.)<br>(M ohm) | Insertion Loss                                           |
|-------------|---------------------------|-------------------------------|-------------------------|--------------------------------------------|----------------------------------------------------------|
| BNX002-01   | 50                        | 125                           | 10                      | 100                                        | 1MHz to 1GHz:40dB min.(20 to 25°C line impedance=50 ohm) |
| BNX003-01   | 150                       | 375                           | 10                      | 100                                        | 5MHz to 1GHz:40dB min.(20 to 25°C line impedance=50 ohm) |
| BNX005-01   | 50                        | 125                           | 15                      | 100                                        | 1MHz to 1GHz:40dB min.(20 to 25°C line impedance=50 ohm) |

Operating Temperature Range: -30°C to 85°C

#### **■** Equivalent Circuit



#### ■ Insertion Loss Characteristics (Typical)

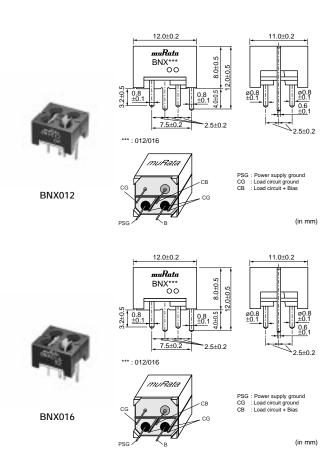


# **BNX Series Low Profile for Large Current**

The block type "EMIFIL" BNX010 series is high performance and BNX series provide excellent noise suppression on DC power lines.

#### ■ Features

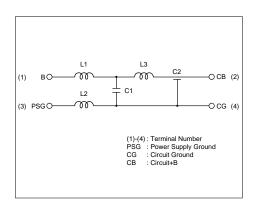
1. High insertion loss characteristic over a wide frequency band range.


1MHz to 1GHz: 40dB min (BNX012) 100kHz to 1GHz: 40dB min (BNX016)

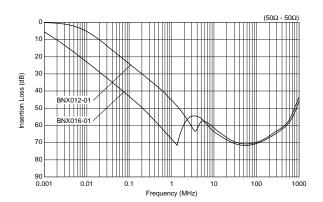
- 2. Large rated current (15A) and Low Rdc (0.8m ohm-typ.)
- 3. Low profile (height: 8.0mm except lead terminal)

### ■ Applications

Noise suppression for DC power lines of large screen


- 1. PDPs
- 2. LCD-TVs




| Part Number | Rated<br>Voltage<br>(Vdc) | Withstand<br>Voltage<br>(Vdc) | Rated<br>Current<br>(A) | Insulation<br>Resistance (min.)<br>(M ohm) | Insertion Loss                                              |
|-------------|---------------------------|-------------------------------|-------------------------|--------------------------------------------|-------------------------------------------------------------|
| BNX012-01   | 50                        | 125                           | 15                      | 500                                        | 1MHz to 1GHz:40dB min. (20 to 25°C line impedance=50 ohm)   |
| BNX016-01   | 25                        | 62.5                          | 15                      | 50                                         | 100kHz to 1GHz:40dB min. (20 to 25°C line impedance=50 ohm) |

Operating Temperature Range: -40°C to 125°C

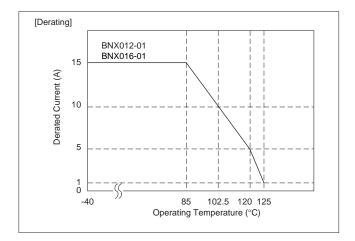
### **■** Equivalent Circuit



### ■ Insertion Loss Characteristics (Typical)

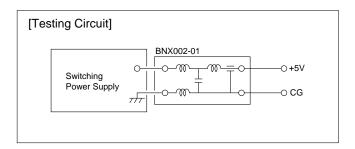


Continued on the following page.






( ) Continued from the preceding page.


# ■ Notice (Rating)

In operating temperatures exceeding +85°C, derating of current is necessary for BNX010 series. Please apply the derating curve shown in chart according to the operating temperature.



# **Noise Suppression Effect of BNX Series**

■Suppression of DC Side
Ripple of the Switching Power Supply



| Type of Filter                 | EMI Suppression Effect    | Description                                   |
|--------------------------------|---------------------------|-----------------------------------------------|
| When <b>BNX002</b> is not used | +5.0V → 50µs/div 0.2V/div | High frequency noise, max. 0.5V, can be seen. |
| When <b>BNX002</b> is used     | +5.0V → 50μs/div 0.2V/div | Noise can be almost suppressed by BNX002.     |



# Common Mode Choke Coils Part Numbering

#### Common Mode Choke Coils

(Part Number) PL T 09H N 200 3R0 P 1 B

#### ●Product ID

| Product ID |                         |
|------------|-------------------------|
| PL         | Common Mode Choke Coils |

#### **2**Туре

| Code | Туре    |
|------|---------|
| Т    | DC Type |

#### 3Applications

| Code | Applications                    |  |
|------|---------------------------------|--|
| 09H  | for DC Line High-frequency Type |  |

#### 4 Features

| Code | Features    |
|------|-------------|
| N    | General Use |

#### **6**Inductance

Expressed by three figures. The unit is micro-henry ( $\mu H$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures. If there is a decimal point, it is expressed by the capital letter " $\mathbf{R}$ ". In this case, all figures are significant digits. If inductance is less than 0.1  $\mu H$ , the inductance code is expressed by a combination of two figures and the capital letter " $\mathbf{N}$ ", and the unit of inductance is nano-henry (nH). The capital letter " $\mathbf{N}$ " indicates the unit of "nH", and also expresses a decimal point. In this case, all figures are significant digits.

#### **6**Rated Current

Expressed by three figures. The unit is in amperes (A). A decimal point is expressed by the capital letter "R". In this case, all figures are significant digits.

#### Winding Mode

| Code | Winding Mode         |
|------|----------------------|
| Р    | Aligned Winding Type |

#### 8 Lead Dimensions

| Code | Lead Dimensions |
|------|-----------------|
| 1    | 5mm             |

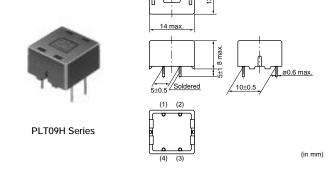
#### Packaging

| Code | Packaging | Series     |
|------|-----------|------------|
| В    | Bulk      | All series |

# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)



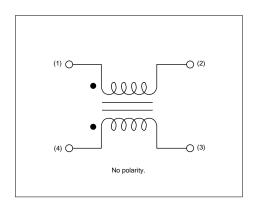
# Common Mode Choke Coils (for DC Line) PLT09H Series


The PLT09H series is a common mode choke coil for DC lines. It is effective against the common mode noise that can cause radiative noise in power supply lines and interface lines. The additional normal mode inductance enables high suppression effect to radiation noise.

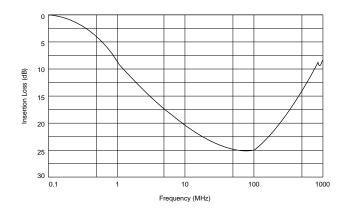
#### ■ Features

- 1. This is a wide frequency range type, applicable in applications ranging from a few MHz to several 100MHz.
- 2. It features a low-profile design.

#### ■ Applications


- 1. Noise suppression of SW power supply, DC-DC converter.
- 2. DC power lines in AC adapter of Portable equipment.




| Part Number     | Common Mode Inductance (min.)<br>(μΗ) | Rated Current<br>(A) | Rated Voltage<br>(Vdc) | Withstand Voltage<br>(Vdc) |
|-----------------|---------------------------------------|----------------------|------------------------|----------------------------|
| PLT09HN2003R0P1 | 20                                    | 3                    | 50                     | 125                        |

Operating Temperature Range: -40°C to 85°C

#### **■** Equivalent Circuit



#### ■ Insertion Loss Characteristics (Typical)



# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)



# Microwave Absorbers Part Numbering

#### Microwave Absorber

(Part Number) EA 1026 A 160 M 200 200

#### Product ID

| Product ID |                    |
|------------|--------------------|
| EA         | Microwave Absorber |

#### 2Sheet Type

| Code | Sheet Type                                              |  |  |
|------|---------------------------------------------------------|--|--|
| 10□□ | Iron carbonyl type (UL certified type/non Halogen type) |  |  |
| 2070 | Metal Flake Powder (non Halogen type)                   |  |  |
| 2100 | Metal Flake Powder (UL certified type)                  |  |  |
| 3008 | Magnetic material (UL certified type/non Halogen type)  |  |  |

#### 3Adhesive Tape Type

| Code | Adhesive Tape Type                         |  |  |
|------|--------------------------------------------|--|--|
| Α    | Standard tape type (non Halogen type)      |  |  |
| В    | Thin Adhesive tape type (non Halogen type) |  |  |
| L    | No tape type                               |  |  |
| U    | UL certified type (non Halogen type)       |  |  |

#### **4**Sheet Thickness

Expressed by 3 digits including the second decimal place in mm.

| Ex.) | Code | Sheet Thickness |
|------|------|-----------------|
|      | 020  | 0.20mm          |

#### **5**Unit of Dimension

One capital lettler expresses Unit of Dimension (6) and Dimensions Length (7).

| Code | Unit of Dimension |  |  |
|------|-------------------|--|--|
| M    | in mm (Standard)  |  |  |
| С    | in cm (Standard)  |  |  |

Standard shape is a rectangle.

Please contact us for other shapes.

#### **6**Dimension (Length)

Expressed by 3 digits including the first decimal place.

#### **7**Dimension (Width)

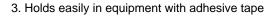
Expressed by 3 digits including the first decimal place.

| <b>(</b> .) | Code    | Dimension (Length X Width) |
|-------------|---------|----------------------------|
|             | M300150 | 30.0×15.0 mm               |
|             | C150100 | 15.0×10.0 cm               |



# On-Board Type (DC) EMI Suppression Filters (EMIFIL®)

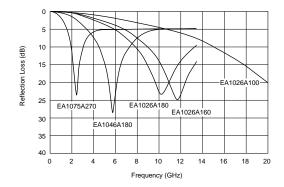



#### Microwave Absorbers EA10/EA20/EA21/EA30 Series

#### **EA10 Series**

When inquiring, please contact us with size code, refering to "Part Numbering".

#### ■ Features

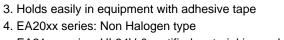

- Excellent elasticity and durability with silicon rubber
- Suitable for prevention of abnormal oscillation in high frequency modules, suppression of spurious spectra and prevention of interference between circuits





| Part Number | Applicable Frequency (Typ.) | Thickness (Typ.)<br>(mm) | Flame Resistance | Halogen      | Operating Temperature Range |  |
|-------------|-----------------------------|--------------------------|------------------|--------------|-----------------------------|--|
| EA1026A100  | 20.0GHz                     | 1.0                      | UL94V-0          | Halogen Free | -40 to +80°C                |  |
| EA1026A160  | 11.5GHz                     | 1.6                      | UL94V-0          | Halogen Free | -40 to +80°C                |  |
| EA1026A180  | 10.0GHz                     | 1.8                      | UL94V-0          | Halogen Free | -40 to +80°C                |  |
| EA1046A180  | 5.8GHz                      | 1.8                      | UL94V-0          | Halogen Free | -40 to +80°C                |  |
| EA1075A270  | 2.5GHz                      | 2.7                      | UL94V-0          | Halogen Free | -40 to +80°C                |  |

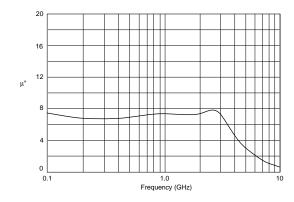
#### ■ Reflection Loss




#### EA20/21 Series

When inquiring, please contact us with size code, refering to "Part Numbering".

#### ■ Features


- 1. Magnetically-shielded high-micro and high-loss characteristics can suppress noise in a wide frequency band for digital equipment.
- 2. Thin (0.2mm-1.0mm) and flexible sheet makes easy handling in assembly process.
- EA21xx series: UL94V-0 certified material is used.





| Part Number | Applicable Frequency<br>(Typ.) | Thickness (Typ.)<br>(mm) | Flame Resistance | Halogen      | Operating Temperature Range |
|-------------|--------------------------------|--------------------------|------------------|--------------|-----------------------------|
| EA2070A005  | 0.1 to 3.0GHz                  | 0.05                     | -                | Halogen Free | -40 to +120°C               |
| EA2070A020  | 0.1 to 3.0GHz                  | 0.20                     | -                | Halogen Free | -40 to +120°C               |
| EA2070A050  | 0.1 to 3.0GHz                  | 0.50                     | -                | Halogen Free | -40 to +120°C               |
| EA2070A100  | 0.1 to 3.0GHz                  | 1.00                     | -                | Halogen Free | -40 to +120°C               |
| EA2070B005  | 0.1 to 3.0GHz                  | 0.05                     | -                | Halogen Free | -40 to +120°C               |
| EA2070B010  | 0.1 to 3.0GHz                  | 0.10                     | -                | Halogen Free | -40 to +120°C               |
| EA2070B013  | 0.1 to 3.0GHz                  | 0.13                     | -                | Halogen Free | -40 to +120°C               |
| EA2070B020  | 0.1 to 3.0GHz                  | 0.20                     | -                | Halogen Free | -40 to +120°C               |
| EA2070B050  | 0.1 to 3.0GHz                  | 0.50                     | -                | Halogen Free | -40 to +120°C               |
| EA2100A020  | 0.1 to 3.0GHz                  | 0.20                     | UL94V-0          | -            | -40 to +120°C               |
| EA2100A050  | 0.1 to 3.0GHz                  | 0.50                     | UL94V-0          | -            | -40 to +120°C               |
| EA2100A100  | 0.1 to 3.0GHz                  | 1.00                     | UL94V-0          | -            | -40 to +120°C               |
| EA2100B020  | 0.1 to 3.0GHz                  | 0.20                     | UL94V-0          | -            | -40 to +120°C               |
| EA2100B050  | 0.1 to 3.0GHz                  | 0.50                     | UL94V-0          | -            | -40 to +120°C               |
| EA2100B100  | 0.1 to 3.0GHz                  | 1.00                     | UL94V-0          | -            | -40 to +120°C               |

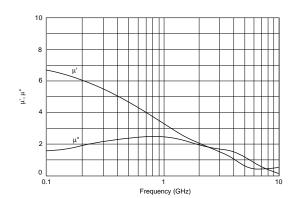
#### ■ Magnetic Permeability-Reluctance (Typical)





#### EA30 Series

When inquiring, please contact us with size code, refering to "Part Numbering".


#### ■ Features

- 1. EMC Absorber magnetically shields and suppresses noise of digital equipment.
- 2. Flexible sheet, easy handling in assembly process.
- 3. Holds easily in equipment with adhesive tape.
- 4. Halogen free and UL94V-0 certified material are used.



| Part Number | Applicable Frequency (Typ.) | Thickness (Typ.)<br>(mm) | Flame Resistance | Halogen      | Operating Temperature Range |
|-------------|-----------------------------|--------------------------|------------------|--------------|-----------------------------|
| EA3008U025  | 0.1 to 3.0GHz               | 0.25                     | 0.25 UL94V-0 H   |              | -40 to +120°C               |
| EA3008U035  | 0.1 to 3.0GHz               | 0.35                     | UL94V-0          | Halogen Free | -40 to +120°C               |
| EA3008U050  | 0.1 to 3.0GHz               | 0.50                     | UL94V-0          | Halogen Free | -40 to +120°C               |
| EA3008U100  | 0.1 to 3.0GHz               | 1.00                     | UL94V-0          | Halogen Free | -40 to +120°C               |
| EA3008U250  | 0.1 to 3.0GHz               | 2.50                     | UL94V-0          | Halogen Free | -40 to +120°C               |

#### ■ Magnetic Permeability-Reluctance (Typical)



148

#### Chip EMIFIL® A Caution/Notice

#### ■ **(**Caution (Rating)

Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.

#### ■ **(**Caution (Soldering and Mounting)

Please provide special attention when mounting chip "EMIFIL" (BLM\_P, NFM\_P) series in close proximity to other products that radiate heat. The heat generated by other products may deteriorate the insulation resistance and cause excessive heat in this component.

#### ■ Notice (Storage and Operating Conditions)

<Operating Environment>

Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

- <Storage and Handling requirements>
- 1. Storage Period

BLM (except BLM15E/15H series) /BLA/NFM55/DLP31S/ DLM11G/DLM2HG series should be used within 6 months, the other series should be used within 12 months.

#### ■ Notice (Rating)

Noise suppression levels resulting from Murata's EMI suppression filters "EMIFIL" may vary, depending on the circuits and ICs used, type of noise, mounting pattern, lead wire length, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

#### ■ Notice (Soldering and Mounting)

1. Washing

Failure and degradation of a product are caused by the washing method. When you wash in conditions that are not in mounting information, please contact Murata engineering.

2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.

Solderability should be checked if this period is exceeded.

- 2. Storage Conditions
- (1) Storage temperature: -10 to 40 degree C Relative humidity: 30 to 70% Avoid sudden changes in temperature and humidity.
- (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.



# Lead Type EMIFIL® ACaution/Notice

#### ■ **(**Caution (Rating)

Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.

#### ■ ①Caution (Soldering and Mounting)

Mounting holes should be designed as specified in these specifications. Other designs than shown in these specifications may cause cracks in ceramics which may lead to smoking or firing.

#### ■ Notice (Storage and Operation Condition)

<Operating Environment>

- 1. Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- Do not use products near water, oil or organic solvents. Avoid environment where dust or dirt may adhere to product.
- <Concerning "EMIGUARD">

VFR3V series is designed only to absorb electro-static surges. Do not use this product to absorb large energy surges such as lighting or switching related surges.

- <Storage and Handling Requirements>
- Storage Period
   Used the products within 12 months after delivery.

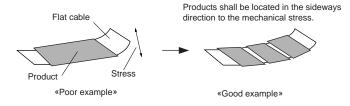
#### ■ Notice (Rating)

Noise suppression levels resulting from Murata's EMI suppression filters "EMIFIL" may vary, depending on the circuits and ICs used, type of noise, mounting pattern, lead wire length, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

Solderability should be checked if this period is exceeded.

- 2. Storage Conditions
- (1) Storage temperature: -10 to 40 degree C Relative humidity: 30 to 70% Avoid sudden changes in temperature and humidity.
- (2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
- (3) When restoring taping type (BL01RN1A1F1J), please attach the Spacer between flanges of reel. The Spacer is corrugated paper which is attached when shipping.




#### **Microwave Absorbers Notice**

#### ■ Notice (Storage and Operating Condition)

#### 1. Adhesive Tape Stress

This product is designed for using the adhesive tape to hold itself to the object.

And please avoid causing mechanical stress by bending or variation of the object.



#### 2. Cleaning

Avoid cleaning product.

#### 3. Handling of the product

Adhesive tape must be clean to maintain the quality of tape. And please wipe off any dirt, dust and any kind of oil from the surface of the object before use.

#### 4. Storage Conditions

#### (1) Storage period

Products which were inspected in Murata over 6 months ago should be examined and used, which can be confirmed with inspection No. marked on the container. Adhesiveness should be checked if this period is exceeded.

#### (2) Storage conditions

 Products should be stored in the warehouse on the following conditions.

Temperature: -10 to 40°C

Humidity: 30 to 70% relative humidity

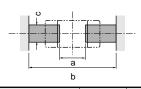
No rapid change on temperature and humidity

• Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.



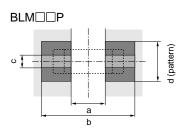
#### 1. Standard Land Pattern Dimensions

NF series suppress noise by conducting the high-frequency noise element to ground. Therefore, to obtain maximum performance from these filters, the ground pattern should be made as large as possible during the PCB design stage. As shown below, one side of the PCB is used for chip mounting, and the other is used for grounding.


Small diameter feedthrough holes are then used to connect the grounds on each side of the PCB. This reduces the highfrequency impedance of the grounding and maximizes the filter's performance. Please contact us if using a thinner land pad than 18µm for NFM55P.



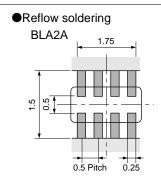
#### BLM03 **BLM15** (Except BLM 15A\_AN series)

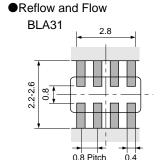

BLM18 **BLM21** BLM31 BLM41

#### Reflow and Flow



| Туре                        | Soldering                    | а       | b       | С   |  |
|-----------------------------|------------------------------|---------|---------|-----|--|
| * BLM03                     | Reflow                       | 0.2-0.3 | 0.6-0.9 | 0.3 |  |
| *BLM15                      | Reflow 0.4                   |         | 1.2-1.4 | 0.5 |  |
| BLM18<br>(except 18PG type) | Flow<br>(except<br>18G type) | 0.7     | 2.2-2.6 | 0.7 |  |
| (except for 6 type)         | Reflow                       |         | 1.8-2.0 |     |  |
| BLM21<br>(except 21PG type) | Flow/<br>Reflow              | 1.2     | 3.0-4.0 | 1.0 |  |


<sup>\*</sup>BLM03/15/18G is specially adapted for reflow soldering.




| Туре     |         | Current Soldering | а   | b                 | С   | Land pad thickness and dimension d |      |      |
|----------|---------|-------------------|-----|-------------------|-----|------------------------------------|------|------|
|          | (A)     |                   |     |                   |     | 18μm                               | 35μm | 70μm |
| BLM15PG  | 1       | Reflow            | 0.4 | 1.2-1.4           | 0.5 | 0.5                                | 0.5  | 0.5  |
|          | 0.5-1.5 |                   |     | Flow              |     | 0.7                                | 0.7  | 0.7  |
| BLM18PG  | 2       |                   | 0.7 | 2.2-2.6<br>Reflow | 0.7 | 1.2                                | 0.7  | 0.7  |
|          | 3       | Flow/             |     | 1.8-2.0           |     | 2.4                                | 1.2  | 0.7  |
|          | 1.5     |                   | 1.2 |                   |     | 1.0                                | 1.0  | 1.0  |
| BLM21PG  | 2       |                   |     | 3.0-4.0           | 1.0 | 1.2                                | 1.0  | 1.0  |
| BLIMZTPG | 3       |                   |     |                   |     | 2.4                                | 1.2  | 1.0  |
|          | 6       |                   |     |                   |     | 6.4                                | 3.3  | 1.65 |
|          | 1.5/2   | Kellow            | 2.0 | 4.2-5.2           | 4.0 | 1.2                                | 1.2  | 1.2  |
| BLM31PG  | 3       |                   |     |                   |     | 2.4                                | 1.2  | 1.2  |
|          | 6       |                   |     |                   |     | 6.4                                | 3.3  | 1.65 |
|          | 1-2     |                   |     | 5.5-6.5           | 1.2 | 1.2                                | 1.2  | 1.2  |
| BLM41PG  | 3       |                   | 3.0 |                   |     | 2.4                                | 1.2  | 1.2  |
|          | 6       |                   |     |                   |     | 6.4                                | 3.3  | 1.65 |

lacktriangle Do not apply narrower pattern than listed above to BLM  $\Box \Box P.$ Narrow pattern can cause excessive heat or open circuit.

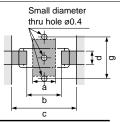
#### **BLA2A** BLA31





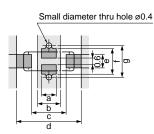
• If there are high amounts of self-heating on pattern, the contact points of PCB and part may become damaged.



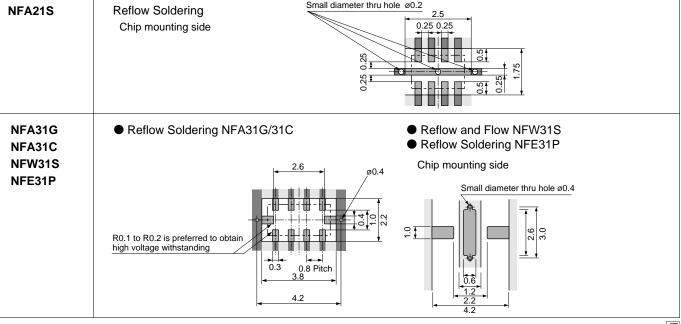



Continued from the preceding page.




#### ☐ Solder Resist Reflow Soldering NFM18 NFL18 NFM18C/NFM18PC/ NFL18PS NFL18SP NFM55P NFL18ST Small diameter thru hole Small diameter thru hole NFM55 Small diameter Small diameter ø1.0-ø2.0 ø0.2-ø0.3 thru hole thru hole Chip ø0.2-ø0.3 ø0.2 0.8 0.8 5.0 0.4 1.0 0.8 0.6 0.05 1.2 2.0 1.0 2.0 2.0 4.7 6.7 The chip EMI filter suppresses noise by conducting the highfrequency noise to ground. Therefore, to get enough noise reduction, feed through holes which are connected to groundplane should be arranged according to the figure to reinforce the ground-pattern. Please contact us if using • NF 18, NF 21, NFM55 are specially adapted for reflow soldering. thinner land pad than $18\mu m$ .

NFM21 NFM3D NFM41 NFR21G NFL21S Reflow Soldering
 Chip mounting side

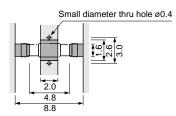



| Part Number   |     | Si  | ze (mm | )   |     |
|---------------|-----|-----|--------|-----|-----|
| Part Number   | a   | b   | С      | d   | g   |
| NFM21C/NFM21P | 0.6 | 1.4 | 2.6    | 0.8 | 2.3 |
| NFR21G/NFL21S | 0.6 | 1.4 | 2.0    | 0.6 | 2.3 |
| NFM3DC        | 1.4 | 2.5 |        | 1.0 | 2.4 |
| NFM3DP        | 1.4 | 2.5 | 4.4    | 1.0 | 2.4 |
| NFM41C        | 2.0 | 3.5 | 6.0    | 1.2 | 2.0 |
| NFM41P        | 2.0 | ა.5 | 0.0    | 1.2 | 3.0 |

Flow Soldering
 Chip mounting side

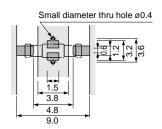


| Part Number   |     | Size (mm) |     |     |     |     |     |  |  |  |  |
|---------------|-----|-----------|-----|-----|-----|-----|-----|--|--|--|--|
| rait Nullibel | а   | b         | С   | d   | е   | f   | g   |  |  |  |  |
| NFM3DC        | 1.0 | 1.4       | 2.5 | 4.4 | 1.0 | 2.0 | 2.4 |  |  |  |  |
| NFM3DP        | 1.0 | 1.4       | 2.5 | 4.4 |     |     |     |  |  |  |  |
| NFM41C        | 1.5 |           | 3.5 | 60  | 1.2 |     |     |  |  |  |  |
| NFM41P        | 1.5 | 2.0       | 3.5 | 6.0 | 1.2 | 2.0 | 3.0 |  |  |  |  |



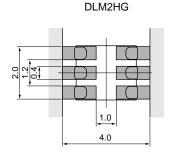

Continued from the preceding page

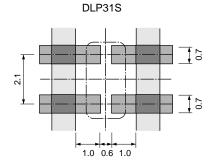


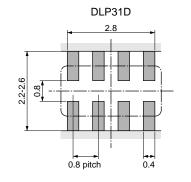

#### NFE61P NFE61H

#### Reflow Soldering Chip mounting side

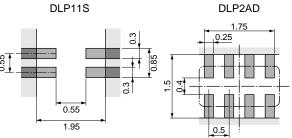


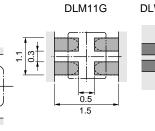

#### Flow Soldering (Except NFE61HT332)


Chip mounting side



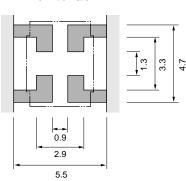

DLM11G **DLM2HG** DLP31S DLP31D DLP11S **DLP2AD DLW21S** DLW21H DLW31S **DLW5AH DLW5BS DLW5BT** 


Reflow and Flow









#### Reflow Soldering





| DLW21/DLW31 | S     |
|-------------|-------|
| *3 a        | 2 0 7 |

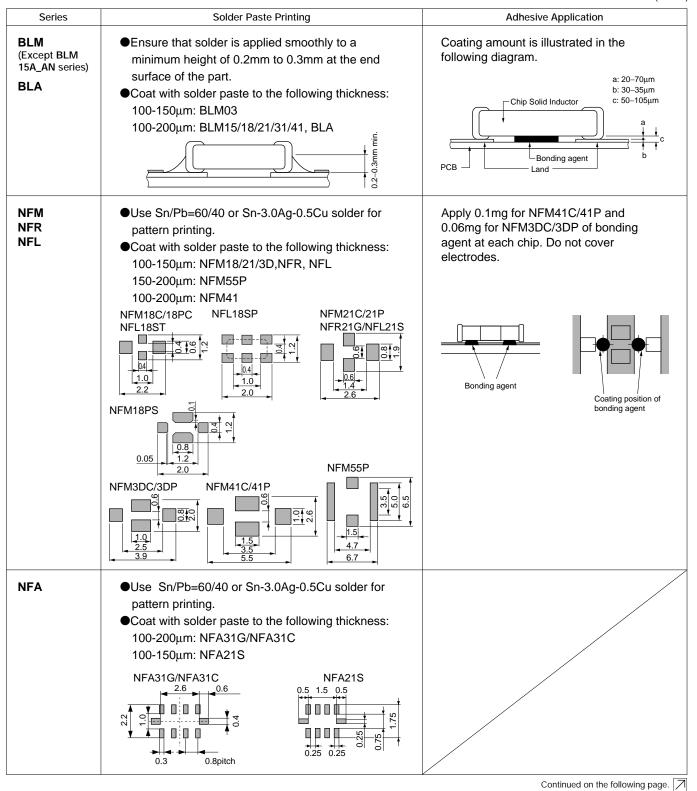
| DLW5AH | /5RC/5RT  |
|--------|-----------|
|        | / 303/301 |



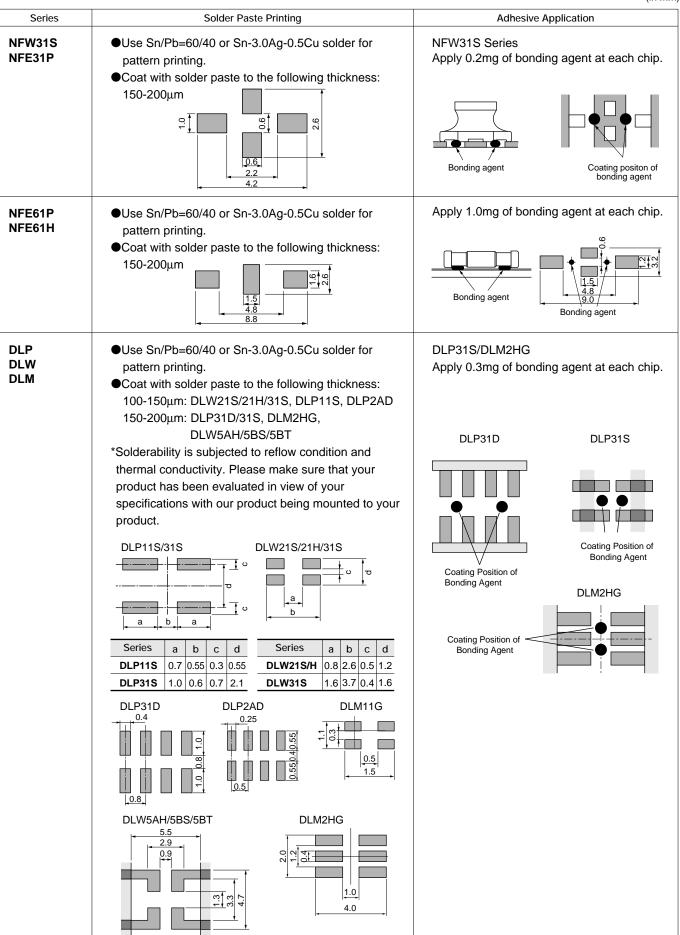
| Series   | a   | b   | С   | d   |
|----------|-----|-----|-----|-----|
| DLW21S/H | 0.8 | 2.6 | 0.4 | 1.2 |
| DLW31S   | 1.6 | 3.7 | 0.4 | 1.6 |

- \* 1: If the pattern is made with wider than 1.2mm (DLW21) / 1.6mm (DLW31S) it may result in components turning around, because melting speed is different. In the worst case, short circuit between lines may occur.
- $\ast$  2: If the pattern is made with less than 0.4mm, in the worst case, short circuit between lines may occur due to spread of soldering paste or mount placing accuracy.
- \* 3: If the pattern is made with wider than 0.8mm (DLW21) / 1.6mm (DLW31S), the bending strength will be reduced. Do not use gild pattern; excess soldering heat may dissolve metal of a copper wire.






Continued from the preceding page.


2. Solder Paste Printing and Adhesive Application When reflow soldering the chip EMI suppression filter, the printing must be conducted in accordance with the following cream solder printing conditions. If too much solder is applied, the chip will be prone to damage by mechanical and thermal stress from the PCB and may crack. In contrast, if too little solder is applied, there is the potential that the termination strength will be insufficient, creating the potential for detachment. Standard land dimensions should be used for resist and

copper foil patterns.

When flow soldering the EMI suppression filter, apply the adhesive in accordance with the following conditions. If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering process.



Continued from the preceding page



Continued from the preceding page.

#### 3. Standard Soldering Conditions

#### (1) Soldering Methods

Use flow and reflow soldering methods only.

Use standard soldering conditions when soldering chip

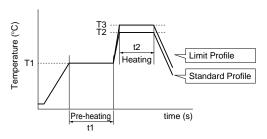
EMI suppression filters chip varistor.

In cases where several different parts are soldered, each having different soldering conditions, use those conditions requiring the least heat and minimum time.

Solder: H60A H63A solder (JIS Z 3238)

In case of lead-free solder, use Sn-3.0Ag-0.5Cu

solder


#### Flux:

- Use Rosin-based flux, (with converting chlorine content 0.06 to 0.1wt% for DLW21. When using RA type solder, clean products sufficiently to avoid residual flux.)
- Do not use strong acidic flux (with chlorine content exceeding 0.20wt%)
- Do not use water-soluble flux.

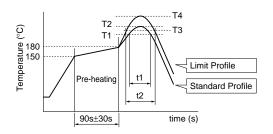
For additional mounting methods, please contact Murata.

#### (2) Soldering profile

 Flow Soldering profile (Eutectic solder, Sn-3.0Ag-0.5Cu solder)

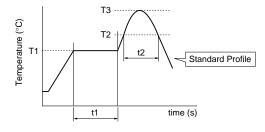


| Series                                                                                                | Dro h      | oating      | St         | andard Profile | 9       | Limit Profile |            |         |
|-------------------------------------------------------------------------------------------------------|------------|-------------|------------|----------------|---------|---------------|------------|---------|
|                                                                                                       | Pie-ii     | Pre-heating |            | ting           | Cycle   | Heating       |            | Cycle   |
|                                                                                                       | Temp. (T1) | Time. (t1)  | Temp. (T2) | Time. (t2)     | of flow | Temp. (T3)    | Time. (t2) | of flow |
| BLM (Except BLM03/15/18G)<br>BLA31<br>NFM3DC/3DP<br>NFM41C/41P<br>NFE61H*/61P<br>DLM2HG<br>DLP31D/31S | 150°C      | 60s min.    | 250°C      | 4 to 6s        | 2 times | 265±3°C       | 5s max.    | 2 times |
| NFW31S                                                                                                | 150°C      | 60s min.    | 250°C      | 4 to 6s        | 2 times | 265±3°C       | 5s max.    | 1 times |
| *Except NFE61HT332                                                                                    | L          | I           |            |                |         |               |            |         |






Continued from the preceding page


#### Reflow Soldering profile

①Soldering profile for Lead-free solder (Sn-3Ag-0.5Cu)



|                                                                 |            | Standar    | d Profile           |           | Limit Profile |            |                     |           |  |
|-----------------------------------------------------------------|------------|------------|---------------------|-----------|---------------|------------|---------------------|-----------|--|
| Series                                                          | Heating    |            | Peak<br>temperature | Cycle     | Hea           | Heating    |                     | Cycle     |  |
|                                                                 | Temp. (T1) | Time. (t1) | (T2)                | of reflow | Temp. (T3)    | Time. (t2) | temperature<br>(T4) | of reflow |  |
| BLM, BLA<br>NFA, NFE<br>NFL, NFM<br>NFR, DLM<br>DLP<br>DLW21/31 | 220°C min. | 30 to 60s  | 245±3°C             | 2 times   | 230°C min.    | 60s max.   | 260°C/10s           | 2 times   |  |
| DLW5A/5B                                                        | 220°C min. | 30 to 60s  | 250±3°C             | 2 times   | 230°C min.    | 60s max.   | 260°C/10s           | 2 times   |  |
| NFW31S                                                          | 220°C min. | 30 to 60s  | 245±3°C             | 2 times   | 230°C min.    | 60s max.   | 260°C/10s           | 1 times   |  |

#### ②Soldering profile for Eutectic solder (Limit profile: refer to ①)



| Series                                                          | Dro h      | aatina     | Standard Profile |            |                     |           |  |  |
|-----------------------------------------------------------------|------------|------------|------------------|------------|---------------------|-----------|--|--|
|                                                                 | Pre-n      | eating     | Hea              | ting       | Peak                | Cycle     |  |  |
|                                                                 | Temp. (T1) | Time. (t1) | Temp. (T2)       | Time. (t2) | temperature<br>(T3) | of reflow |  |  |
| BLM, BLA<br>NFA, NFE<br>NFL, NFM<br>NFR, NFW<br>DLM, DLP<br>DLW | 150°C      | 60s min.   | 183°C min.       | 60s max.   | 230°C               | 2 times   |  |  |

#### (3) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron.

Pre-heating: 150°C 60s min.

Soldering iron power output: 30W max.

Temperature of soldering iron tip / Soldering time: 280°C

max./10s max. or 300°C max./3s max.\*

\*NFE31PT152Z1E9: 280°C max./10s max. only

BLM: 350°C max./3s max.

Do not allow the tip of the soldering iron to directly contact the chip.

For additional methods of reworking with a soldering iron,

please contact Murata engineering.



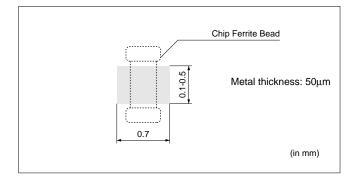
Continued from the preceding page.

4. Cleaning

Following conditions should be observed when cleaning chip EMI filter.

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol type cleaner)
- (2) Ultrasonic

Output: 20W/liter max. Duration: 5 minutes max. Frequency: 28 to 40kHz


(3) Cleaning agent

The following list of cleaning agents have been tested on the individual components. Evaluation of final assembly should be completed prior to production.

- Mounting of BLM15A\_AN Series BLM15A\_AN is series for wire bonding mounting.
- (1) Die bonding mounting
- (a) Dimension of standard metal mask

Do not clean DLW21S/31S/5AH/5BS series. In case of cleaning, please contact Murata engineering.

- (a) Alcohol cleaning agent Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agent Pine Alpha ST-100S
- (4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agent has been removed with deionized water.
- (5) Some products may become slightly whitened. However, product performance or usage is not affected. For additional cleaning methods, please contact Murata engineering.



(b) Die bonding agent

be used in advance.

- Use adhesive for die bonding for which the curing temperature is 200°C or less.
- (c) Notice
- Use a flat surface of substrate for bonding mounting.
   Slant mounting of product may affect the wire bonding.
- Adhesive for die bonding may affect the mounting reliability in wire bonding.
   Make sure of the mounting reliability with the adhesive to



# Lead Type EMIFIL® (Soldering and Mounting)

#### 1. Mounting Hole

Mounting holes should be designed as specified below.

| Part number                    | Bulk type (in mm)                            | Taping type (in mm)                                                                           |
|--------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------|
| DSN6<br>DSS6<br>VFR3V<br>VFS6V | Ø0.8-3<br>2.5±0.2                            |                                                                                               |
| DSN9<br>DSN9H                  | Ø0.8-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ø1.0-3                                                                                        |
| DST9<br>DST9H                  | 2.5±0.2                                      | 2.5±0.2 2.5±0.2                                                                               |
| DSS9<br>DSS9H<br>VFS9V         | 2.5±0.2                                      |                                                                                               |
| BNX00□/01□                     | [Component Side]                             | [TERMINAL LAYOUT (Bottom figure)]                                                             |
|                                | (PSG) (CG) (CG) (CG) (CG) (CG) (CG) (CG) (C  | CG  CG  CG  CG  PSG : Power supply ground  CG : Load circuit ground  CB : Load circuit + Bias |



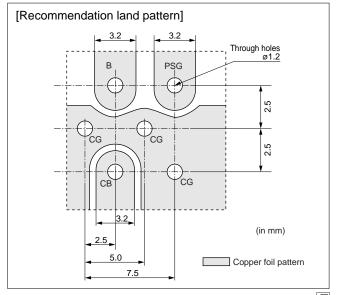
## **Lead Type EMIFIL® (Soldering and Mounting)**

Continued from the preceding page.

#### 2. Using The Block Type EMIFIL® Effectively

#### (1) How to use effectively

This product effectively prevents undesired radiation and external noise from going out / entering the circuit by grounding the high frequency components which cause noise problems. Therefore, grounding conditions may affect the performance of the filter and attention should be paid to the following for effective use.


- (a) Design maximized grounding area in the P.C. board, and grounding pattern for all the grounding terminals of the product to be connected. (Please follow the specified recommendations.)
- (b) Minimize the distance between ground of the P.C. board and the ground plate of the product.(Recommended to use through-hole connection between grounding area both of component side and bottom side.)
- (c) Insert the terminals into the holes on P.C. board completely.
- (d) Don't connect PSG terminal with CG terminal directly. (See the item 1. TERMINAL LAYOUT)

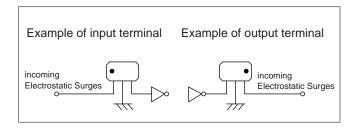
#### (2) Self-heating

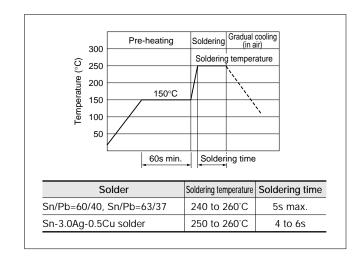
Though this product has a large rated current, localized self-heating may be caused depending on soldering conditions. To avoid this, attention should be paid to the following:

- (a) Use P.C. board with our recommendation on hole diameter / land pattern dimensions, mentioned in the right hand drawing, especially for 4 terminals which pass current.
- (b) Solder the terminals to the P.C. board with solder-cover area at least 90%. Otherwise, excess self-heating at connection between terminals and P.C. board may lead to smoke and / or fire of the product even when operating at rated current.
- (c) After installing this product in your product, please make sure of the self-heating with the rated current.

# [P. C. BOARD PATTERNS] Use a bilateral P.C. board. Insert the BNX into the P.C.board until the root of the terminal is secured, then solder. (1) COMPONENT SIDE VIEW (2) BOTTOM VIEW PSG B PSG Shield plate CG CG CB CG CG CG CG CG CG CD COpper foil pattern







# Lead Type EMIFIL® (Soldering and Mounting)

- Continued from the preceding page.
- 3. Using EMIGUARD® effectively
- (1) Terminal (with mark) should be properly connected to the line of incoming electrostatic surge. (There is polarity.) Otherwise, no effect in ESD suppression can be expected (VFR3V).
- (2) Products should be used at rated voltage or less and rated current or less.
- (3) Products should not be applied for the absorption of surges which have large energy (ex. induced lightning surges, switching surges) because it is designed for the absorption of electrostatic surges (VFR3V).
- (4) Electrostatic test should be done on the following conditions (VFR3V).
  - $n \bullet [C/R \bullet V^2]^2 < 8.0 \times 10^5$ 
    - n: Times applied
    - C: Charging Capacitance (pF)
    - V: Testing Voltage (kV)
    - R: Charging Resistance ( $\Omega$ )

#### 4. Soldering

- (1) Solder: H60A, H63A solder (JIS Z 3238)
  In case of lead-free solder, use Sn-3.0Ag-0.5Cu solder.
- (2) Use Rosin-based flux. Do not use strong acidic flux with halide content exceeding 0.2wt% (chlorine conversion value).
- (3) Products and the leads should not be subjected to any mechanical stress during the soldering process, or while subjected to the equivalent high temperatures.
- (4) Standard flow soldering profile





#### 5. Cleaning Conditions

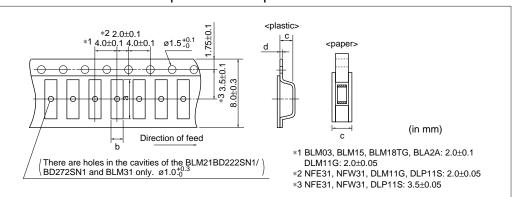
Do not clean VFR3V, PLT09H and VFS6V series.

Clean other parts in the following conditions.

- (1) Cleaning temperature should be limited to 60°C max. (40°C max for alcohol type cleaner.)
- (2) Ultrasonic cleaning should be complied with the following conditions, avoiding the resonance phenomenon at the mounted products and P.C.B.

Power: 20 W / I max. Frequency: 28 to 40kHz

Time: 5 min. max.


- (3) Cleaner
  - (a) Alcohol type cleaner Isopropyl alcohol (IPA)

- (b) Aqueous agent (PLT series cannot be cleaned) PINE ALPHA ST-100S
- (4) There should be no residual flux or residual cleaner left after cleaning.
  - In the case of using aqueous agent, products should be dried completely after rinsing with de-ionized water in order to remove the cleaner.
- (5) The surface of products may become dirty whitely after cleaning. But there is no deterioration on mechanical, electrical characteristics and reliability.
- (6) Other cleaning: Please contact us.

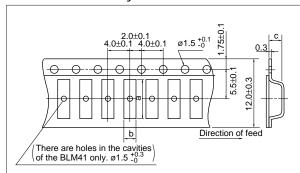


# Chip EMIFIL® Packaging

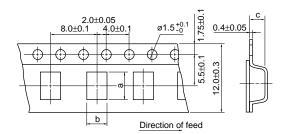
#### ■ Minimum Quantity and Dimensions of 8mm Width Paper / Plastic Tape



|                                          | Cavity Size (in mm) |        |                  |      | Minimum Qty. (pcs.) |              |            |              |       |  |
|------------------------------------------|---------------------|--------|------------------|------|---------------------|--------------|------------|--------------|-------|--|
| Part Number                              |                     | Cavity | Size (III IIIII) | '    | ø180m               | nm reel      | ø330m      | nm reel      | Dulle |  |
|                                          | а                   | b      | С                | d    | Paper Tape          | Plastic Tape | Paper Tape | Plastic Tape | Bulk  |  |
| BLM03                                    | 0.70                | 0.40   | 0.55 max.        | -    | 15000               | -            | -          | -            | 1000  |  |
| BLM15                                    | 1.15                | 0.65   | 0.8 max.         | -    | 10000               | -            | 50000      | -            | 1000  |  |
| BLM18                                    | 1.85                | 1.05   | 1.1 max.         | -    | 4000                | -            | 10000      | -            | 1000  |  |
| BLM18E                                   | 1.85                | 1.05   | 0.85 max.        | -    | 4000                | -            | 10000      | -            | 1000  |  |
| BLM18TG                                  | 1.85                | 1.05   | 0.90 max.        | -    | 10000               | -            | -          | -            | 1000  |  |
| BLM21                                    | 2.25                | 1.45   | 1.1 max.         | -    | 4000                | -            | 10000      | -            | 1000  |  |
| BLM31                                    | 3.5                 | 1.9    | 1.3              | 0.2  | -                   | 3000         | -          | 10000        | 1000  |  |
| BLM21BD222SN1/272SN1                     | 2.25                | 1.45   | 1.3              | 0.2  | -                   | 3000         | -          | 10000        | 1000  |  |
| BLA2A                                    | 2.2                 | 1.2    | 0.8 max.         | -    | 10000               | -            | -          | -            | 1000  |  |
| BLA31                                    | 3.4                 | 1.8    | 1.1 max.         | -    | 4000                | -            | 10000      | -            | 1000  |  |
| NFM18C/NFM18PC (Except 105R)/<br>NFM18PS | 1.85                | 1.05   | 0.9 max.         | -    | 4000                | -            | -          | -            | 500   |  |
| NFM18PC105R                              |                     |        | 1.1 max.         | -    | 4000                | -            | -          | -            | 500   |  |
| NFL18SP                                  | 1.85                | 1.05   | 0.9 max.         |      |                     |              |            |              |       |  |
| NFL18ST                                  | 1.00                | 1.05   | 1.1 max.         | -    | 4000                | -            | -          | -            | 1000  |  |
| NFL21SP                                  | 2.3                 | 1.55   | 1.1 max.         |      |                     |              |            |              |       |  |
| NFM21                                    | 2.3                 | 1.55   | 1.1 max.         | -    | 4000                | -            | •          | -            | 500   |  |
| NFM3DC/3DP                               | 3.4                 | 1.4    | 0.85             | 0.2  | -                   | 4000         | -          | -            | 500   |  |
| NFA21SL_45                               | 2.30                | 1.55   | 0.7              | 0.25 | -                   | 4000         | -          | -            | 1000  |  |
| NFA21SL_48                               | 2.25                | 1.45   | 1.05             | 0.25 | -                   | 4000         | -          | -            | 1000  |  |
| NFA31G/31C                               | 3.5                 | 2.0    | 1.1 max.         | -    | 4000                | -            | -          | -            | 100   |  |
| NFE31P                                   | 3.6                 | 1.8    | 1.85             | 0.2  | -                   | 2000         | -          | 8000         | 500   |  |
| NFR21G                                   | 2.3                 | 1.55   | 0.7              | 0.25 | -                   | 4000         | -          | -            | 500   |  |
| NFW31S                                   | 3.6                 | 1.9    | 2.0              | 0.2  | -                   | 2000         | -          | 7500         | -     |  |
| DLM11G                                   | 1.45                | 1.2    | 0.8 max.         | -    | 10000               | -            | -          | -            | 1000  |  |
| DLM2HG                                   | 2.75                | 2.25   | 1.3              | 0.25 | -                   | 3000         | -          | -            | 1000  |  |
| DLP11S                                   | 1.4                 | 1.2    | 0.98             | 0.25 | -                   | 3000         | -          | -            | 500   |  |
| DLP2AD                                   | 2.2                 | 1.2    | 0.98             | 0.25 | -                   | 3000         | -          | -            | 500   |  |
| DLP31D/31S                               | 3.5                 | 1.9    | 1.3              | 0.25 | -                   | 3000         | -          | -            | 500   |  |
| DLW21S                                   | 2.25                | 1.45   | 1.4              | 0.3  | -                   | 2000         | -          | -            | 500   |  |
| DLW21H                                   | 2.3                 | 1.55   | 1.1              | 0.25 | -                   | 3000         | -          | -            | 500   |  |
| DLW31S                                   | 3.6                 | 2.0    | 2.1              | 0.3  | -                   | 2000         | •          | -            | 500   |  |


<sup>•</sup> Please contact us for BLM15/18 in bulk case.




# Chip EMIFIL® Packaging

Continued from the preceding page.

#### ■ Minimum Quantity and Dimensions of 12mm Width Plastic Tape



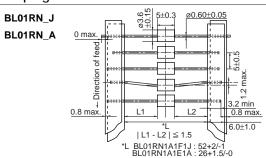
| Dout Number | Ca           | vity Si | ze   | Minimum Qty. (pcs.) |             |      |  |  |
|-------------|--------------|---------|------|---------------------|-------------|------|--|--|
| Part Number | а            | b       | С    | ø180mm reel         | ø330mm reel | Bulk |  |  |
| BLM41       | 4.8 1.9 1.75 |         | 2500 | 8000                | 1000        |      |  |  |
| NFM41       | 4.8 1.8 1.1  |         | 4000 | -                   | 500         |      |  |  |
| NFE61       | 7.2 1.9 1.75 |         | 2500 | 8000                | 500         |      |  |  |



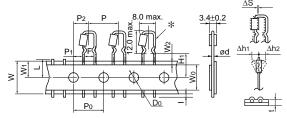
| Dort Number | rt Number Cavity Size a b c |     | Minimum Qty. (pcs.) |             |             |      |
|-------------|-----------------------------|-----|---------------------|-------------|-------------|------|
| Part Number |                             |     | С                   | ø180mm reel | ø330mm reel | Bulk |
| DLW5AH      | 5.4                         | 4.1 | 4.4                 | 400         | 1500        | 100  |
| DLW5BS      | 5.5                         | 5.4 | 4.7                 | 400         | 1500        | 100  |
| DLW5BT      | 5.5 5.5 2.7                 |     | 700                 | 2500        | 100         |      |



| Part Number | Ca  | vity Si | ze  | Minimum Qty. (pcs.) |             |  |
|-------------|-----|---------|-----|---------------------|-------------|--|
|             | а   | b       | С   | ø180mm reel         | ø330mm reel |  |
| NFM55P      | 6.0 | 5.3     | 2.5 | 500                 | -           |  |

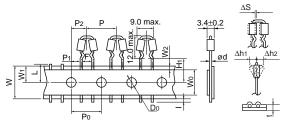



#### **Ferrite Beads Inductors Packaging**


#### ■ Minimum Quantity (Pcs.)

| Series | Bulk | Ammo Pack | ø320mm Paper reel |
|--------|------|-----------|-------------------|
| BL01RN | 500  | 1000      | 2000              |
| BL02RN | 500  | 1500      | _                 |
| BL03RN | 1000 | 2000      | _                 |

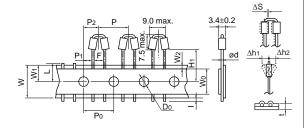
#### ■ Taping Dimensions



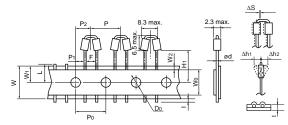

#### BL02RN1R3N1A



\*There is an excess bond stick on the wire.


#### BL02RN2R3N1A




# 

\*There is an excess bond stick on the wire.

#### BL02RN2R1□1A

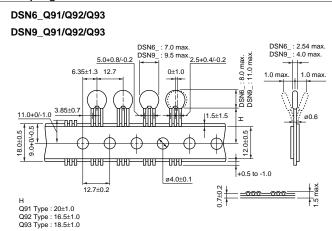


#### BL03RN2R1□1A

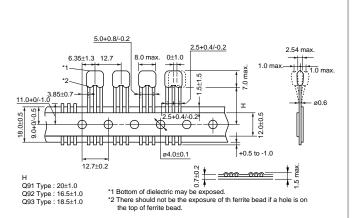


| Description                                       | Symbol         | Dimension (mm)         |          | Remarks                                     |
|---------------------------------------------------|----------------|------------------------|----------|---------------------------------------------|
| Pitch of component                                | Р              | 12.7                   |          | Product inclination ΔS determines tolerance |
| Pitch of sprocket hole                            | Po             | 12.7±0.2               |          |                                             |
| Lead spacing                                      | F              | 5.0 +0.8 -0.2          |          |                                             |
| Hole center to lead                               | P1             | 3.85±0.7               |          |                                             |
| Hole center to component center                   | P2             | 6.35±1.3               |          | Tape deviation in feeding direction         |
| Deviation along tape, left or right               | ΔS             | ±1.0                   |          |                                             |
| Carrier tape width                                | W              | 18.0±0.5               |          |                                             |
| Position of sprocket hole                         | W1             | 9.0 +0 -0.5            |          | Tape with deviation                         |
| Land law of his had a second and                  |                | Lead Length Number : N | 16.5±0.5 | BL02, BL03                                  |
| Lead length between sprocket                      | H1             | Lead Length Number : Q | 20.0±0.5 | BL02RN1R2/2R1, BL03                         |
| hole and forming position                         |                | Lead Length Number : P | 18.5±0.5 | BL02, BL03                                  |
| Protruding length                                 | I              | +0.5 to -1.0           |          |                                             |
| Diameter of sprocket hole                         | D <sub>0</sub> | ø4.0±0.1               |          |                                             |
| Lead Diameter                                     | ød             | ø0.60                  |          |                                             |
| Total tape thickness                              | t              | 0.7±0.2                |          | Including bonding tape thickness            |
| Deviation across tape, Deviation across tape rear | Δh1, Δh2       | 1.0 max.               |          |                                             |
| Cutting position of failure                       | L              | 11.0 +0                |          |                                             |
| Hold down tape width                              | Wo             | 12.0±0.5               |          |                                             |
| Hold down tape position                           | W2             | 1.5±1.5                |          |                                             |

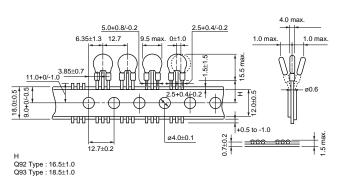
#### Disc Type EMIFIL® and EMIGUARD® Packaging


#### ■ Minimum Quantity

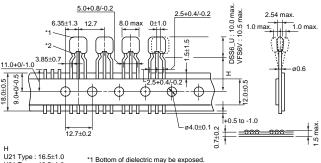
|                   | Minimum Order | Quantity (order in   | sets only) (Pcs.)                            |  |
|-------------------|---------------|----------------------|----------------------------------------------|--|
| Part Number       | Ammo Pack     | ø320mm<br>Paper reel | Bulk (Bag)                                   |  |
| VFR3V Series      | 2000          | _                    | 250                                          |  |
| DS□6/VFS6V Series | 2000          | _                    | 250 <b>Q55/T51</b><br>500 <b>Q54/Q56/T41</b> |  |
| DSN9/9H Series    | 2000          | _                    | 250 <b>Q55</b><br>500 <b>Q54/Q56</b>         |  |
| DST9 Series       | 1000          | _                    | 200 <b>Q55</b><br>250 <b>Q50/Q52</b>         |  |
| DSS9 Series       | _             | 800                  | 200 <b>Q55</b><br>500 <b>Q54/Q56</b>         |  |
| VFS9V Series      | _             | 800                  | 200                                          |  |


#### ■ Lead Type Code

| Lead Ty       | Lead Type code |                 |  |  |  |  |
|---------------|----------------|-----------------|--|--|--|--|
| Straight Type | Incrimp Type   | Lead length (H) |  |  |  |  |
| Q91           | -              | 20.0±1.0mm      |  |  |  |  |
| Q92           | U21            | 16.5±1.0mm      |  |  |  |  |
| Q93           | U31            | 18.5±1.0mm      |  |  |  |  |


#### ■ Taping Dimensions

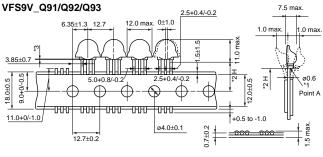



#### DSS6\_Q91/Q92/Q93



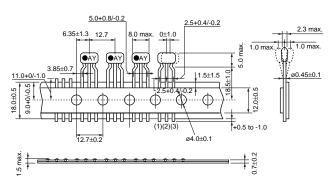
#### DST9\_Q92/Q93




#### DSS6\_U21/U31 VFS6V\_U31



U21 Type : 16.5±1.0 U31 Type : 18.5±1.0


\*2 There should not be the exposure of th ferrite bead if a hole is on the top of ferrite bead.

#### DSS9\_Q91/Q92/Q93



 11 Coating extending on leads does not exceed the start of bend. (Point A) Exposed electrodes are covered with solder.
 22 H: to be measured from the forming point A.
 3 The deviation between two ferrite beads should be less than 1.2mm. Q91 Type : 20±1.0 Q92 Type : 16.5±1.0 Q93 Type : 18.5±1.0

#### VFR3V U31









#### ●EKEMBL15D (Chip Ferrite Beads 0402 Size)

| No. | Part Number   | Quantity (pcs.) | Impedance typ.<br>(at 100MHz, 20 degrees C) | Rated Current (mA) | DC Resistance (Ω) max. |
|-----|---------------|-----------------|---------------------------------------------|--------------------|------------------------|
| 1   | BLM15AG100SN1 | 20              | 10Ω (Typ.)                                  | 1000               | 0.05                   |
| 2   | BLM15AG700SN1 | 20              | 70Ω (Typ.)                                  | 500                | 0.15                   |
| 3   | BLM15AG121SN1 | 20              | 120Ω±25%                                    | 500                | 0.25                   |
| 4   | BLM15AG221SN1 | 20              | 220Ω±25%                                    | 300                | 0.35                   |
| 5   | BLM15AG601SN1 | 20              | 600Ω±25%                                    | 300                | 0.60                   |
| 6   | BLM15AG102SN1 | 20              | 1000Ω±25%                                   | 200                | 1.00                   |
| 7   | BLM15BB050SN1 | 20              | 5Ω±25%                                      | 500                | 0.08                   |
| 8   | BLM15BB100SN1 | 20              | 10Ω±25%                                     | 300                | 0.10                   |
| 9   | BLM15BB220SN1 | 20              | 22Ω±25%                                     | 300                | 0.20                   |
| 10  | BLM15BB470SN1 | 20              | 47Ω±25%                                     | 300                | 0.35                   |
| 11  | BLM15BB750SN1 | 20              | 75Ω±25%                                     | 300                | 0.40                   |
| 12  | BLM15BB121SN1 | 20              | 120Ω±25%                                    | 300                | 0.55                   |
| 13  | BLM15BB221SN1 | 20              | 220Ω±25%                                    | 200                | 0.80                   |
| 14  | BLM15BD750SN1 | 20              | 75Ω±25%                                     | 300                | 0.20                   |
| 15  | BLM15BD121SN1 | 20              | 120Ω±25%                                    | 300                | 0.30                   |
| 16  | BLM15BD221SN1 | 20              | 220Ω±25%                                    | 300                | 0.40                   |
| 17  | BLM15BD471SN1 | 20              | 470Ω±25%                                    | 200                | 0.60                   |
| 18  | BLM15BD601SN1 | 20              | 600Ω±25%                                    | 200                | 0.65                   |
| 19  | BLM15BD102SN1 | 20              | 1000Ω±25%                                   | 200                | 0.90                   |
| 20  | BLM15BD182SN1 | 20              | 1800Ω±25%                                   | 100                | 1.40                   |
| 21  | BLM15HD601SN1 | 20              | 600Ω±25%                                    | 100                | 1.70                   |
| 22  | BLM15HD102SN1 | 20              | 1000Ω±25%                                   | 50                 | 2.30                   |
| 23  | BLM15HD182SN1 | 20              | 1800Ω±25%                                   | 200                | 2.20                   |
| 24  | BLM15HG601SN1 | 20              | 600Ω±25%                                    | 200                | 1.30                   |
| 25  | BLM15HG102SN1 | 20              | 1000Ω±25%                                   | 100                | 2.00                   |
| 26  | BLM15EG121SN1 | 20              | 120Ω±25%                                    | 1500               | 0.095                  |
| 27  | BLM15EG221SN1 | 20              | 220Ω±25%                                    | 700                | 0.28                   |

#### ●EKEMBL18B (Chip Ferrite Beads 0603 Size/ for Large-current P Type)

| No. | Part Number      | Quantity (pcs.) | Impedance typ.<br>(at 100MHz, 20 degrees C) | Rated Current (mA) | DC Resistance (Ω) max. |
|-----|------------------|-----------------|---------------------------------------------|--------------------|------------------------|
| 1   | BLM18AG121SN1    | 20              | 120Ω±25%                                    | 200                | 0.20                   |
| 2   | BLM18AG221SN1    | 20              | 220Ω±25%                                    | 200                | 0.30                   |
| 3   | BLM18AG601SN1 20 |                 | 600Ω±25%                                    | 200                | 0.50                   |
| 4   | BLM18AG102SN1    | 20              | 1000Ω±25%                                   | 100                | 0.70                   |
| 5   | BLM18BA050SN1    | 20              | 5Ω±25%                                      | 500                | 0.20                   |
| 6   | BLM18BA100SN1    | 20              | 10Ω±25%                                     | 500                | 0.25                   |
| 7   | BLM18BA470SN1    | 20              | 47Ω±25%                                     | 300                | 0.55                   |
| 8   | BLM18BA750SN1    | 20              | 75Ω±25%                                     | 300                | 0.70                   |

Continued from the preceding page.

| No. | Part Number   | Quantity (pcs.) | Impedance typ.<br>(at 100MHz, 20 degrees C) | Rated Current (mA) | DC Resistance ( $\Omega$ ) max. |  |
|-----|---------------|-----------------|---------------------------------------------|--------------------|---------------------------------|--|
| 9   | BLM18BA121SN1 | 20              | 120Ω±25%                                    | 200                | 0.90                            |  |
| 10  | BLM18BB050SN1 | 20              | 5Ω±25%                                      | 700                | 0.10                            |  |
| 11  | BLM18BB100SN1 | 20              | 10Ω±25%                                     | 500                | 0.15                            |  |
| 12  | BLM18BB470SN1 | 20              | 47Ω±25%                                     | 500                | 0.30                            |  |
| 13  | BLM18BB750SN1 | 20              | 75Ω±25%                                     | 200                | 0.35                            |  |
| 14  | BLM18BB121SN1 | 20              | 120Ω±25%                                    | 200                | 0.50                            |  |
| 15  | BLM18BB221SN1 | 20              | 220Ω±25%                                    | 200                | 0.65                            |  |
| 16  | BLM18BB471SN1 | 20              | 470Ω±25%                                    | 50                 | 1.00                            |  |
| 17  | BLM18BD121SN1 | 20              | 120Ω±25%                                    | 200                | 0.40                            |  |
| 18  | BLM18BD221SN1 | 20              | 220Ω±25%                                    | 200                | 0.45                            |  |
| 19  | BLM18BD471SN1 | 20              | 470Ω±25%                                    | 200                | 0.55                            |  |
| 20  | BLM18BD601SN1 | 20              | 600Ω±25%                                    | 200                | 0.65                            |  |
| 21  | BLM18BD102SN1 | 20              | 1000Ω±25%                                   | 100                | 0.85                            |  |
| 22  | BLM18BD182SN1 | 20              | 1800Ω±25%                                   | 50                 | 1.50                            |  |
| 23  | BLM18BD252SN1 | 20              | 2500Ω±25%                                   | 50                 | 1.50                            |  |
| 24  | BLM18HG471SN1 | 20              | 470Ω±25%                                    | 200                | 0.85                            |  |
| 25  | BLM18HG601SN1 | 20              | 600Ω±25%                                    | 200                | 1.00                            |  |
| 26  | BLM18HG102SN1 | 20              | 1000Ω±25%                                   | 100                | 1.60                            |  |
| 27  | BLM18HD471SN1 | 20              | 470Ω±25%                                    | 100                | 1.20                            |  |
| 28  | BLM18HD601SN1 | 20              | 600Ω±25%                                    | 100                | 1.50                            |  |
| 29  | BLM18HD102SN1 | 20              | 1000Ω±25%                                   | 50                 | 1.80                            |  |
| 30  | BLM18PG330SN1 | 20              | 33Ω±25%                                     | 3000               | 0.025                           |  |
| 31  | BLM18PG121SN1 | 20              | 120Ω±25%                                    | 2000               | 0.05                            |  |
| 32  | BLM18PG181SN1 | 20              | 180Ω±25%                                    | 1500               | 0.09                            |  |
| 33  | BLM21PG221SN1 | 20              | 220Ω (Typ.)                                 | 2000               | 0.05                            |  |
| 34  | BLM21PG331SN1 | 20              | 330Ω (Typ.)                                 | 1500               | 0.09                            |  |
| 35  | BLM31PG121SN1 | 20              | 120Ω (Typ.)                                 | 3000               | 0.025                           |  |
| 36  | BLM31PG391SN1 | 20              | 390Ω (Typ.)                                 | 2000               | 0.05                            |  |
| 37  | BLM31PG601SN1 | 20              | 600Ω (Typ.)                                 | 1500               | 0.09                            |  |
| 38  | BLM41PG181SN1 | 20              | 180Ω (Typ.)                                 | 3000               | 0.025                           |  |
| 39  | BLM41PG471SN1 | 20              | 470Ω (Typ.)                                 | 2000               | 0.05                            |  |
| 40  | BLM41PG102SN1 | 20              | 1000Ω (Typ.)                                | 1500               | 0.09                            |  |
| 41  | BLM18RK121SN1 | 20              | 120Ω±25%                                    | 200                | 0.25                            |  |
| 42  | BLM18RK471SN1 | 20              | 470Ω±25%                                    | 200                | 0.5                             |  |
| 43  | BLM18RK601SN1 | 20              | 600Ω±25%                                    | 200                | 0.6                             |  |
| 44  | BLM18RK102SN1 | 20              | 1000Ω±25%                                   | 200                | 0.8                             |  |
| 45  | BLM18HK471SN1 | 20              | 470Ω±25%                                    | 200                | 0.7                             |  |
| 46  | BLM18HK601SN1 | 20              | 600Ω±25%                                    | 100                | 0.9                             |  |
| 47  | BLM18HK102SN1 | 20              | 1000Ω±25%                                   | 50                 | 1.5                             |  |
| 48  | BLM18EG121SN1 | 20              | 120Ω±25%                                    | 2000               | 0.04                            |  |
| 49  | BLM18EG221SN1 | 20              | 220Ω±25%                                    | 1000               | 0.15                            |  |
| 50  | BLM18EG471SN1 | 20              | 470Ω±25%                                    | 500                | 0.21                            |  |
| 51  | BLM18EG601SN1 | 20              | 600Ω±25%                                    | 500                | 0.35                            |  |

#### ●EKEMBL21B (Chip Ferrite Beads 0805 Size)

| No. | Part Number   | Quantity (pcs.) | Impedance typ.<br>(at 100MHz, 20 degrees C) | Rated Current (mA) | DC Resistance (Ω) max. |  |
|-----|---------------|-----------------|---------------------------------------------|--------------------|------------------------|--|
| 1   | BLM21AG121SN1 | 20              | 120Ω±25%                                    | 200                | 0.15                   |  |
| 2   | BLM21AG221SN1 | 20              | 220Ω±25%                                    | 200                | 0.20                   |  |
| 3   | BLM21AG471SN1 | 20              | 470Ω±25%                                    | 200                | 0.25                   |  |
| 4   | BLM21AG601SN1 | 20              | 600Ω±25%                                    | 200                | 0.30                   |  |
| 5   | BLM21AG102SN1 | 20              | 1000Ω±25%                                   | 200                | 0.45                   |  |

muRata

Continued from the preceding page.

| No. | Part Number   | Quantity (pcs.) | Impedance typ.<br>(at 100MHz, 20 degrees C) | Rated Current (mA) | DC Resistance (Ω) max. |
|-----|---------------|-----------------|---------------------------------------------|--------------------|------------------------|
| 6   | BLM21BB600SN1 | 20              | 60Ω±25%                                     | 200                | 0.20                   |
| 7   | BLM21BB750SN1 | 20              | 75Ω±25%                                     | 200                | 0.25                   |
| 8   | BLM21BB121SN1 | 20              | 120Ω±25%                                    | 200                | 0.25                   |
| 9   | BLM21BB221SN1 | 20              | 220Ω±25%                                    | 200                | 0.35                   |
| 10  | BLM21BB471SN1 | 20              | 470Ω±25%                                    | 470Ω±25% 200       |                        |
| 11  | BLM21BD121SN1 | 20              | 120Ω±25%                                    | 200                | 0.25                   |
| 12  | BLM21BD221SN1 | 20              | 220Ω±25%                                    | 200                | 0.25                   |
| 13  | BLM21BD471SN1 | 20              | 470Ω±25%                                    | 200                | 0.35                   |
| 14  | BLM21BD601SN1 | 20              | 600Ω±25%                                    | 200                | 0.35                   |
| 15  | BLM21BD102SN1 | 20              | 1000Ω±25%                                   | 200                | 0.40                   |
| 16  | BLM21BD182SN1 | 20              | 1800Ω±25%                                   | 200                | 0.50                   |
| 17  | BLM21BD222SN1 | 20              | 2250Ω (Typ.)                                | 200                | 0.60                   |
| 18  | BLM21BD222TN1 | 20              | 2200Ω±25%                                   | 200                | 0.60                   |
| 19  | BLM21BD272SN1 | 20              | 2700Ω±25%                                   | 200                | 0.80                   |

#### ●EKEMFL18B (Chip EMIFIL LC Combined Type)

| No. | Part Number                     | Quantity (pcs.)   | Cut-off Frequency | Rated Voltage | Rated Current  | Insulation Resistance (M $\Omega$ min.) | DC Resistance max. |
|-----|---------------------------------|-------------------|-------------------|---------------|----------------|-----------------------------------------|--------------------|
| 1   | NFL18ST107X1C3                  | 20                | 100MHz            | 16 V          | 100mA          | 1000                                    | 4.5Ω               |
| 2   | NFL18ST157X1C3                  | 20                | 150MHz            | 16 V 100mA    |                | 1000                                    | 4.0Ω               |
| 3   | NFL18ST207X1C3                  | NFL18ST207X1C3 20 |                   | 16 V          | 150mA          | 1000                                    | 3.5Ω               |
| 4   | NFL18ST307X1C3                  | 20                | 300MHz            | 16 V          | 200mA          | 1000                                    | 1.8Ω               |
| 5   | NFL18ST507X1C3                  | 20                | 500MHz            | 16 V          | 200mA          | 1000                                    | 1.5Ω               |
| 6   | NFL18SP157X1A3                  | 20                | 150MHz            | 10 V          | 100mA          | 1000                                    | 3.0Ω               |
| 7   | NFL18SP207X1A3                  | 20                | 200MHz            | 10 V          | 100mA          | 1000                                    | 3.0Ω               |
| 8   | NFL18SP307X1A3                  | NFL18SP307X1A3 20 |                   | 10 V          | 100mA          | 1000                                    | 3.0Ω               |
| 9   | NFL18SP507X1A3                  | 20                | 500MHz            | 10 V          | 100mA          | 1000                                    | 2.0Ω               |
| 10  | NFL21SP206X1C3                  | 20                | 20MHz             | 16 V          | 100mA          | 1000                                    | 8.5Ω               |
| 11  | NFL21SP506X1C3                  | 20                | 50MHz             | 16 V          | 150mA          | 1000                                    | 3.5Ω               |
| 12  | NFL21SP706X1C3                  | 20                | 70MHz             | 16 V          | 150mA          | 1000                                    | 3.0Ω               |
| 13  | NFL21SP107X1C3                  | 20                | 100MHz            | 16 V          | 200mA          | 1000                                    | 2.0Ω               |
| 14  | NFL21SP157X1C3                  | 20                | 150MHz            | 16 V          | 200mA          | 1000                                    | 2.0Ω               |
| 15  | NFL21SP207X1C3                  | 20                | 200MHz            | 16 V          | 250mA          | 1000                                    | 1.5Ω               |
| 16  | <b>NFL21SP307X1C3</b> 20 300MHz |                   | 300MHz            | 16 V          | 16 V 300mA 100 |                                         | 1.2Ω               |
| 17  | NFL21SP407X1C3                  | 20                | 400MHz            | 16 V          | 300mA          | 1000                                    | 1.2Ω               |
| 18  | NFL21SP507X1C3                  | 20                | 500MHz            | 16 V          | 300mA          | 1000                                    | 1.2Ω               |

| No. | Part Number    | Cut-off |           | Attenuation (dB min.) |          |          |          |          |          |          |          | Rated    | Rated |         |         |
|-----|----------------|---------|-----------|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|-------|---------|---------|
| NO. | Part Number    | (pcs.)  | Frequency | 10MHz                 | 20MHz    | 50MHz    | 100MHz   | 150MHz   | 200MHz   | 300MHz   | 400MHz   | 500MHz   | 1GHz  | Current | Voltage |
| 19  | NFW31SP106X1E4 | 20      | 10MHz     | 6dB max.              | 5        | 25       | 25       | -        | 25       | -        | -        | 30       | 30    | 200mA   | 25V     |
| 20  | NFW31SP206X1E4 | 20      | 20MHz     | -                     | 6dB max. | 5        | 25       | -        | 25       | -        | -        | 30       | 30    | 200mA   | 25V     |
| 21  | NFW31SP506X1E4 | 20      | 50MHz     | -                     | -        | 6dB max. | 10       | -        | 30       | -        | -        | 30       | 30    | 200mA   | 25V     |
| 22  | NFW31SP107X1E4 | 20      | 100MHz    | -                     | -        | -        | 6dB max. | -        | 5        | -        | -        | 20       | 30    | 200mA   | 25V     |
| 23  | NFW31SP157X1E4 | 20      | 150MHz    | -                     | -        | -        | -        | 6dB max. | -        | 10       | 20       | 30       | 30    | 200mA   | 25V     |
| 24  | NFW31SP207X1E4 | 20      | 200MHz    | -                     | -        | -        | -        | -        | 6dB max. | -        | -        | 10       | 30    | 200mA   | 25V     |
| 25  | NFW31SP307X1E4 | 20      | 300MHz    | -                     | -        | -        | -        | -        | -        | 6dB max. | -        | 5        | 15    | 200mA   | 25V     |
| 26  | NFW31SP407X1E4 | 20      | 400MHz    | -                     | -        | -        | -        | -        | -        | -        | 6dB max. | -        | 10    | 200mA   | 25V     |
| 27  | NFW31SP507X1E4 | 20      | 500MHz    | -                     | -        | -        | -        | -        | -        | -        | -        | 6dB max. | 10    | 200mA   | 25V     |





Continued from the preceding page.

#### ●EKEMFA31B (Chip EMIFIL Capacitor Array Type/ Capacitor Type/ LC Combined Type)

| No. | Part Number    | Quantity (pcs.) | Capacitance | Rated Voltage | Rated Current | Insulation Resistance (M $\Omega$ min.) |
|-----|----------------|-----------------|-------------|---------------|---------------|-----------------------------------------|
| 1   | NFA31CC220S1E4 | 20              | 22pF±20%    | 25 V          | 200mA         | 1000                                    |
| 2   | NFA31CC470S1E4 | 20              | 47pF±20%    | 25 V          | 200mA         | 1000                                    |
| 3   | NFA31CC101S1E4 | 20              | 100pF±20%   | 25 V          | 200mA         | 1000                                    |
| 4   | NFA31CC221S1E4 | 20              | 220pF±20%   | 25 V          | 200mA         | 1000                                    |
| 5   | NFA31CC471R1E4 | 20              | 470pF±20%   | 25 V          | 200mA         | 1000                                    |
| 6   | NFA31CC102R1E4 | 20              | 1000pF±20%  | 25 V          | 200mA         | 1000                                    |
| 7   | NFA31CC222R1E4 | 20              | 2200pF±20%  | 25 V          | 200mA         | 1000                                    |
| 8   | NFA31CC223R1C4 | 20              | 22000pF±20% | 16 V          | 200mA         | 1000                                    |
| 9   | NFA31GD1006R84 | 20              | 10pF±20%    | 6 V           | 50mA          | 1000                                    |
| 10  | NFA31GD1004704 | 20              | 10pF±20%    | 6 V           | 20mA          | 1000                                    |
| 11  | NFA31GD1001014 | 20              | 10pF±20%    | 6 V           | 15mA          | 1000                                    |
| 12  | NFA31GD4706R84 | 20              | 47pF±20%    | 6 V           | 50mA          | 1000                                    |
| 13  | NFA31GD4704704 | 20              | 47pF±20%    | 6 V           | 20mA          | 1000                                    |
| 14  | NFA31GD4701014 | 20              | 47pF±20%    | 6 V           | 15mA          | 1000                                    |
| 15  | NFA31GD1016R84 | 20              | 100pF±20%   | 6 V           | 50mA          | 1000                                    |
| 16  | NFA31GD1014704 | 20              | 100pF±20%   | 6 V           | 20mA          | 1000                                    |
| 17  | NFA31GD1011014 | 20              | 100pF±20%   | 6 V           | 15mA          | 1000                                    |

#### ●EKEMDL21D (Chip Common Mode Choke Coils)

| No. | Part Number   | Quantity (pcs.) | Common Mode Impedance typ.<br>(at 100MHz, 20 degrees C) | Rated Voltage | Rated Current | Insulation Resistance<br>(MΩ min.) |
|-----|---------------|-----------------|---------------------------------------------------------|---------------|---------------|------------------------------------|
| 1   | DLW21HN670SQ2 | 10              | 67Ω (Typ.)                                              | 50V           | 330mA         | 10                                 |
| 2   | DLW21HN900SQ2 | 10              | 90Ω (Typ.)                                              | 50V           | 330mA         | 10                                 |
| 3   | DLW21HN121SQ2 | 10              | 120Ω (Typ.)                                             | 50V           | 280mA         | 10                                 |
| 4   | DLW21HN181SQ2 | 10              | 180Ω (Typ.)                                             | 50V           | 250mA         | 10                                 |
| 5   | DLW21SN670SQ2 | 10              | 67Ω (Typ.)                                              | 50V           | 400mA         | 10                                 |
| 6   | DLW21SN900SQ2 | 10              | 90Ω (Typ.)                                              | 50V           | 330mA         | 10                                 |
| 7   | DLW21SN121SQ2 | 10              | 120Ω (Typ.)                                             | 50V           | 370mA         | 10                                 |
| 8   | DLW21SN181SQ2 | 10              | 180Ω (Typ.)                                             | 50V           | 330mA         | 10                                 |
| 9   | DLW21SN261SQ2 | 10              | 260Ω (Typ.)                                             | 50V           | 300mA         | 10                                 |
| 10  | DLW21SN371SQ2 | 10              | 370Ω (Typ.)                                             | 50V           | 280mA         | 10                                 |
| 11  | DLW31SN900SQ2 | 10              | 90Ω (Typ.)                                              | 50V           | 370mA         | 10                                 |
| 12  | DLW31SN161SQ2 | 10              | 160Ω (Typ.)                                             | 50V           | 340mA         | 10                                 |
| 13  | DLW31SN261SQ2 | 10              | 260Ω (Typ.)                                             | 50V           | 310mA         | 10                                 |
| 14  | DLW31SN601SQ2 | 10              | 600Ω (Typ.)                                             | 50V           | 260mA         | 10                                 |
| 15  | DLW31SN102SQ2 | 10              | 1000Ω (Typ.)                                            | 50V           | 230mA         | 10                                 |
| 16  | DLW31SN222SQ2 | 10              | 2200Ω (Typ.)                                            | 50V           | 200mA         | 10                                 |
| 17  | DLW5AHN402SQ2 | 5               | 4000Ω (Typ.)                                            | 50V           | 200mA         | 10                                 |
| 18  | DLW5BSN302SQ2 | 5               | 3000Ω (Typ.)                                            | 50V           | 500mA         | 10                                 |
| 19  | DLW5BSN152SQ2 | 5               | 1500Ω (Typ.)                                            | 50V           | 1000mA        | 10                                 |
| 20  | DLW5BSN102SQ2 | 5               | 1000Ω (Typ.)                                            | 50V           | 1500mA        | 10                                 |
| 21  | DLW5BSN351SQ2 | 5               | 350Ω (Typ.)                                             | 50V           | 2000mA        | 10                                 |
| 22  | DLW5BSN191SQ2 | 5               | 190Ω (Typ.)                                             | 50V           | 5000mA        | 10                                 |
| 23  | DLP11SN900SL2 | 10              | 90Ω (Typ.)                                              | 5V            | 160mA         | 100                                |
| 24  | DLP11SN121SL2 | 10              | 120Ω (Typ.)                                             | 5V            | 140mA         | 100                                |
| 25  | DLP11SN161SL2 | 10              | 160Ω (Typ.)                                             | 5V            | 120mA         | 100                                |
| 26  | DLP11SN201SL2 | 10              | 200Ω (Typ.)                                             | 5V            | 130mA         | 100                                |
| 27  | DLP31DN900ML4 | 10              | 90Ω±20%                                                 | 10V           | 160mA         | 100                                |
| 28  | DLP31DN131ML4 | 10              | 130Ω±20%                                                | 10V           | 120mA         | 100                                |
| 29  | DLP31DN201ML4 | 10              | 200Ω±20%                                                | 10V           | 100mA         | 100                                |
| 30  | DLP31DN321ML4 | 10              | 320Ω±20%                                                | 10V           | 80mA          | 100                                |
| 31  | DLP31DN441ML4 | 10              | 440Ω±20%                                                | 10V           | 70mA          | 100                                |

Continued from the preceding page.

#### **●**EKEMNFMPC

| No. | Part Number    | Quantity (pcs.) | Capacitance     | Rated Voltage | Rated Current | Insulation Resistance (M $\Omega$ min.) |
|-----|----------------|-----------------|-----------------|---------------|---------------|-----------------------------------------|
| 1   | NFM18PC104R1C3 | 20              | 0.1μF±20%       | 16 V          | 2A            | 1000                                    |
| 2   | NFM18PC224R0J3 | 20              | 0.22μF±20%      | 6.3 V         | 2A            | 1000                                    |
| 3   | NFM18PC474R0J3 | 20              | 0.47μF±20%      | 6.3 V         | 2A            | 1000                                    |
| 4   | NFM18PC105R0J3 | 20              | 1μF±20%         | 6.3 V         | 2A            | 500                                     |
| 5   | NFM18PS474R0J3 | 20              | 0.47μF±20%      | 6.3 V         | 2A            | 1000                                    |
| 6   | NFM21PC104R1E3 | 20              | 0.1μF±20%       | 25 V          | 2A            | 1000                                    |
| 7   | NFM21PC224R1C3 | 20              | 0.22μF±20%      | 16 V          | 2A            | 1000                                    |
| 8   | NFM21PC474R1C3 | 20              | 0.47μF±20%      | 16 V          | 2A            | 1000                                    |
| 9   | NFM21PC105B1A3 | 20              | 1μF±20%         | 10 V          | 4A            | 500                                     |
| 10  | NFM21PC105B1C3 | 20              | 1μF±20%         | 16 V          | 4A            | 500                                     |
| 11  | NFM21PC225B0J3 | 20              | 2.2μF±20%       | 6.3 V         | 4A            | 200                                     |
| 12  | NFE31PT152Z1E9 | 20              | 1500pF +50/-20% | 25 V          | 6A            | 1000                                    |
| 13  | NFE31PT222Z1E9 | 20              | 2200pF±50%      | 25 V          | 6A            | 1000                                    |
| 14  | NFE61PT102E1H9 | 20              | 1000pF +80/-20% | 50 V          | 2A            | 1000                                    |
| 15  | NFE61PT472C1H9 | 20              | 4700pF +80/-20% | 50 V          | 2A            | 1000                                    |
| 16  | NFM41PC204F1H3 | 20              | 0.2μF +80/-20%  | 50 V          | 2A            | 1000                                    |
| 17  | NFM41PC155B1E3 | 20              | 1.5μF±20%       | 25 V          | 6A            | 300                                     |

#### ● EKEMNFMCA

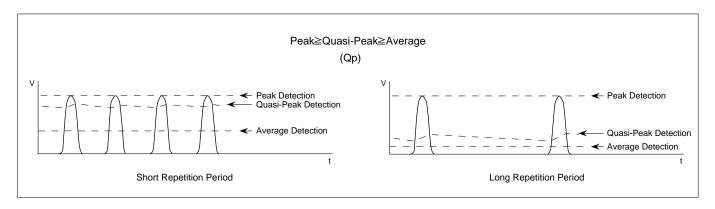
| No. | Part Number    | Quantity (pcs.) | Capacitance | Rated Voltage | Rated Current | Insulation Resistance (M $\Omega$ min.) |
|-----|----------------|-----------------|-------------|---------------|---------------|-----------------------------------------|
| 1   | NFM18CC220U1C3 | 20              | 22pF±20%    | 16 V          | 400mA         | 1000                                    |
| 2   | NFM18CC470U1C3 | 20              | 47pF±20%    | 16 V          | 400mA         | 1000                                    |
| 3   | NFM18CC101R1C3 | 20              | 100pF±20%   | 16 V          | 500mA         | 1000                                    |
| 4   | NFM18CC221R1C3 | 20              | 220pF±20%   | 16 V          | 500mA         | 1000                                    |
| 5   | NFM18CC471R1C3 | 20              | 470pF±20%   | 16 V          | 500mA         | 1000                                    |
| 6   | NFM18CC102R1C3 | 20              | 1000pF±20%  | 16 V          | 600mA         | 1000                                    |
| 7   | NFM18CC222R1C3 | 20              | 2200pF±20%  | 16 V          | 700mA         | 1000                                    |
| 8   | NFM18CC223R1C3 | 20              | 22000pF±20% | 16 V          | 1000mA        | 1000                                    |
| 9   | NFM21CC220U1H3 | 20              | 22pF±20%    | 50 V          | 700mA         | 1000                                    |
| 10  | NFM21CC470U1H3 | 20              | 47pF±20%    | 50 V          | 700mA         | 1000                                    |
| 11  | NFM21CC101U1H3 | 20              | 100pF±20%   | 50 V          | 700mA         | 1000                                    |
| 12  | NFM21CC221R1H3 | 20              | 220pF±20%   | 50 V          | 700mA         | 1000                                    |
| 13  | NFM21CC471R1H3 | 20              | 470pF±20%   | 50 V          | 1000mA        | 1000                                    |
| 14  | NFM21CC102R1H3 | 20              | 1000pF±20%  | 50 V          | 1000mA        | 1000                                    |
| 15  | NFM21CC222R1H3 | 20              | 2200pF±20%  | 50 V          | 1000mA        | 1000                                    |
| 16  | NFM21CC223R1H3 | 20              | 22000pF±20% | 50 V          | 2000mA        | 1000                                    |



#### 1. EMI Regulations

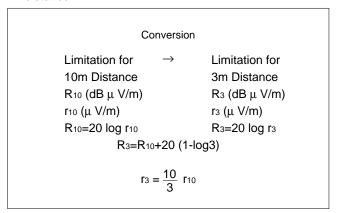
| Ec       | Countries                                                                                             | Information Regulation                                                                | Japan                                       | USA                                     | Europe                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|
|          | Generic Standard                                                                                      | CISPR61000-6-3 (Residential, Commercial and Light Industry) IEC61000-6-4 (Industrial) |                                             |                                         | EN50081-1 (Residential, Commercial and Light Industry) EN50081-2 (Industrial)             |
|          | ITE: Information Technology<br>Equipment<br>Printers, Personal computers<br>Word processors, Displays | CISPR 22                                                                              | VCCI<br>*1                                  | FCC Part 15<br>Subpart B                | EN55022                                                                                   |
|          | ISM equipment, Microwaves                                                                             | CISPR 11                                                                              | *1                                          | FCC Part 18                             | EN55011                                                                                   |
| sion     | Igniter<br>(Automobiles, Motorboats)                                                                  | CISPR 12                                                                              | JASO                                        | FCC Part 15<br>Subpart B                | Automotive<br>Directive                                                                   |
| Emission | TVs, Radios, Audios, VTRs                                                                             | CISPR 13                                                                              | *1                                          | FCC Part 15<br>Subpart B                | EN55013                                                                                   |
|          | Household electrical equipment Portable tools                                                         | CISPR 14                                                                              | *1                                          |                                         | EN55014                                                                                   |
|          | Fluorescent Lamps, Luminarys                                                                          | CISPR 15                                                                              | *1                                          | FCC Part 18                             | EN55015                                                                                   |
|          | Transceivers                                                                                          | ITU-T                                                                                 | Radio Act<br>ARIB<br>(Voluntary Regulation) | FCC Part 15<br>Subpart C<br>FCC Part 22 | ETS300 Series                                                                             |
|          | (Reference) Power Supplies<br>Higher Harmonics                                                        | IEC61000-3                                                                            | Industrial Voluntary<br>Regulation          |                                         | EN61000-3                                                                                 |
|          | Basic Standard                                                                                        | IEC61000-4                                                                            | In the process of Regulating at JIS         |                                         | EN61000-4 Series                                                                          |
| Immunity | Generic Standard                                                                                      | IEC61000-6-1 (Residential, Commercial and Light Industry) IEC61000-6-2 (Industrial)   | In the process of<br>Regulating at JIS      |                                         | EN50082-1<br>(Residential, Commercial<br>and Light Industry)<br>EN50082-2<br>(Industrial) |
| ımı      | Industrial Process Measurement and Control Equipment                                                  |                                                                                       |                                             |                                         |                                                                                           |
|          | Radios, TVs                                                                                           | CISPR 20                                                                              | Industrial Voluntary<br>Action              |                                         | EN55020                                                                                   |
|          | ITE: Information Technology<br>Equipment                                                              | CISPR 24                                                                              |                                             |                                         | EN55024                                                                                   |

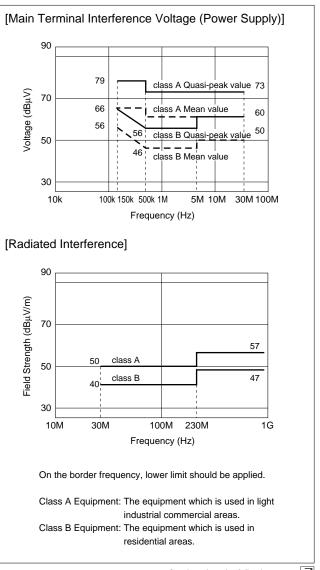
\*1 Electrical Appliance and Material Safety Law


There are EMI regulations in each country to meet EMI noise levels emitted from digital equipment. In the countries which regulate EMI, equipment which does not satisfy regulations is not allowed to be sold.

muRata

 $\begin{tabular}{|c|c|c|c|}\hline \searrow \\ \hline \end{tabular}$  Continued from the preceding page.


#### 2. Measurement Point and Noise Detection


| Regulation  | Measuring Item            | Polarization and Measuring Point | Frequency (Hz) | Detection                           | Measuring Devices       |
|-------------|---------------------------|----------------------------------|----------------|-------------------------------------|-------------------------|
| CISPR 22/   | Radiated Interference     | Horizontal Pol. Vertical Pol.    | 30M to 1GHz    | Quasi-Peak Detection                | Antenna                 |
| EN55022     | Main Interference Voltage | AC Main Ports                    | 150k to 30MHz  | Quasi-Peak Detection Mean Detection | Artificial Main Network |
| VCCI        | Radiated Interference     | Horizontal Pol. Vertical Pol.    | 30M to 1GHz    | Quasi-Peak Detection                | Dipole Antenna          |
| VCCI        | Main Interference Voltage | AC Main Ports                    | 150k to 30MHz  | Quasi-Peak Detection Mean Detection | Artificial Main Network |
| FCC Part 15 | Radiated Interference     | Horizontal Pol. Vertical Pol.    | 30M to 40GHz   | Quasi-Peak Detection Mean Detection | Antenna                 |
| PCC Part 15 | Main Interference Voltage | AC Main Ports                    | 150k to 30MHz  | Quasi-Peak Detection                | Artificial Main Network |



#### 3. Limits of CISPR 22/EN55022

(1) CISPR 22 recommends measurement at 10m distance. However, other distance is acceptable if the limitation is converted according to the following calculation. Limitation shown left is converted to limitation for 3m distance.





Continued from the preceding page.

(2) Scope of CISPR 22 Regulation This regulation applies to information technology equipment (ITE) which is defined as:

- (a) Equipment that receives data from external signal sources:
- (b) Equipment that processes received data;
- (c) Equipment that outputs data; and
- (d) Equipment that has less than 600V rated voltage in power supply.

#### 4. Limits of VCCI Voluntary Regulation

- (1) VCCI recommends measurement at 10m distance; 3m or 30m distance measurements are also allowed.
- (2) Scope of VCCI Voluntary Regulation This regulation applies to information technology equipment (same as CISPR Pub.22), but the application is excluded on the following equipment:
  - · Equipment for which other regulations already exist (e.g., household electrical appliances, radio and TV receivers)
  - · In station equipment principal purpose of which is electrical communication
  - · Industrial plant control system for which information processing is a secondary system function
  - · Industrial, commercial and medical testing and measuring systems for which data processing is a secondary system function
  - · Information equipment for which CISPR is conducting further deliberation

VCCI is the acronym of Voluntary Control Council for Interference by Data Processing Equipment and Electronic Office Machines.

VCCI is organized by the following organizations:

- · Japan Electronics and Information Technology Industries Association (JEITA)
- · Japan Business Machine and Information System Industries Association (JBMIA)
- · Communication and Information Network Association of Japan (CIAJ)

#### [CISPR Regulations]

CISPR 10 Organization, Regulations and Procedures of CISPR

CISPR 11 Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment

CISPR 12 Vehicles, Motor Boats and Spark-Ignited Engine driven

CISPR 13 Sound and Television Receivers

CISPR 14 Household Electrical Appliances, Portable Tools and Similar **Electrical Apparatus** 

CISPR 15 Fluorescent Lamps and luminaries

CISPR 16 Radio Interference Measuring Apparatus and Measurement Methods

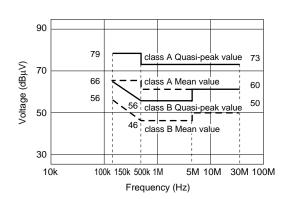
CISPR 17 Passive Radio Interference Filters and Suppression Components

CISPR 18 Power Transmission Cables and High Voltage equipment

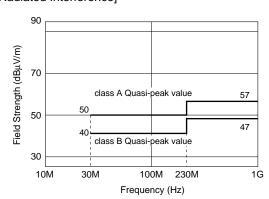
CISPR 19 Microwave Ovens for Frequencies above 1GHz

CISPR 20 Immunity of Sound and TV Broadcast Receivers and Associated Equipment

CISPR 21 Interference to Mobile Radio communications in the Presence of Impulsive Noise


CISPR 22 Information Technology Equipment

CISPR 23 Industrial Scientific and Medical (ISM) Equipment


CISPR 24 Immunity Regulation of Information Technology Equipment

CISPR 25 Receiver used on board vehicles, boats, and on devices

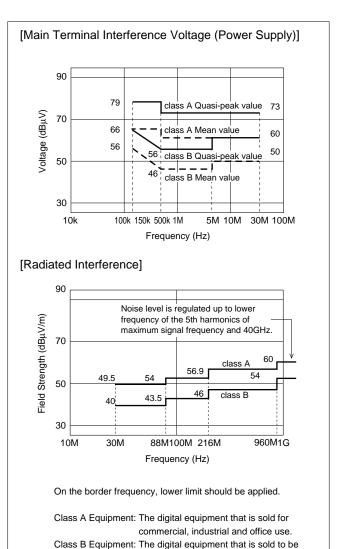
#### [Main Terminal Interference Voltage (Power Supply)]



#### [Radiated Interference]



On the border frequency, lower limit should be applied.


Class B ITE: Equipment that is designed to be used at home. Class A ITE: Equipment that does not meet interference limits of class B equipment, but satisfies interference limits of class A equipment.



- Continued from the preceding page.
- 5. Limits of FCC Part 15 Subpart B
- (1) Class A recommended to be measured with 10m distance. Class B recommended to be measured with 3m distance.
- (2) The FCC Part 15 regulation controls radiated interference by establishing quasi-peak and mean value limits for frequencies ranging from 30MHz to 40GHz (or maximum frequency's fifth harmonic, whichever is lower). For AC main ports, the FCC Part 15 regulation controls main terminal interference voltage by establishing quasipeak value limits for frequencies ranging from 450kHz to 30MHz.

Measurement Frequency Range for Radiated Interference

| Maximum Frequency<br>the Equipment Internally<br>Generates, Uses or Operates<br>or Synchronizes (MHz) | Upper End of Measurement<br>Frequency Range<br>(MHz)                  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Less than 1.705                                                                                       | 30                                                                    |
| 1.705 to 108                                                                                          | 1000                                                                  |
| 108 to 500                                                                                            | 2000                                                                  |
| 500 to 1000                                                                                           | 5000                                                                  |
| Over 1000                                                                                             | Maximum Frequency's Fifth<br>Harmonic or 40GHz,<br>Whichever is Lower |



(3) There is no regulation on power interference.

#### [FCC Regulations]

Part 1 Procedures

Part 2 Frequency Division and Radio Wave Treaty Issues and General Rules

Part 15 Radio Wave Equipment

- Intentionally electromagnetic radiation equipment
- Non-intentionally electromagnetic radiation equipment

used in residential areas.

- Incidentally electromagnetic radiation equipment
- Part 18 Industrial, Scientific and Medical Equipment
- Part 22 Public Mobile Wireless Operations
- Part 68 Connecting Terminal Equipment to Telephone Circuit Network

Part 76 Cable Television





Continued from the preceding page.

6. Immunity Regulations in Europe Union

All electric/electronic equipment cannot be sold in Europe without CE marking. To use CE marking, they must satisfy related EC directives such as EMC directives. For Information Technology Equipment, in EMC directive, emission regulations are integrated, and immunity regulations are applied. Although these immunity regulations are prepared by CENELEC, almost all contents are same as standards issued by IEC or CISPR.

All products which are sold in EU must satisfy EC directives which contain immunity regulations.

| Principal EC Directive                    |                         |  |  |  |
|-------------------------------------------|-------------------------|--|--|--|
| EMC Directive                             | 89/336/EEC<br>92/31/EEC |  |  |  |
| Low-Voltage Electrical Products Directive | 73/23/EEC               |  |  |  |
| Machines Directive                        | 89/392/EEC              |  |  |  |

#### 7. Immunity Regulations in Japan

| Equipment                              | Association                                                                                                           |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| TV, Radio, Audio                       | JEITA (Japan Electronics and Information Technology)                                                                  |  |
| ITE                                    |                                                                                                                       |  |
| Office Machine                         | JBMIA (Japan Business Machine and Information System Industries Association)                                          |  |
| Mi                                     | CIAJ (Communication and Information Network Association of Japan) ARIB (Association of Radio Industries and Business) |  |
| Machine To Builders                    | JMTBA (Japan Machine Tool Builders' Association)                                                                      |  |
| Industrial Measuring Control Equipment | JEMIMA (Japan Electric Measuring Instruments Manufacturers' Association)                                              |  |
| Industrial Robot                       | JARA (Japan Robot Association)                                                                                        |  |

The table on the right shows the preparation situation of JIS for EMC. At this moment, the immunity standards by JIS does not have a legal force like Electrical Application and Material Safety Law/VCCI.

| Classification      | Classification Information Regulation |                   |
|---------------------|---------------------------------------|-------------------|
| Terms               | ISO60050-161<br>(IEV terms 161)       | JIS C 0161        |
| Basic Standard      | IEC61000-4- 2                         | JIS C 1000-4-2    |
|                     | IEC61000-4- 3                         | JIS C 1000-4-3    |
|                     | IEC61000-4- 4                         | JIS C 1000-4-4    |
|                     | IEC61000-4- 5                         | JIS C 1000-4-5    |
|                     | IEC61000-4- 6                         | JIS C 1000-4-6    |
|                     | IEC61000-4- 7                         | JIS C 1000-4-7    |
|                     | IEC61000-4-8                          |                   |
|                     | IEC61000-4-11                         |                   |
|                     | IEC61000-4-14                         |                   |
|                     | IEC61000-4-17                         | Under preparation |
| Carraria Charadanal | IEC61000-6-1                          |                   |
| Generic Standard    | IEC61000-6-2                          | <u> </u>          |



#### 1. Function of DC EMI Suppression Filters

DC EMI suppression filters absorb and eliminate high frequency noise which may produce electromagnetic interference in PC board circuits.

These filters are used in secondary circuits, and are small in size and light in weight, which further enhances their excellent noise suppression functions.

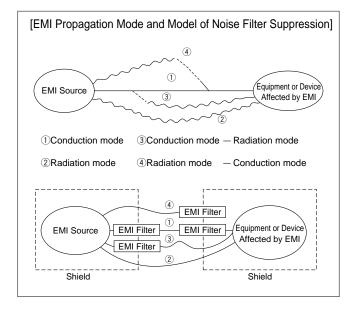
Chip and adhesive type filters can be mounted on PC boards automatically.

These filters are effective in the suppression of radiation noise in computers, peripheral equipment, and digital circuit application equipment (including various types of microcomputer application equipment), and function to suppress noise in audio/visual equipment, which uses digital memory chips and DSP.

These filters are also effective for improving the noise immunity of equipment used in noisy environments (such as electronic equipment for automobiles).

#### 2. Noise Filter Suppression Principles

Generally, noise problems occur when the noise source and electronic equipment sensitive to the influence of noise are located in close proximity to one another. In such situations, as shown in Figure at right, noise is conducted through a conductor, which produces an inductive field around the noise source.


To overcome such noise problems, it is preferable to reduce the amount of noise generated by the noise source or improve the noise resistance of adjacent equipment.

In order to satisfy equipment performance specifications and eliminate noise effectively at the same time, however, it is customary to reduce the amount of noise generated by the noise source, if it can't be eliminated altogether.

#### 3. Configuration of EMI Suppression Filters (DC) DC EMI suppression filters are used to suppress noise produced by conductors. Noise radiation can be suppressed, if it is eliminated with a filter in advance. Generally, such noise suppression is achieved with DC EMI suppression filters, according to the capacitive and inductive frequency characteristics of the respective conductors in the circuit.

Filters of this kind can be roughly divided into those:

- (1) employing a capacitor,
- (2) employing an inductor,
- (3) employing a capacitor and inductor combination.







Continued from the preceding page.

#### 4. Capacitive Noise Suppression

When a capacitor is connected (bypass capacitor) to ground from a noisy signal line or power line, the circuit impedance decreases as the frequency increases. Since noise is a high frequency phenomenon, it flows to ground if a capacitor has been connected to ground, thereby making it possible to eliminate noise. (See Fig.) EMI suppression filters employing a capacitor in this way are used to eliminate this type of noise.

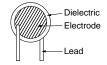
#### 5. High frequency Capacitor Characteristics Used for EMI Suppression Filters

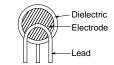
Even general-purpose capacitors can be used for noise suppression. However, since noise has an extremely high frequency range, general-purpose capacitors may not function as effective bypass capacitors, due to the large residual inductance built into the capacitor. All the capacitors used in Murata's EMI suppression filters employ a three terminal structure or thru-type structure, which functions effectively even at high frequencies, thereby minimizing the influence of residual

inductance. Consequently, an effective filter circuit can be

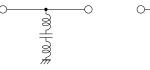
formed even at frequencies exceeding 1GHz.

(Refer to Fig.)


[Capacitive Noise Suppression] Noise+Signal/DC Power Signal/DC Power Frequency c: Capacitance Value

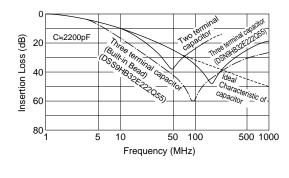

[Equivalent circuit of general-purpose capacitor and three terminal capacitor in the high frequency area and comparison of insertion loss]

(a) Construction of capacitor


Two terminal capacitor

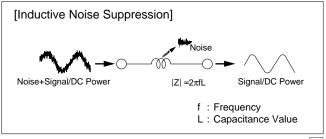
Three terminal capacitor






(b) Equivalent circuit of capacitors which is concerning ESL effect.






(c) Improvement of Insertion Loss Characteristics



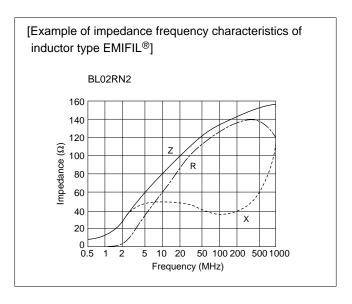
#### 6. Inductive Noise Suppression

When an inductor is inserted in series in a noise producing circuit (See Fig.), its impedance increases with frequency. In this configuration it is possible to attenuate and eliminate noise components (high frequency components). The Murata EMI suppression filter functions in this way.





[Equivalent Circuit]


Continued from the preceding page.

#### 7. Characteristics of Inductors Used in EMI Suppression Filters

General-purpose inductors also function to suppress noise when configured in series with a noise producing circuit. However, when general-purpose inductors are used, resonance may result in peripheral circuits, signal wave forms may become distorted, and satisfactory impedance may not be obtained at noise frequencies (due to insufficient high frequency impedance characteristics).

The inductors used for Murata's EMI suppression filters are designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted. And since sufficient impedance is obtained for frequencies ranging to hundreds of MHz, these specifically designed inductors operate effectively to suppress high-frequency noise. (See Fig.)

# (Resistance element becomes dominant at high frequency.)



#### 8. Capacitive-Inductive EMI Suppression Filters

If capacitive and inductive suppression characteristics are combined, it is possible to configure a much higher performance filter. In signal circuit applications where this combination is applied, noise suppression effects which have little influence on the signal wave form become possible.

This type of filter is also effective in the suppression of high-speed signal circuit noise. When used in DC power circuits, capacitive-inductive filters prevent resonance from occurring in peripheral circuits, thus making it possible to achieve significant noise suppression under normal service conditions.

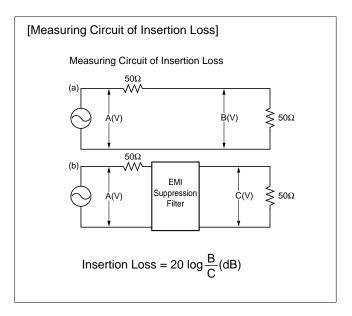
#### 9. Other EMI Suppression Filters

In addition to the capacitive-inductive filter, Murata also has an EMI suppression filter (EMIGUARD®) combining a capacitor with a varistor, useful for surge absorption; and a common mode choke coil effective, for common mode noise suppression.

Murata also has a range of built-in filter connectors which greatly reduce filter mounting space requirements.








Continued from the preceding page.

#### 10. Expressing EMI Suppression Filter Effects

EMI Suppression Filter effects are expressed in terms of the insertion loss measured in the circuit, normally specified in MIL-STD 220A. As shown in the  $50\Omega$ impedance circuit in the Figure at right, insertion loss is represented by the logarithmic ratio of the circuit output voltage with and without a filter in the circuit, which is multiplied by 20 and expressed in dB.

Therefore, an insertion loss of 20dB indicates an output voltage ratio (B/C) of 1/10, and an insertion loss of 40dB indicates an output voltage ratio (B/C) of 1/100.









# Murata EMI Filter Selection Simulator Ver. 2.8.0

# Link function to the web catalog has been added -



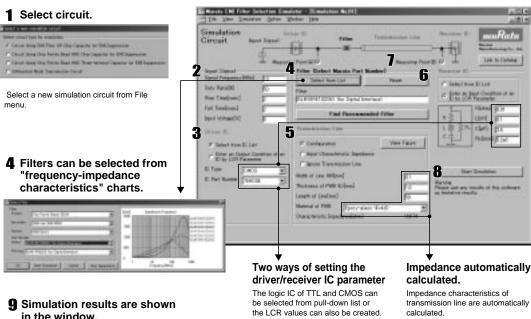
(Select a new simulation circuit from File menu.)

- Enter "Input Signal".
- 3 Set Driver IC.
- 4 Select filter.

(EMI filters or/and chip capacitor from the pulldown list.)

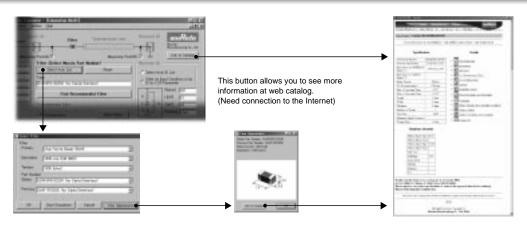
Set 51 **Transmission** Line.

Set Receiver IC.


Click measuring point.

(Only for chip ferrite bead)

- Click "Start Simulation" button.
- **Simulation** results are displayed.




- Results can be displayed in standard format or user defined scaling.
- Simulates various types of circuit such as Differential Mode Transmission, ceramic capacitor, EMIFIL®, three terminal capacitor and chip ferrite beads.
- Provides a simulation function that selects best suited Chip EMIFIL<sup>®</sup>.



9 Simulation results are shown in the window.

#### Link to the web catalog is available NEW



EMIFIL® is the trademark of Murata Manufacturing Co., Ltd.

This simulator can be downloaded from Murata web site.

http://www.murata.com/emi/



#### ♠ Note:

1. Export Control

(For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
  - 1 Aircraft equipment
- ② Aerospace equipment④ Power plant equipment
- 3 Undersea equipment5 Medical equipment
- (6) Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment
- S Disaster prevention / crime prevention equipment
- Data-processing equipment
- n Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of January 2005. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.



http://www.murata.com/