

SCCS065C - August 1994 - Revised September 2001

#### **Features**

- Ioff supports partial-power-down mode operation
- Edge-rate control circuitry for significantly improved noise characteristics
- Typical output skew < 250 ps
- ESD > 2000V
- TSSOP (19.6-mil pitch) and SSOP (25-mil pitch) packages
- Industrial temperature range of -40°C to +85°C
- $V_{CC} = 5V \pm 10\%$

#### CY74FCT16952T Features:

- · 64 mA sink current, 32 mA source current
- Typical V<sub>OLP</sub> (ground bounce) <1.0V at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C

#### CY74FCT162952T Features:

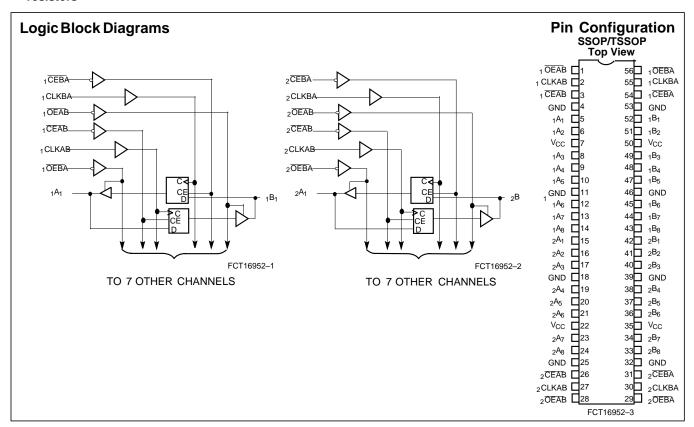
- · Balanced 24 mA output drivers
- · Reduced system switching noise
- Typical V<sub>OLP</sub> (ground bounce) <0.6V at V<sub>CC</sub> = 5V, T<sub>A</sub>= 25°C

#### CY74FCT162H952T Features:

- · Bus hold retains last active state
- Eliminates the need for external pull-up or pull-down resistors

# **16-Bit Registered Transceivers**

## **Functional Description**


These 16-bit registered transceivers are high-speed, low-power devices. 16-bit operation is achieved by connecting the control lines of the two 8-bit registered transceivers together. For data flow from bus A-to-B, CEAB must be LOW to allow data to be stored when CLKAB transitions from LOW-to-HIGH. The stored data will be present on the output when OEAB is LOW. Control of data from B-to-A is similar and is controlled by using the CEBA, CLKBA, and OEBA inputs.

This device is fully specified for partial-power-down applications using  $I_{\rm off}$ . The  $I_{\rm off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The CY74FCT16952T is ideally suited for driving high-capacitance loads and low-impedance backplanes.

The CY74FCT162952T has 24-mA balanced output drivers with current-limiting resistors in the outputs. This reduces the need for external terminating resistors and provides for minimal undershoot and reduced ground bounce. The CY74FCT162952T is ideal for driving transmission lines.

The CY74FCT162H952T is a 24-mA balanced output part that has "bus hold" on the data inputs. The device retains the input's last state whenever the input goes to high impedance. This eliminates the need for pull-up/down resistors and prevents floating inputs.





## **Pin Description**

| Name  | Description                                                     |
|-------|-----------------------------------------------------------------|
| OEAB  | A-to-B Output Enable Input (Active LOW)                         |
| OEBA  | B-to-A Output Enable Input (Active LOW)                         |
| CEAB  | A-to-B Clock Enable Input (Active LOW)                          |
| CEBA  | B-to-A Clock Enable Input (Active LOW)                          |
| CLKAB | A-to-B Clock Input                                              |
| CLKBA | B-to-A Clock Input                                              |
| А     | A-to-B Data Inputs or B-to-A Three-State Outputs <sup>[1]</sup> |
| В     | B-to-A Data Inputs or A-to-B Three-State Outputs <sup>[1]</sup> |

## Function Table<sup>[2, 3]</sup>

For A-to-B (Symmetric with B-to-A)

|      | Inputs            |   |   |                  |  |  |  |
|------|-------------------|---|---|------------------|--|--|--|
| CEAB | CEAB CLKAB OEAB A |   |   |                  |  |  |  |
| Н    | Х                 | L | Х | B <sup>[4]</sup> |  |  |  |
| Х    | L                 | L | Х | B <sup>[4]</sup> |  |  |  |
| L    |                   | L | L | L                |  |  |  |
| L    |                   | L | Н | Н                |  |  |  |
| Х    | Х                 | Н | Х | Z                |  |  |  |

## Maximum Ratings<sup>[5, 6]</sup>

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-55°C to +125°C Ambient Temperature with DC Input Voltage ...... -0.5V to +7.0V DC Output Voltage...... -0.5V to +7.0V DC Output Current (Maximum Sink Current/Pin) .....-60 to +120 mA Power Dissipation ......1.0W Static Discharge Voltage.....>2001V (per MIL-STD-883, Method 3015)

## **Operating Range**

| Range      | Ambient<br>Temperature | V <sub>CC</sub> |
|------------|------------------------|-----------------|
| Industrial | -40°C to +85°C         | 5V ± 10%        |

#### Notes:

- On the CY74FCT162H952T these pins have bus hold.

  A-to-B data flow is shown: B-to-A data flow is similar but uses, \(\overline{CEBA}\), CLKBA, and \(\overline{OEBA}\).

  L = LOW Voltage Level.

  X = Don't Care.
- ✓ = LOW-to-HIGH Transition.

  Z = HIGH Impedance.

  Level of B before the indicated steady-state input conditions were established.

  Operation beyond the limits set forth may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V<sub>CC</sub> or ground.



## **Electrical Characteristics** Over the Operating Range

| Parameter         | Description                                             |                               | Test (                              | Conditions                           | Min. | Typ. <sup>[7]</sup> | Max. | Unit |
|-------------------|---------------------------------------------------------|-------------------------------|-------------------------------------|--------------------------------------|------|---------------------|------|------|
| V <sub>IH</sub>   | Input HIGH Voltage                                      |                               |                                     |                                      | 2.0  |                     |      | V    |
| V <sub>IL</sub>   | Input LOW Voltage                                       |                               |                                     |                                      |      |                     | 0.8  | V    |
| V <sub>H</sub>    | Input Hysteresis <sup>[8]</sup>                         |                               |                                     |                                      |      | 100                 |      | mV   |
| V <sub>IK</sub>   | Input Clamp Diode Voltage                               |                               | V <sub>CC</sub> =Min.,              | I <sub>IN</sub> = –18 mA             |      | -0.7                | -1.2 | V    |
| I <sub>IH</sub>   | Input HIGH Current                                      | Standard                      | V <sub>CC</sub> =Max.,              | V <sub>I</sub> =V <sub>CC</sub>      |      |                     | ±1   | μΑ   |
|                   |                                                         | Bus Hold                      |                                     |                                      |      |                     | ±100 |      |
| I <sub>IL</sub>   | Input LOW Current                                       | Standard                      | V <sub>CC</sub> =Max.,              | V <sub>I</sub> =GND                  |      |                     | ±1   | μΑ   |
|                   |                                                         | Bus Hold                      |                                     |                                      |      |                     | ±100 | μΑ   |
| I <sub>BBH</sub>  | Bus Hold Sustain Current on Bu                          | is Hold Input <sup>[9]</sup>  | V <sub>CC</sub> =Min.               | V <sub>I</sub> =2.0V                 | -50  |                     |      | μΑ   |
| I <sub>BBL</sub>  |                                                         |                               |                                     | V <sub>I</sub> =0.8V                 | +50  |                     |      | μΑ   |
| I <sub>BHHO</sub> | Bus Hold Overdrive Current on E                         | Bus Hold Input <sup>[9]</sup> | V <sub>CC</sub> =Max.,              | V <sub>I</sub> =1.5V                 |      |                     | TBD  | mA   |
| I <sub>OZH</sub>  | High Impedance Output Curren Output pins)               | t (Three-State                | V <sub>CC</sub> =Max.,              | V <sub>OUT</sub> =2.7V               |      |                     | ±1   | μА   |
| I <sub>OZL</sub>  | High Impedance Output Current (Three-State Output pins) |                               | V <sub>CC</sub> =Max.,              | V <sub>OUT</sub> =0.5V               |      |                     | ±1   | μА   |
| Ios               | Short Circuit Current <sup>[10]</sup>                   |                               | V <sub>CC</sub> =Max.,              | V <sub>OUT</sub> =GND                | -80  | -140                | -200 | mA   |
| Io                | Output Drive Current <sup>[10]</sup>                    |                               |                                     | V <sub>OUT</sub> =2.5V               | -50  |                     | -180 | mA   |
| I <sub>OFF</sub>  | Power-Off Disable                                       |                               | V <sub>CC</sub> =0V, V <sub>C</sub> | <sub>OUT</sub> ≤4.5V <sup>[11]</sup> |      |                     | ±1   | μΑ   |

## **Output Drive Characteristics for CY74FCT16952T**

| Parameter       | Description         | Test Conditions                                 | Min. | <b>Typ.</b> <sup>[7]</sup> | Max. | Unit |
|-----------------|---------------------|-------------------------------------------------|------|----------------------------|------|------|
| V <sub>OH</sub> | Output HIGH Voltage | V <sub>CC</sub> =Min., I <sub>OH</sub> = -3 mA  | 2.5  | 3.5                        |      | V    |
|                 |                     | V <sub>CC</sub> =Min., I <sub>OH</sub> = -15 mA | 2.4  | 3.5                        |      | V    |
|                 |                     | V <sub>CC</sub> =Min., I <sub>OH</sub> = -32 mA | 2.0  | 3.0                        |      | V    |
| V <sub>OL</sub> | Output LOW Voltage  | V <sub>CC</sub> =Min., I <sub>OL</sub> =64 mA   |      | 0.2                        | 0.55 | V    |

## Output Drive Characteristics for CY74FCT162952T, CY74FCT162H952T

| Parameter        | Description                         | Test Conditions                                                                                   |     | <b>Typ.</b> <sup>[7]</sup> | Max. | Unit |
|------------------|-------------------------------------|---------------------------------------------------------------------------------------------------|-----|----------------------------|------|------|
| I <sub>ODL</sub> | Output LOW Current <sup>[10]</sup>  | V <sub>CC</sub> =5V, V <sub>IN</sub> =V <sub>IH</sub> or V <sub>IL</sub> , V <sub>OUT</sub> =1.5V | 60  | 115                        | 150  | mA   |
| I <sub>ODH</sub> | Output HIGH Current <sup>[10]</sup> | V <sub>CC</sub> =5V, V <sub>IN</sub> =V <sub>IH</sub> or V <sub>IL</sub> , V <sub>OUT</sub> =1.5V | -60 | -115                       | -150 | mA   |
| V <sub>OH</sub>  | Output HIGH Voltage                 | V <sub>CC</sub> =Min., I <sub>OH</sub> = -24 mA                                                   | 2.4 | 3.3                        |      | V    |
| V <sub>OL</sub>  | Output LOW Voltage                  | V <sub>CC</sub> =Min., I <sub>OL</sub> =24 mA                                                     |     | 0.3                        | 0.55 | V    |

# **Capacitance**<sup>[8]</sup> ( $T_A = +25^{\circ}C$ , f = 1.0 MHz)

| Parameter        | Description        | Test Conditions       | Typ. <sup>[7]</sup> | Max. | Unit |
|------------------|--------------------|-----------------------|---------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $V_{IN} = 0V$         | 4.5                 | 6.0  | pF   |
| C <sub>OUT</sub> | Output Capacitance | V <sub>OUT</sub> = 0V | 5.5                 | 8.0  | pF   |

## Note:

- Typical values are at  $V_{CC}$ = 5.0V,  $T_A$ = +25°C ambient.

- rypical values are at V<sub>CC</sub>= 5.0V, I<sub>A</sub>= +25 C ambient.
   This parameter is specified but not tested.
   Pins with bus hold are described in the Pin Description.
   Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, lost the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, lost of the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, lost of the chip temperature well above normal and thereby cause invalid readings in other parametric tests.
- 11. Tested at +25°C.



## **Power Supply Characteristics**

| Parameter        | Description                                      | Test Conditions                                                                                                                  | [12]                                                            | <b>Typ.</b> <sup>[7]</sup> | Max.                 | Unit   |
|------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|----------------------|--------|
| I <sub>CC</sub>  | Quiescent Power Supply Current                   | V <sub>CC</sub> =Max.                                                                                                            | V <sub>IN</sub> ≤0.2V<br>V <sub>IN</sub> ≥V <sub>CC</sub> −0.2V | 5                          | 500                  | μА     |
| Δl <sub>CC</sub> | Quiescent Power Supply Current (TTL inputs HIGH) | V <sub>CC</sub> =Max.                                                                                                            | V <sub>IN</sub> =3.4V <sup>[13]</sup>                           | 0.5                        | 1.5                  | mA     |
| I <sub>CCD</sub> | Dynamic Power Supply<br>Current <sup>[14]</sup>  | V <sub>CC</sub> =Max., One Input Toggling,<br>50% Duty Cycle, Outputs Open,<br>OEAB or OEBA=GND                                  |                                                                 | 75                         | 120                  | μΑ/MHz |
| I <sub>C</sub>   | Total Power Supply Current <sup>[15]</sup>       | $ \begin{vmatrix} F_0 = 10 \text{ MHz (CLKAB)} \\ OEAB = CEAB = GND \end{vmatrix} $ $ \begin{vmatrix} V_1 \\ V_2 \end{vmatrix} $ | V <sub>IN</sub> =V <sub>CC</sub> or<br>V <sub>IN</sub> =GND     | 0.8                        | 1.7                  | mA     |
|                  |                                                  |                                                                                                                                  | V <sub>IN</sub> =3.4V or<br>V <sub>IN</sub> =GND                | 1.3                        | 3.2                  |        |
|                  | $ f_1=2.5 \text{ MHz},$                          |                                                                                                                                  | V <sub>IN</sub> =V <sub>CC</sub> or<br>V <sub>IN</sub> =GND     | 3.8                        | 6.5 <sup>[16]</sup>  |        |
|                  |                                                  | OEAB = CEAB = GND OEBA = V <sub>CC</sub> 50% Duty Cycle, Outputs Open, Sixteen Bit Toggling                                      | V <sub>IN</sub> =3.4V or<br>V <sub>IN</sub> =GND                | 8.3                        | 20.0 <sup>[16]</sup> |        |

- 12. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

  13. Per TTL driven input (V<sub>IN</sub>=3.4V); all other inputs at V<sub>CC</sub> or GND.

  14. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

  15. I<sub>C</sub> = I<sub>QUIESCENT</sub> + I<sub>INPUTS</sub> + I<sub>DYNAMIC</sub>
  I<sub>C</sub> = I<sub>CC</sub>+ΔI<sub>CC</sub>D<sub>H</sub>N<sub>T</sub>+I<sub>CCD</sub>(f<sub>0</sub>/2 + f<sub>1</sub>N<sub>1</sub>)
  I<sub>CC</sub> = Quiescent Current with CMOS input levels

  Alone = Power Supply Current for a TTL HIGH input (V<sub>CC</sub>=3.4V)

- - $A_{ICC}$  = Power Supply Current for a TTL HIGH input (V<sub>IN</sub>=3.4V)  $D_{H}$  = Duty Cycle for TTL inputs HIGH  $N_{T}$  = Number of TTL inputs at  $D_{H}$

  - I<sub>CCD</sub> = Dynamic Current caused by an input transition pair (HLH or LHL)
  - = Clock frequency for registered devices, otherwise zero
  - = Input signal frequency
  - = Number of inputs changing at f<sub>1</sub>
- All currents are in milliamps and all frequencies are in megahertz.

  Values for these conditions are examples of the I<sub>CC</sub> formula. These limits are specified but not tested.



# **Switching Characteristics** Over the Operating Range<sup>[17]</sup>

|                                      |                                                        | CY74FCT16952AT<br>CY74FCT162952AT<br>CY74FCT162H952AT |      | CY74FCT162952BT |      |      |                          |
|--------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------|-----------------|------|------|--------------------------|
| Parameter                            | Description                                            | Min.                                                  | Max. | Min.            | Max. | Unit | Fig. No. <sup>[18]</sup> |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>CLKAB, CLKBA to B, A              | 2.0                                                   | 10.0 | 2.0             | 7.5  | ns   | 1, 5                     |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output Enable Time<br>OEBA, OEAB to A, B               | 1.5                                                   | 10.5 | 1.5             | 8.0  | ns   | 1, 7, 8                  |
| t <sub>PHZ</sub>                     | Output Disable Time<br>OEBA, OEAB to A, B              | 1.5                                                   | 10.0 | 1.5             | 7.5  | ns   | 1, 7, 8                  |
| t <sub>SU</sub>                      | Set-Up Time, HIGH or LOW<br>A, B to CLKAB, CLKBA       | 2.5                                                   | _    | 2.5             | _    | ns   | 4                        |
| t <sub>H</sub>                       | Hold Time, HIGH or LOW<br>A, B to CLKAB, CLKBA         | 2.0                                                   | _    | 1.5             | _    | ns   | 4                        |
| t <sub>SU</sub>                      | Set-Up Time, HIGH or LOW CEAB, CEBA to CLKAB, CLKBA    | 3.0                                                   | _    | 3.0             | _    | ns   | 4                        |
| t <sub>H</sub>                       | Hold Time, HIGH or LOW CEAB, CEBA to CLKAB, CLKBA      | 2.0                                                   | _    | 2.0             | _    | ns   | 4                        |
| t <sub>W</sub>                       | Pulse Width HIGH or LOW CLKAB or CLKBA <sup>[19]</sup> | 3.0                                                   | _    | 3.0             | _    | ns   | 5                        |
| t <sub>SK(O)</sub>                   | Output Skew <sup>[20]</sup>                            | _                                                     | 0.5  |                 | 0.5  | ns   | _                        |

|                                      |                                                           | CY74FCT16952CT<br>CY74FCT162H952CT |      |      |                          |  |
|--------------------------------------|-----------------------------------------------------------|------------------------------------|------|------|--------------------------|--|
| Parameter                            | Description                                               | Min.                               | Max. | Unit | Fig. No. <sup>[18]</sup> |  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>CLKAB, CLKBA to B, A                 | 2.0                                | 6.3  | ns   | 1, 5                     |  |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output Enable Time OEBA, OEAB to A, B                     | 1.5                                | 7.0  | ns   | 1, 7, 8                  |  |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Output Disable Time OEBA, OEAB to A, B                    | 1.5                                | 6.5  | ns   | 1, 7, 8                  |  |
| t <sub>SU</sub>                      | Set-Up Time, HIGH or LOW<br>A, B to CLKAB, CLKBA          | 2.5                                | _    | ns   | 4                        |  |
| t <sub>H</sub>                       | Hold Time, HIGH or LOW<br>A, B to CLKAB, CLKBA            | 1.5                                | _    | ns   | 4                        |  |
| t <sub>SU</sub>                      | Set-Up Time, HIGH or LOW CEAB, CEBA to CLKAB, CLKBA       | 3.0                                | _    | ns   | 4                        |  |
| t <sub>H</sub>                       | Hold Time, HIGH or LOW CEAB, CEBA to CLKAB, CLKBA         | 2.0                                | _    | ns   | 4                        |  |
| $t_{W}$                              | Pulse Width HIGH or LOW<br>CLKAB or CLKBA <sup>[19]</sup> | 3.0                                | _    | ns   | 5                        |  |
| t <sub>SK(O)</sub>                   | Output Skew <sup>[20]</sup>                               | _                                  | 0.5  | ns   | _                        |  |

### Notes:

- Minimum limits are specified but not tested on Propagation Delays.
   See "Parameter Measurement Information" in the General Information section.
   This parameter is specified but not tested.
   Skew between any two outputs of the same package switching in the same direction. This parameter is ensured by design.



# **Ordering Information CY74FCT16952**

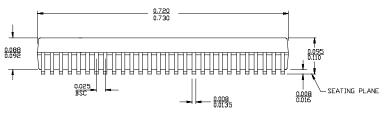
| Speed (ns) | Ordering Code          | Package<br>Name | Package Type            | Operating<br>Range |
|------------|------------------------|-----------------|-------------------------|--------------------|
| 6.3        | CY74FCT16952CTPACT     | Z56             | 56-Lead (240-Mil) TSSOP | Industrial         |
| 10.0       | CY74FCT16952ATPVC/PVCT | O56             | 56-Lead (300-Mil) SSOP  | Industrial         |

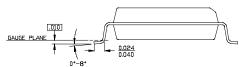
# Ordering Information CY74FCT162952

| Speed<br>(ns) | Ordering Code      | Package<br>Name | Package Type            | Operating<br>Range |
|---------------|--------------------|-----------------|-------------------------|--------------------|
| 7.5           | CY74FCT162952BTPVC | O56             | 56-Lead (300-Mil) SSOP  | Industrial         |
|               | 74FCT162952BTPVCT  | O56             | 56-Lead (300-Mil) SSOP  |                    |
| 10.0          | 74FCT162952ATPACT  | Z56             | 56-Lead (240-Mil) TSSOP | Industrial         |

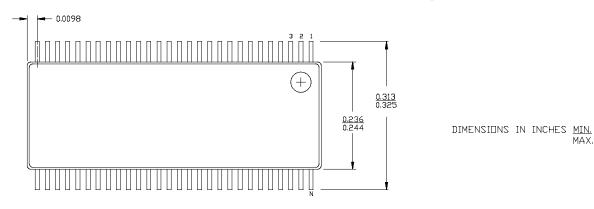
# Ordering Information CY74FCT162H952

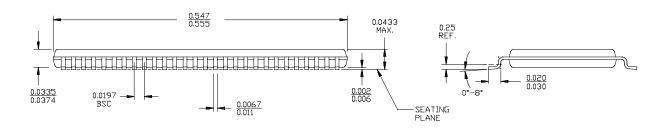
| Speed<br>(ns) | Ordering Code          | Package<br>Name | Package Type            | Operating<br>Range |
|---------------|------------------------|-----------------|-------------------------|--------------------|
| 6.3           | 74FCT162H952CTPVC/PVCT | O56             | 56-Lead (300-Mil) SSOP  | Industrial         |
| 10.0          | 74FCT162H952ATPACT     | Z56             | 56-Lead (240-Mil) TSSOP | Industrial         |





# **Package Diagrams**

## 56-Lead Shrunk Small Outline Package O56





DIMENSIONS IN INCHES MIN. MAX.





## 56-Lead Thin Shrunk Small Outline Package Z56





#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265