
 2001 Integrated Device Technology, Inc.

Notes

RC32334/RC32332
Application Note

AN-336

79RC32334/RC32332 Interrupt
Modus Operandi

By Harold Gomard
Revision HistorRevision HistorRevision HistorRevision Historyyyy
November 5, 2001: Initial publication.

Interrupt SchemeInterrupt SchemeInterrupt SchemeInterrupt Scheme
The Expansion Interrupt Controller extends the RC32300™ CPU Core CP0 interrupt control by collating

the RC32334 generated interrupts into a single CPU interrupt - cpu_int_n[3]. In addition, interrupts can be
independently masked by the Expansion Interrupt Mask Register.

Figure 1

System Controller CPU

Group 01 INT
Group 01 Mask

Group 02 INT
Group 02 Mask

Group 07 INT
Group 07 Mask

Group 03 INT
Group 03 Mask

Group 05 INT
Group 05 Mask

Group 06 INT
Group 06 Mask

Group 08 INT
Group 08 Mask

Group 09 INT
Group 09 Mask

Group 14 INT
Group 14 Mask

Group 10 INT
Group 10 Mask

Group 11 INT
Group 11 Mask

Group 13 INT
Group 13 Mask

03

03

04

05

05

05

01

12

07

08

01

04

16

05

Group 00 INT01

Group 00 Mask01

Group 00 INT02

Group 00 Mask02

Group 00 INT03

Group 00 Mask03

Group 00 INT04

Group 00 Mask04

Group 00 INT05

Group 00 Mask05

Group 00 INT06

Group 00 Mask07

Group 00 INT07

Group 00 Mask08

Group 00 INT09

Group 00 Mask09

Group 00 INT10

Group 00 Mask10

Group 00 INT11

Group 00 Mask11

Group 00 INT12

Group 00 Mask12

Group 00 INT13

Group 00 Mask13

Group 00 INT14

Group 00 Mask14

cpu_int_3_n

Group 00 Mask06

Group 12 INT
Group 12 Mask

Group 00 INT08

Group 04 INT
Group 04 Mask
1 of 3 November 5, 2001
DSC 6125

RC32334/RC32332 Application Note AN-336

Notes
 As shown in Figure 1, the System Controller, Group 1 interrupts are ANDed with their masks and then
ORed into one signal. This ORed signal then goes to bit 1 of the Group 0 pending register. Group 2 inter-
rupts are ANDed with their respective masks, and then ORed into one signal which goes to bit 2 of the
Group 0 pending register, etc. There are fourteen of these groups--Group 1 to Group 14. Each group gets
ORed down to a single bit in the Group 0 register.

The 14 bits of the group 0 pending register are then ANDed with their respective masks and then ORed
down to a single signal which internally feeds the CPU INT3 signal. This is why there is no INT3 signal
external to the CPU.

Internal to the CPU, the CPU timer interrupt, which is masked by one of the boot vectors, is ORed with
INT5 coming from outside the chip. If the user wishes to use both the timer and interrupt 5 simultaneously,
then some external means must be provided to allow the user to determine if an external interrupt is present
(i.e., a readable register of some type). By reading this register, the user can determine if the interrupt is
coming in from outside the chip. If this register does not show an interrupt pending, then the interrupt was
caused by the timer. Generally, most users will either use the timer function or INT5, but not both.

Figure 2

As shown in Figure 2, inside the CPU, INT5 goes to the cause register, bit 15. INT5 is ORed with (Timer
& Bootmask) -> Cause[15], INT4 -> Cause[14], internal3 (internal from system controller) -> Cause[13],
INT2 -> Cause[12], INT1 -> Cause[11], INT0 -> Cause[10]. Cause[9] & Cause[8] are software interrupts.
Cause[15:8] and the Status Register (Mask) [15:8] are ANDed together, and then ORed to a final signal
which goes to the CPU and causes it to take exceptions.

RC32334/RC32332 Interrupt Latency RC32334/RC32332 Interrupt Latency RC32334/RC32332 Interrupt Latency RC32334/RC32332 Interrupt Latency
When an instruction cache is running and a CPU pin interrupt occurs, two different scenarios must be

considered in order to estimate the interrupt latency properly.
1. Interrupt handler (0x80000180) is already resident in a valid instruction cache location.
In this case, the interrupt handler is fetched 3.0 clocks after the interrupt occurs and takes 1.0 system

clock (in divide by 2 mode) to reach the ALU stage where it is "executed/run". Therefore, the interrupt
latency is 4.0 clocks.

System Controller CPU

cpu_int_3_n

15

BM

121314 11 8910 15 121314 11 8910

Cause Status

d
e
b
u
g
_
c
p
u
_
d
m
a
_
n

c
p
u
_
i
n
t
_
3
_
n

c
p
u
_
i
n
t
_
5
_
n

c
p
u
_
i
n
t
_
4
_
n

c
p
u
_
i
n
t
_
2
_
n

c
p
u
_
i
n
t
_
1
_
n

c
p
u
_
i
n
t
_
0
_
n

2 of 3 November 5, 2001

RC32334/RC32332 Application Note AN-336

Notes
 2. Interrupt handler (0x8000180) misses the cache and must be fetched.
In this case, the interrupt handler is fetched (debug_ads_n is clocked occurs) 8.0 clocks after the inter-

rupt occurs. This accounts for the time for the memory access (4 wordburst reads must be added). Then,
2.0 extra clocks are required until the CPU pipeline is restarted.

Finally, 1.0 extra system clock is needed to reach the ALU stage where it is "executed/run". Thus, if a
page-miss burst read occurs from SDRAM (11.0 extra clocks in addition to the usual 8.0 clocks described
above), the interrupt latency accounts for a total of 22.0 clocks.
3 of 3 November 5, 2001

	Revision History
	Interrupt Scheme
	Figure 1
	Figure 2

	RC32334/RC32332 Interrupt Latency
	1. Interrupt handler (0x80000180) is already resident in a valid instruction cache location.
	2. Interrupt handler (0x8000180) misses the cache and must be fetched.

	RC32334/RC32332 Application Note AN-336
	79RC32334/RC32332 Interrupt Modus Operandi
	By Harold Gomard

