

74VHC373 • 74VHCT373 Octal D-Type Latch with 3-STATE Outputs

General Description

The VHC/VHCT373 is an advanced high speed CMOS octal D-type latch with 3-STATE output fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. This 8-bit D-type latch is controlled by a latch enable input (LE) and an output enable input $(\overline{\text{OE}})$. The latches appear transparent to data when latch enable (LE) is HIGH. When LE is low, the data that meets the setup time is latched. When the $\overline{\text{OE}}$ input is high, the eight outputs are in a high impedance state.

An input protection circuit ensures that 0V–7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

■ High Speed:

VHC t_{pd} = 5.0 ns (typ) @ V_{CC} = 5V VHCT t_{pd} = 5.1 ns (typ) @ V_{CC} = 5V

■ High Noise Immunity:

VHC $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min) VHCT $V_{IH} = 2.0V$, $V_{IL} = 0.8V$

■ Power Down Protection: VHC Inputs Only

VHCT Inputs and Outputs

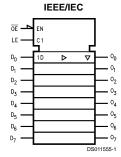
■ Low Noise:

VHC
$$V_{OLP} = 0.6V \text{ (typ)}$$

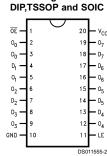
VHCT $V_{OLP} = 0.8V \text{ (typ)}$

■ Low Power Dissipation:

I_{CC} = 4 μA (Max) @ T_a = 25°C


■ Pin and Function Compatible with 74HC/HCT373

Ordering Code:


Commercial	Package Number	Package Description				
74VHC373M	M20B	20-Lead Molded JEDEC SOIC				
74VHC373SJ	M20D	20-Lead Molded EIAJ SOIC				
74VHC373MTC	MTC20	20-Lead Molded JEDEC Type 1 TSSOP				
74VHC373N	N20A	20-Lead Molded DIP				
74VHCT373M	M20B	20-Lead Molded JEDEC SOIC				
74VHCT373SJ	M20D	20-Lead Molded EIAJ SOIC				
74VHCT373MTC	MTC20	20-Lead Molded JEDEC Type 1 TSSOP				
74VHCT373N	N20A	20-Lead Molded DIP				

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

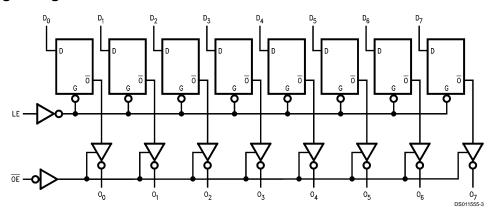
Pin Assignment for

Pin Descriptions

Pin	Description
Names	
D ₀ -D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
O ₀ -O ₇	3-STATE Outputs

Truth Table

	Inputs		Outputs
LE	ŌĒ	D _n	O _n
Х	Н	Х	Z
Н	L	L	L
Н	L	Н	Н
L	L	X	O_0


- H = HIGH Voltage Level
- L = LOW Voltage Level
- Z = High Impedance
- X = Immaterial $O_0 = Previous O_0$ before HIGH to Low transition of Latch Enable

Functional Description

The VHC/VHCT373 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on

the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When $\overline{\text{OE}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

 $\begin{array}{lll} \mbox{Supply Voltage (V}_{\mbox{CC}}) & -0.5\mbox{V to } + 7.0\mbox{V} \\ \mbox{DC Input Voltage (V}_{\mbox{IN}}) & -0.5\mbox{V to } + 7.0\mbox{V} \\ \end{array}$

DC Output Voltage (V_{OUT})

VHC –0.5V to $V_{\rm CC}$ + 0.5V VHCT (Note 2) -0.5V to +7.0V Input Diode Current (IIK) -20 mA Output Diode Current (VHC) ±20 mA (VHCT) -20 mA DC Output Current (I_{OUT}) ±25 mA DC $V_{\rm CC}$ /GND Current ($I_{\rm CC}$) ±75 mA Storage Temperature (T_{STG}) -65°C to +150°C

Lead Temperature (T_L)

(Soldering, 10 sec)

Recommended Operating Conditions (Note 3)

Supply Voltage (V_{CC})

 $\begin{array}{c} \text{VHC} & 2.0 \text{V to} + 5.5 \text{V} \\ \text{VHCT} & 4.5 \text{V to} + 5.5 \text{V} \\ \text{Input Voltage (V}_{\text{IN}}) & 0 \text{V to} + 5.5 \text{V} \\ \text{Output Voltage (V}_{\text{OUT}}) & 0 \text{V to V}_{\text{CC}} \end{array}$

Operating Temperature (T_{OPR})

VHC/VHCT -40°C to +85°C

Input Rise and Fall Time $(t_r, \, t_f)$

 V_{CC} = 3.3V ±0.3V (VHC only) 0 ~ 100 ns/V V_{CC} = 5.0 ±0.5V 0 ~ 20 ns/V

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics for VHC

			Т	A = +25	°C	$T_A = -40^{\circ}C$					
Symbol	Parameter	V _{CC}				to +	85°C	Units	Cond	litions	
		(V)	Min	Тур	Max	Min	Max				
V _{IH}	High Level Input	2.0	1.50	•		1.50	•	V			
	Voltage	3.0-5.5	0.7 V _{CC}			0.7 V _{CC}					
V _{IL}	Low Level Input	2.0			0.50		0.50	V			
	Voltage	3.0-5.5			0.3 V _{CC}		$0.3 \ V_{CC}$				
V _{OH}	High Level Output	2.0	1.9	2.0		1.9			V _{IN} = V _{IH}	I _{OH} = -50 μA	
	Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}		
		4.5	4.4	4.5		4.4					
		3.0	2.58			2.48		V		I _{OH} = -4 mA	
		4.5	3.94			3.80				I _{OH} = -8 mA	
V _{OL}	Low Level Output	2.0		0.0	0.1		0.1		V _{IN} = V _{IH}	I _{OL} = 50 μA	
	Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}		
		4.5		0.0	0.1		0.1				
		3.0			0.36		0.44	V]	I _{OL} = 4 mA	
		4.5			0.36		0.44			I _{OL} = 8 mA	
l _{OZ}	3-STATE Output Off-State Current	5.5			±0.25		±2.5	μA	V _{IN} = V _{IH} or V _{IL} V _{OUT} = V _{CC} or GND		
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μA	V _{IN} = 5.5 or GND		
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μA	V _{IN} = V _{CC} or GND		

260°C

Noise Characteristics for VHC

Symbol	Parameter	V _{cc}	T _A =	+25°C	Units	Conditions	
			Тур	Limits			
V _{OLP} (Note 4)	Quiet Output Maximum Dynamic V _{OL}	5.0	0.6	0.9	V	C _L = 50 pF	
V _{OLV} (Note 4)	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.6	-0.9	V	C _L = 50 pF	
V _{IHD} (Note 4)	Minimum High Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF	
V _{ILD} (Note 4)	Maximum Low Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF	

Note 4: Parameter guaranteed by design.

Symbol	Parameter	V _{CC}	T _A = +25°C			T _A = -40°C to +85°C		Units	Conditions	
			Min	Тур	Max	Min	Max	1		
V _{IH}	High Level Input Voltage	4.5	2.0			2.0	•	V		
		5.5	2.0			2.0				
V _{IL}	Low Level Input Voltage	4.5			0.8		0.8	V		
		5.5			0.8		8.0			
V _{OH}	High Level Output Voltage	4.5	3.15	3.65		3.15		V	V _{IN} = V _{IH}	I _{OH} = -50 μA
		4.5	2.5			2.4		V	or V _{IL}	$I_{OH} = -8 \text{ mA}$
V _{OL}	Low Level Output Voltage	4.5		0.0	0.1		0.1	V	V _{IN} = V _{IH}	I _{OL} = 50 μA
		4.5			0.36		0.44	V	or V _{IL}	I _{OL} = 8 mA
loz	3-STATE Output Off-State Current	5.5			±0.25		±2.5	μΑ	V _{IN} = V _{IH} or	V _{IL}
									V _{OUT} = V _{CC}	or GND
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μA	V _{IN} = 5.5V or	GND
Icc	Quiescent Supply Current	5.5			4.0		40.0	μΑ	V _{IN} = V _{CC} or	GND
Ісст	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	V _{IN} = 3.4V	
									Other Inputs	= V _{CC} or GND
I _{OFF}	Output Leakage Current (Power Down State)	0.0			+0.5		+0.5	μA	V _{OUT} = 5.5V	

Noise Characteristics for VHCT

Symbol Parameter		V _{CC} (V)	T _A =	+25°C	Units	Conditions
		, ,	Тур	Limits		
V _{OLP} (Note 5)	Quiet Output Maximum Dynamic V _{OL}	5.0	0.8	1.2	V	C _L = 50 pF
V _{OLV} (Note 5)	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.8	-1.2	V	C _L = 50 pF
V _{IHD} (Note 5)	Minimum High Level Dynamic Input Voltage	5.0		2.0	V	$C_L = 50 pF$
V _{ILD} (Note 5)	Maximum Low Level Dynamic Input Voltage	5.0		0.8	V	C _L = 50 pF

Note 5: Parameter guaranteed by design.

AC Electrical Characteristics for VHC

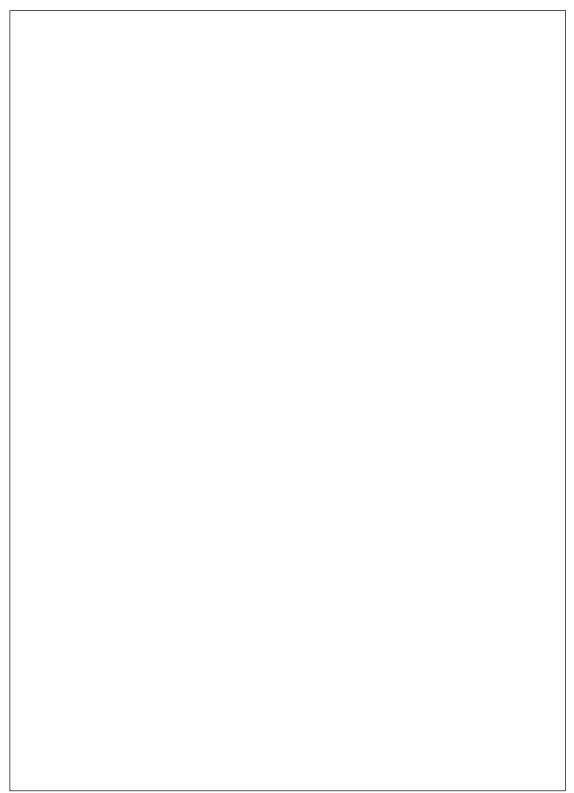
Symbol	Parameter	V _{CC} (V)		T _A = +25		to +	–40°C 85°C	Units	Conditions	
			Min	Тур	Max	Min	Max			
t _{PLH}	Propagation Delay Time (LE to O _n)	3.3 ± 0.3		7.0	11.0	1.0	13.0	ns		C _L = 15 pF
t _{PHL}	Time (EE to On)			9.5	14.5	1.0	16.5			C _L = 50 pF
		5.0 ± 0.5		4.9	7.2	1.0	8.5	ns		C _L = 15 pF
				6.4	9.2	1.0	10.5			C _L = 50 pF
t _{PLH}	Propagation Delay	3.3 ± 0.3		7.3	11.4	1.0	13.5	ns		C _L = 15 pF
t _{PHL}	Time (D to O _n)			9.8	14.9	1.0	17.0			C _L = 50 pF
		5.0 ± 0.5		5.0	7.2	1.0	8.5	1		C _L = 15 pF
				6.5	9.2	1.0	10.5	1		C _L = 50 pF
t _{PZL}	3-STATE	3.3 ± 0.3		7.3	11.4	1.0	13.5	ns	$R_L = 1 k\Omega$	C _L = 15 pF
t _{PZH}	Output			9.8	14.9	1.0	17.0			C _L = 50 pF
	Enable Time	5.0 ± 0.5		5.5	8.1	1.0	9.5	ns		C _L = 15 pF
				7.0	10.1	1.0	11.5			C _L = 50 pF
t _{PLZ}	3-STATE Output	3.3 ± 0.3		9.5	13.2	1.0	15.0	ns	$R_L = 1 k\Omega$	C _L = 50 pF
t _{PHZ}	Disable Time	5.0 ± 0.5		6.5	9.2	1.0	10.5			C _L = 50 pF
t _{OSLH}	Output to Output	3.3 ± 0.3			1.5		1.5	ns	(Note 6)	C _L = 50 pF
toshL	Skew	5.0 ± 0.5			1.0		1.0			C _L = 50 pF
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open	
C _{OUT}	Output Capacitance			6				pF	V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance			27				pF	(Note 7)	

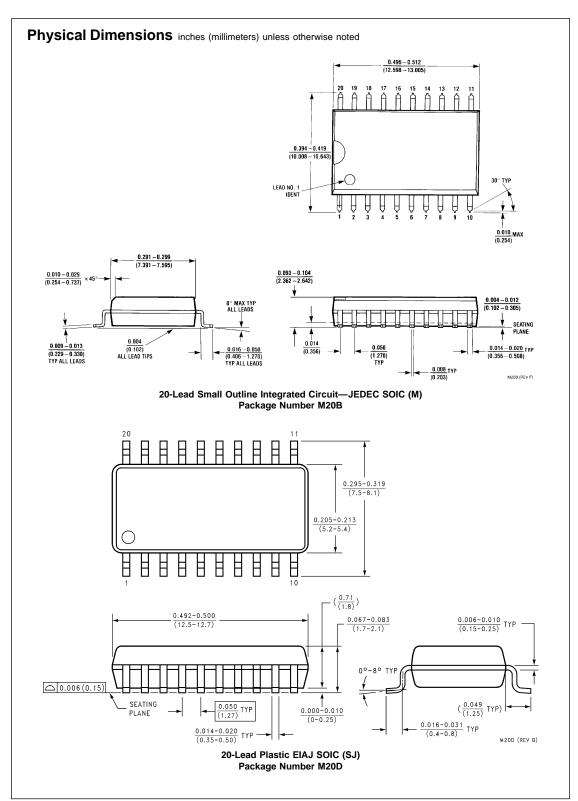
Note 6: Parameter guaranteed by design. $t_{OSLH} = |t_{PLH \ max} - t_{PLH \ min}|$; $t_{OSHL} = |t_{PLH \ max} - t_{PHL \ min}|$ Note 7: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: t_{CC} (opr.) = $t_{CPD} \cdot t_{CC} \cdot t_{IN} + t_{CC}/8$ (per Latch). The total t_{CPD} when n pcs. of the Latch operates can be calculated by the equation: t_{CPD} (total) = 14 + 13n.

AC Operating Requirements for VHC

Symbol	Parameter	V _{CC} (V)	/cc		T _A =	Units			
				Min	Тур	Max	Min	Max	1
t _{W(H)}	Minimum Pulse	3.3 ± 0.3	5.0	•	•	5.0		ns	
	Width (LE)	5.0 ± 0.5	5.0			5.0			
t _S	Minimum Set-Up	3.3 ± 0.3	4.0			4.0		ns	
	Time	5.0 ± 0.5	4.0			4.0			
t _H	Minimum Hold	3.3 ± 0.3	1.0			1.0		ns	
	Time	5.0 ± 0.5	1.0			1.0			

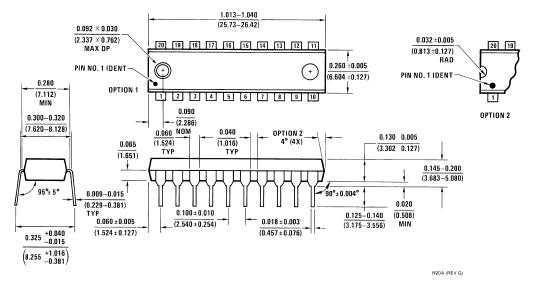
AC Electrical Characteristics for VHCT


Symbol	Parameter	V _{CC} (V)	Min	T _A = +25	°C		–40°C 85°C Max	Units	Conditions	
t _{Pl H}	Propagation Delay	5.0 ± 0.5		7.7	12.3	1.0	13.5	ns		C _I = 15 pF
t _{PHL}	Time (LE to O _n)			8.5	13.3	1.0	14.5			C _L = 50 pF
t _{PLH}	Propagation Delay	5.0 ± 0.5		5.1	8.5	1.0	9.5	ns		C _L = 15 pF
t _{PHL}	Time (D to O _n)			5.9	9.5	1.0	10.5			C _L = 50 pF
t _{PZL}	3-STATE Output	5.0 ± 0.5		6.3	10.9	1.0	12.5	ns	$R_L = 1 k\Omega$	C _L = 15 pF
t_{PZH}	Enable Time			7.1	11.9	1.0	13.5			C _L = 50 pF
t _{PLZ} t _{PHZ}	3-STATE Output Disable Time	5.0 ± 0.5		6.8	11.2	1.0	12.0	ns	$R_L = 1 k\Omega$	C _L = 50 pF
t _{OSLH}	Output to Output Skew	5.0 ± 0.5			1.0		1.0		(Note 9)	
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open	<u> </u>
C _{OUT}	Output Capacitance			9				pF	V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance			27				pF	(Note 9)	


Note 8: Parameter guaranteed by design. $t_{OSLH} = |t_{PLH} \text{ max} - t_{PLH \text{ min}}|; t_{OSHL} = |t_{PHL \text{ max}} - t_{PHL \text{ min}}|$

Note 9: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} \cdot V_{CC} \cdot f_{|N|} + I_{CC}/8$ (per F/F).

AC Operating Requirements for VHCT


Symbol	Parameter	V _{CC} (V)		T _A = +25°C	:	T _A = -	Units	
			Min	Тур	Max	Min	Max	
t _{W(H)}	Minimum Pulse Width (LE)	5.0 ± 0.5	6.5			6.5		ns
t _S	Minimum Set-Up Time	5.0 ± 0.5	1.5			1.5		ns
t _H	Minimum Hold Time	5.0 ± 0.5	3.5			3.5		ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead (0.300" Wide) Molded Dual-in-Line Package Package Number N20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor

Europe

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com