

Gerstweg 2, 6534 AE Nijmegen, The Netherlands

Reportnr.: RNR-T45-97-B-0920Author: T.F. BussDate: 20-11-97Department: P.G. Transistors & Diodes, Development

400MHz LOW NOISE AMPLIFIER WITH THE BFG540W/X

Abstract:

This application note contains an example of a Low Noise Amplifier with the BFG540W/X RF-transistor. The LNA is designed for a frequency f=400MHz, V_{SUP} =3.0V, I_{SUP} ~7.5mA. *Measured* performance at f=400MHz: Noise Figure NF~1.0dB, rf-Gain S₂₁ ~15.5dB, Input_IP3~2dBm

Applications: LNA for a 400MHz CDMA system (Chinese market).

Appendix I: 400MHz LNA circuit

Appendix II: Printlayout and list of used components & materials

Appendix III: Results of simulations and measurements

Introduction:

With Philips silicon wideband transistors, it is possible to design low noise amplifiers for UHF-applications with a low current and a low supply voltage. These amplifiers are well suited for the new generation low voltage high frequency wireless applications. In this note an example of such an amplifier will be given. This amplifier is designed for a working frequency of 400MHz.

Designing the circuit:

The circuit is designed to show the following performance (target):

transistor: BFG540W/X

 $V_{ce}=2V, l<10mA, V_{SUP}=3.0V.$ freq=400MHz Gain~15dB NF<1.5dB Input_IP3>+0dBm VSWRi<1:2 VSWRo<1:2

The in- and output matching is realised with a LC-combination. Also extra emitter-inductance on both emitter-leads (μ -strips) are used to improve the matching and the Noise Figure.

Designing the layout:

A lay-out has been designed with HP-MDS. Appendix II contains the printlayout.

Measurements:

Simulations (with realistic RF-models of al used parts) and measurements of the total circuit (epoxy PCB) are done (Appendix III).

Figure 1: LNA circuit

400MHz LNA Component list: 400MHz LNA Component list:

Component	Value	Purpose, comment
R1	22 kΩ	Bias (collbase)
R2	22 Ω	in series with coll. for better S22, stability and reducing gain.
R3	100 Ω	Bias, series with coll., cancelling h _{FE} spread
C1	150 pF	Input match (input to base)
C2	150 pF	400MHzshort (L1 to ground)
C3	22 nF	LF-short, improving IP3 performance
C4	22 nF	LF-short, improving IP3 performance
C5	150 pF	400MHzshort (L2 to ground)
C6	8.2 pF	Output match (collector to output)
C7	4.7 pF	Output match, stability (collector to emitter)
Coil_1	22 nH	Input match (base-bias)
Coil_2	22 nH	Output match (collector-bias)
μs4	(see next	μ-stripline Emitter-induction
	table)	

_μS4 Emitter inductance of μ-stripline and via-hole (see on former page: Schematic of the circuit):

Name	Dimension	Description	
L1	2.5mm	length μ -stripline; Z ₀ ~48 Ω (PCB: ε_r ~4.6,	
L2	1.0mm	length interconnect stripline and via-hole area	
L3	1.0mm	length via-hole area	
W1	0.5mm	width µ-stripline	
W2	1.0mm	width via-hole area	
D1	0.4mm	diameter of via-hole	

Appendix II: Printlayout and list of used components & materials

400MHz LOW NOISE AMP.

Figure 2: Printlayout

400MHzLNA Component list:

Component:	Value:	size:	
PCB	FR4: ε _r ~4.6	H=0.5mm	
R1	22 kΩ	0603 Philips	
R2	22 Ω	0603 Philips	
R3	100 Ω	0603 Philips	
C1	150 pF	0603 Philips NPO	
C2	150 pF	0603 Philips NPO	
C3	22 nF	0603 Philips X7R	
C4	22 nF	0603 Philips X7R	
C5	150 pF	0805 Philips NPO	
C6	8.2 pF	0603 Philips NPO	
C7	4.7 pF	0603 Philips NPO	
Coil_1	22 nH	0805CSCoilcraft	
Coil_2	22 nH	0805CS Coilcraft	
Т	BFG540W/X	SOT343	

Appendix III: Results of simulations and measurements

	Simulation HP-MDS	Measured Performance	Comment:				
f=400MHz	BFG540W/X SPICE model						
S21 ² [dB]	15.5	15.6	note 1				
S12 ² [dB]	-26.2	-28	note 1				
VSWRi	1.7	1.8	note 1				
VSWRo	1.6	2.0	note 1				
Noise Figure [dB]	1.3	1.0	note 2				
Input_IP3 [dBm]	+6.7	+2	Δ f=1MHz, note 3				

Conditions: V_{SUP}=3.0V, I_{SUP}=8mA, f=400MHz

note 1: Circuit is stable for all frequencies.

<u>note 2</u>: The Noise Figure of the PCB is lower than the simulations (\sim 0.3 dB). This difference is caused by the SPICE-model of the BFG540W/X, which is not optimised fornoise.

<u>note 3:</u> The hput_IP3 of the PCB is lower than the simulations (~4 dBm). This difference is caused by the SPICE-model of the BFG540W/X, which is not optimised for IP3.