

Overview

The LC79430D is a large-scale dot matrix LCD common driver LSI. The LC79430D contains an 80-bit bidirectional shift register and is equipped with a 4-level LCD driver. The input/output pins for cascade connection can be used to further increase the IC's number of bits. The LC79430D can be used in conjumction with segment driver LC79400D, LC79401D (QFP100D) to drive a wide-screen LCD panel.

Functions and Features

- On-chip LCD drive circuit (80 bits)
- Display duty selection ranging from $1 / 64$ to $1 / 256$
- On-chip input/output pins support further increases in bit number
- Supports externally supplied bias voltage
- On-chip 80-bit bidirectional shift register (supports 40bit $\times 2$ division)
- Supports single mode (80-bit shift register) and dual mode (40-bit $\times 2$ shift register) applications
$\left.\begin{array}{l}\text { (1) O1 } \rightarrow \text { O80 } \\ \text { (2) O80 } \rightarrow \text { O1 }\end{array}\right\}$ Single mode
(3) $\mathrm{O} 1 \rightarrow \mathrm{O} 40$ and $\mathrm{O} 41 \rightarrow \mathrm{O} 80$
(4) $\mathrm{O} 80 \rightarrow \mathrm{O} 41$ and $\mathrm{O} 40 \rightarrow \mathrm{O} 1\}$ Single mode

All four of the shift direction selection listed above all supported.

- Operating power supply voltage/operating temperature include
V_{DD} (logic section) $: 5 \mathrm{~V} \pm 10 \% /-20$ to $+75^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$ (LCD section) : 12 V to $32 \mathrm{~V} /-20$ to $+75^{\circ} \mathrm{C}$
- CMOS process

Package Dimensions

unit: mm
3180-QFP100D

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}^{\circ} \mathbf{C} \pm \mathbf{2}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage (LOGIC)	$\mathrm{V}_{\mathrm{DD}} \max$		-0.3 to +7.0	V
Maximum supply voltage (LCD)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \max * 1$		0 to 35	V
Maximum input voltage	$\mathrm{V}_{\text {IN }} \max$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage temperature range	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Note : *1 The following relations between elements should be maintainged: $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V} 1>\mathrm{V} 2>\mathrm{V} 5>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 2 \leq 7 \mathrm{~V}, \mathrm{~V} 5-\mathrm{V}_{\mathrm{EE}} \leq 7 \mathrm{~V}$.

LC79430D

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage (LOGIC)	$V_{D D}$		4.5		5.5	V
Supply voltage (LCD)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	*2, *3	12		32	V
Input high level voltage	V_{IH}	DIO1, DIO80, CP, M, DMIN, MODE, RS/LS, DISP OFF	0.8 V ${ }_{\text {DD }}$			V
Input low level voltage	VIL	DIO1, DIO80, CP, M, DMIN, MODE, RS/LS, DISP OFF			0.2 VDD	V
CP (Shift clock)	f_{CP}	CP			1	MHz
CP (Pulse width)	twc	CP	63			ns
Setup time	tsetup	$\begin{aligned} & \text { DIO1 } \rightarrow \text { CP, DIO80 } \rightarrow \text { CP, } \\ & \text { DMIN } \rightarrow \text { CP } \end{aligned}$	100			ns
Hold time	$\mathrm{t}_{\text {Hold }}$	$\begin{aligned} & \text { DIO1 } \rightarrow \text { CP, DIO80 } \rightarrow \text { CP, } \\ & \text { DMIN } \rightarrow \text { CP } \end{aligned}$	100			ns
CP rise fall time	$t_{\text {R }}$	CP			50	ns
	$\mathrm{t}_{\text {F }}$	CP			50	ns

Note: *2 The following relations between elements should be maintained: $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V} 1>\mathrm{V} 2>\mathrm{V} 5>\mathrm{V}_{\mathrm{EE}} . \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 2 \leq 7 \mathrm{~V}, \mathrm{~V} 5-\mathrm{V}_{\mathrm{EE}} \leq 7 \mathrm{~V}$.
*3 When the power supply is turned on, power to the LCD drive is turned on after or simultaneously with the turning on of the logic section's power supply. When the power supply is turned off, the logic power supply is turned off after or at the same time the LCD driver power supply is turned off.

Electrical Characteristics at $\mathrm{Ta}=\mathbf{2 5} \pm \mathbf{2}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=\mathbf{5} \mathrm{V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high level current	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \text {; DIO1, DIO80, }$ CP, M, DMIN, MODE, RS/LS, DISP OFF			1	$\mu \mathrm{A}$
Input low level current	IIL	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} ; \mathrm{DIO}, \text { DIO80, }$ CP, M, DMIN, MODE, RS/LS, DISP OFF	-1			$\mu \mathrm{A}$
Output high level voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}$; DIO1, DIO80	$\mathrm{V}_{\mathrm{DD}}-0.4$			V
Output low level voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}$; DIO1, DIO80			0.4	V
Driver on registor	RON (1)	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{Vo}\right\|=0.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} * 4 ; \mathrm{O} 1 \mathrm{TO} 080 \end{array}$			1.0	K Ω
	R ${ }_{\text {ON }}$ (2)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{Vo}\right\|=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} * 4 ; 01 \mathrm{TO} 080 \end{aligned}$			1.0	K Ω
Consumable current (1)	Iss	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{CP}=14 \mathrm{kHz}, \\ & \text { no-load, } \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}} \end{aligned}$			100	$\mu \mathrm{A}$
Consumable current (2)	$\mathrm{I}_{\text {EE }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{CP}=14 \mathrm{kHz}, \\ & \text { no-load, } \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}} \end{aligned}$			100	$\mu \mathrm{A}$
Input capacity	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$; CP		5		pF

Note: $* 4 \mathrm{~V}_{\mathrm{DE}}=\mathrm{V} 1$ or V 2 or V 5 or $\mathrm{V}_{\mathrm{EE}}, \mathrm{V} 1=\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 2=16 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V} 5=1 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)$

Switching Characteristics at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathbf{5} \mathrm{V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Output delay time	$t_{\text {PLL }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{CP} \rightarrow \mathrm{DIO1} ,\mathrm{CP} \rightarrow$ DIO80			250	ns
	$t_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{CP} \rightarrow$ DIO1, $\mathrm{CP} \rightarrow$ DIO80			250	ns

Pin Assignment

Equivalent Circuit Block Diagram

Pin Descriptions

Common Driver Multi-Unit Connection Circuits.

* Using single mode DMIN input pins are fixed to either "H" or "L".

Figure 1 Single Mode (Right Directional Shift)

Figure 2 Single Mode (Left Directional Shift)

Figure 3 Dual Mode (Right Directional Shift)

Figure 4 Dual Mode (Left Directional Shift)

Switching Characteristics

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1997. Specifications and information herein are subject to change without notice.

