DSPS Fest 99

An Integer Wavelet Transform, Implemented on a Parallel TI TM S320C40 Platform

Page 1

AN INTEGER WAVELET TRANSFORM, IMPLEMENTED ON A
PARALLEL T1 TMS320C40 PLATFORM

Francis Decroos™?, Peter Schelkens"?, Gauthier Lafruit? Jan Cornéelis', Francky Catthoor®*

1Vrije Universiteit Brussel, Department ETRO, Pleinlaan 2, B-1050 Brussel, Belgium
2IMEC v.z.w., Department DESICS, Kapeldreef 75, B-3001 Leuven, Belgium
3K atholieke Universiteit Leuven, Department ESAT, Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium

Corresponding author: Tel.: ++ 32 2 629 39 55; fax: ++ 32 2 629 28 83; e-mail: frdecroo@etro.vub.ac.be

Abstract — We present the implementation of the lifting
scheme - an integer wavelet transform - on a paralel TI
TMS320C40-platform. While classically, the optimization
is mostly driven by arithmetic optimizations, our selected
methodology uses power, speed and memory size figures to
explore the design space. Among several implementation
approaches, the classical row-column approach is selected,
based on the memory constraints imposed by the C40
implementation platform. The use of an in-place wavelet
organization eliminates the need for intermediate buffers.
To minimize data transfer times, the DMA coprocessor is
used to perform data transfers in parallel with the wavelet
processing. The obtained implementation, fully written in
paralel C-code, uses one processor to perform the wavel et
decomposition/reconstruction of the luminance (Y) frames
(256 by 256) and one for the horizontally subsampled
chrominance (U and V) frames. Frame rates of 19.9 fps
and 13.2 fps were achieved for a one level, respectively a
three level 9/7 Daubechies wavelet transform.

I.INTRODUCTION

Wavelet-based image and video compression has gained in
importance during recent years. These techniques, relying
on the discrete wavelet transform, have an improved
compression behavior by delivering a higher performance
in a rate-distortion sense at different bit rates (i.e. the mean
number of bits used to code one pixel). In contrast to
compression algorithms based on the block-based Discrete
Cosine Transform (DCT), they support lossy-to-lossless
compression, progressive transmission (quality and
resolution scalability) and region-of-interest coding and
decoding (ROI). In this paper, we will only focus on the
implementation of the wavelet transform. The
implementation of the quantization and entropy encoding
stages of eg. an Embedded Zero-Tree (EZT) Wavelet
coder [Shap93] is subject of other publications [Sche994]
[Sche99b].

The followed implementation approach is different from
the generaly introduced arithmetic optimizations of the
wavelet transform [Chak93] [Parh93] [Vish94]. Since
image and video processing agorithms involve high
amounts of data transfers, we opted for an implementation

frdecroo@vub.ac.be

VUB/IMEC

path that considered the critical data transfer and storage
(DTS). Therefore, we have adopted the lower steps of a
known systematic methodology [Catt98], improving the
algorithm’s memory related behavior and thus also the
overall performance. The specific results obtained on this
application are however fully new.

This optimization approach is targeted on reducing the load
on the communication channels between the different
components of the system. Hence, reducing the amount of
memory accesses, and even more, keeping the utilized
memory as close as possible to the central data path (better
exploiting the available local register files and on-chip
memory), boosts the performance of the implementation in
terms of low-power behavior, speed and memory size.
These three implementation parameters will be of
continuously growing importance in the coming years. We
have explored the design space by introducing memory and
speed optimizations typically requiring temporal locality of
data transfer in memory. Since we am at a paralel
implementation in a DSP development environment, we
did not consider power estimates, athough they are
strongly correlated with the memory-related behavior of
the algorithm.

The utilized design space exploration can be subdivided in
five main stages: (1) a global data-flow analysis, (2) global
transformations (e.g. loop transformations) in order to
localize memory accesses, (3) the introduction of an
abstract data reuse hierarchy, (4) the effective memory
alocation and assignment and finaly, (5) the in-place
memory optimizations to reduce the amount of memory
needed. Thus, we will propose an efficient memory
organization and code mapping of the wavelet transform
module on a ten processor TI TMS320C40 development
system (figure 1) in which we have two processors at our
disposal to perform the forward wavelet-transform of a
color image in YUV-format, and two for the backward
transform. The other processors are needed for frame
grabbing, displaying and EZT encoding and decoding
(includes arithmetic coding). The parallel system is
programmed with a multitasking and multithreading real-
time operating system (ThreeL Diamont RTOS, formerly
Parallel C), built around the Texas Instruments
TMS320C4x Compiler.

July 1999

DSPS Fest 99

Frame grabber
C40

Y
DWT DWT
040
Embedded Embedded
Zero Treeand Zero Treeand
r|thma|c Encoder Ar|thma|c Encoder

Zero Treeand
rlthmetlc Decoder

Embedded
Zero Treeand
Anthmetlc Decoder

|
:
[Embedded
|

IDWT | DWT
C44 C44
Y uv

Display card
C40
Figure 1 — The parallel DSP environment based on Texas Instruments
TMS320C40 and C44 processors. The figure also illustrates the proposed

distribution of the compression algorithm over the different components
of the environment.

[1.ALGORITHMIC DESCRIPTION

The wavelet transform is implemented using the lifting
scheme [Swel95], due to the fact that this scheme offers a
lossless transform. This is not the case for the floating-
point fast wavelet transform, since it introduces rounding
errors due to the floating-point arithmetic. Additionally,
the lifting scheme, applying integer arithmetic, reveals a
lower computational complexity than the classical wavelet
filters due to the reuse of the data delivered by the high-
pass filtering stage. Actually, the lifting scheme is a 3-step
procedure, existing out of a lazy wavelet splitting stage
(subdivision in even and odd samples), a prediction pass
(delivering the high pass coefficients) and an update stage
(delivering the low-pass coefficients) (figure 2). Important
to note is that the produced data can be immediately stored
back in the buffer out of which the image/wavelet
coefficients were extracted. This is referred to as the in-
place wavelet coefficient organization (related to the in-
place memory optimization issues). Its counterpart is
called the Mallat organization. The latter is the most
popular decomposition organization. However, we will opt
for the first one because of its interesting implementation
cost properties.

The lifting scheme consists of a first step, virtually
subdividing the input S.; (i indicating the wavelet level)
into two subsets § and D;, by extracting the even and odd
numbered data samples:

S =842

diy =Sa2m
Next, the set of samples § is used to predict the odd
numbered samplesd;;. However, the predicted value itself
is not coded, but only the difference between the exact and
the predicted value. The samples d;; are replaced by the
differences. In practice, those differences correspond to the
high-pass wavelet coefficients.

(1)

frdecroo@vub.ac.be

An Integer Wavelet Transform, Implemented on a Parallel TI TM S320C40 Platform

VUB/IMEC

Page 2

=d,, _Zpks,l—k (2)

The update step corrects the even numbered data set §
using the high-pass data set D;.

S =S, +Zukdi,l—k (3)

The data S now delivers the low-pass wavelet coefficients.
The inverse transform can easily be calculated by just
inverting the operations order (addition becomes
subtraction, and vice versa) [Swel95].

S0 %1 %2 %3 %4 S5 Sos S7 S8 Do D0 i Nz 13 s S1s Soae 7 Sos oo
BEARE R IR g
o splitting
- Sio Gio St Gy Si12 dip S Gig Sia by Sis s Sie g Si7 diy Sig dig S dig
3 S THAN Prediction
— /2 /Y \ stage
Sio o S1a Giy Sip Gz Sz Gip Sia iy S5 s S Gie Si7 iy Sig Gig Si9 i
e Update
/d stage
S0 Gio S11 Gia Sz Gip Si3 dig Sia Gig S5 Gis Sip i Sy Ay Sip Gig Si9 dig
Lazy wavelet
splitting
v A2 NN T R v
~ S0 Gio oo Giy S Gip Gy dig S5 Uiy Gy Gis S5 i Oyg iy Su Gig Uy dig
T Prediction
3 stage
- S0 Gio oo Giy Sy dip by dig S5 iy Gy dis S5 g g diy S digdyy dig
o \L/ iy
” stage

S0 Gip oo by Sy dip g dig S5 diy &y dis S5 dig 3 diy S, digdy, dig
Figure 2 — Thelifting scheme is a 3-step procedure, existing out of a lazy
wavelet splitting stage, a prediction stage and an update stage. The
prediction stage delivers the high-pass wavelet coefficients, while the
update stage generates the low-pass coefficients. The illustration shows a
2-level wavelet transform (Daubechies 9-7 filters) on a 20 sample wide
1D data set. The black arrows indicate the data necessary to obtain one
low-pass value in one wavelet level, the light gray arrows those for the
other values. The dashed gray arrows highlight the coefficients that are
considered twice during one calculation, however with different filter
weights. This is due to the mirroring approach, applied to surpass the
edge problems.

[11. DESIGN SPACE EXPLORATION
[11.1 Global transformations

In this step, we will be merely interested in localizing the
memory accesses by introducing loop transformations.

With figure 2 in mind, the obvious way to obtain the
wavelet transformed data set is to consecutively calculate
and store: (1) the high-pass coefficients in the prediction
stage and (2) al low-pass coefficients in the update stage.
However, the low-pass coefficients are processed using the
high-pass coefficients that are retrieved again from the
background memory. By merging the two filter loops
(figure 3), tempora locality is introduced, reducing the
bandwidth necessary to transport the data: when enough
prediction values are obtained, the next update value is
caculated. Depending on the size of the prediction and

update filter lengths, respectivelyam | +1and 2M [+1,
, or stuatlon (b My P<ml is

encountered (figure 3.a and b). The first case reqw res an
extra delay between the prediction and the update stages in

either situation (a) M7 >M!

July 1999

DSPS Fest 99

order to maintain the correct input values for the prediction
stage (see black arrows).

S0 o1 D2 3 T4 D5 e 7 D8 Soo S0 o1 D2 S3 D4 S5 Sos o7 Ss So

2MF+1 ™

™ 2ME+1

@ (b)
Figure 3 — Merging the prediction and the update stages increases the
data locality. Depending on the size of the prediction and update filter
lengths, respectively 2M rF) +1 and 2MF +1, dther situation (a)
ME >MF, or situation (b) ME <M/ isencountered. For situation
(a), the prerequisite for updating s,; is that dy, is calculated in the

prediction step. Similarly, for situation (b), the prerequisite for updating
sz isthat dy 3 iscalculated in the prediction step.

Apart from the previous enhancement, other improvements
on the wavelet transform control and loop flow are
possible. Starting with the classical implementation, i.e.
filtering the image on (i) a row-column level-by-level basis
(RC), other possibilities are (ii) row-row (level-by-level,
RR), (iii) row-row with modified recursive pyramid
algorithm (RPA) [Vish94a], (iv) block-based [Lafr99]. We
will briefly discuss these techniques and refer for an
elaborate discussion (VLS| implementation oriented) to
[Lafro9].

Alfa Region

Beta Region
©
Figure 4 — 1D-Representation of the different traversal schemes, with (a)
the horizontal traversal schemes (RC and RR), (b) vertical traversa
schemes (RPA and modified RPA) and the mixed traversal scheme
(MTA). Due to image edge effects, the first block — the a-region - is
bigger than the B-region. The gray region groups the nodes required to
obtain one tree for embedded zero-tree coding.

Beta Region

(i) The RC-technique first calculates the rows and then
the columns (illustrated for the one-dimensional case
in Figure 4.8). After the first level transform is
processed, the second level is caculated. The
disadvantage of this approach is the bursty (irregular)
tree generation. For a multi-level wavelet transform,
useful datais only released when the processing of the
columns starts at the highest level, imposing for the
EZT-module to be idle during a significant time.

(i) The RR-approach partially solves this problem by
trying to merge horizontal and vertical filtering
stages. Once enough rows are processed, a first part

frdecroo@vub.ac.be

An Integer Wavelet Transform, Implemented on a Parallel TI TM S320C40 Platform

VUB/IMEC

Page 3

of the columns can aready be processed, resulting in
an earlier data release on individual level basis. Still
the output is bursty, due to the level-by-level
approach.

(i) The (modified) recursive pyramid algorithm RPA
exploits the data dependency even further by initiating
the higher level transforms as soon as sufficient data
is released by the feeding level (Figure 4.b). This
results in a band-bursty data release, i.e. data is
released at constant time intervals. The first two
methods (i.e. the RC and RR approaches) are
addressed as horizontal traversal activation (HTA)
schedules, the latter (i.e. the RPA approach) as
vertical traversal activation (VTA) schedule.

(iv) The block-based method combines the advantages of
the HTA and VTA approaches. It is referred to as
mixed traversal activation (MTA), and generates a
block-based output, which is interesting if we want to
pipeline it with other modules (Figure 4.c).

Before taking a final decision, we need to browse through
the succeeding steps of the methodology.

[11.2 Memory Hierarchy and Data Reuse

Our am is to minimize on-chip memory and off-chip
memory access, in order to meet the constraints of real-
time implementations. In the previous paragraph, we have
already augmented the data locality, and in this step we
will try to exploit the introduced loop transformations. |f
the data reuse factor is bigger than one, we will move the
data up in the memory hierarchy and try to select the best
solution based on memory size and memory access cost.
These statistics directly relate to power and area. In afirst
phase, al evaluations are till on an abstract level, and no
decision is taken concerning the final implementation
platform. Within this step we will introduce the concept of
intermediate data copies. In a second phase however, the
decison was steered by the properties of the chosen
implementation platform. Normally, this decision is
postponed to the memory allocation and assignment step.

Depending on the wavelet transform chosen, different
buffering approaches have to be applied. The RC-
technique typically performs afiltering of one line (row or
column), which is addressed several times. The
introduction of an intermediate data copy of that line,
certainly improves the implementation cost. The RR, VTA
and MTA techniques require for each wavelet level an
intermediate data representation, containing the currently
processed data, plus two additiona buffers to store the
vertical and/or horizontal overlap data. Typically, for al
classical methods, the original image is stored in the main
buffer, and is successively updated with the filtered data.
In the MTA-approach this is not the case, and data is
immediately written in a rather large tree interface buffer,
since edge effects cause the top and left border blocks (a-
regions) to be larger than the other ones (B-regions) (Figure
4.c). An extensive study of the properties for the different

July 1999

DSPS Fest 99

approaches, related to memory size and transfers can be
found in [Sche99a][Lafr99b].

We could conclude that the RPA scheme requires the
smallest amount of total memory size, but suffers from a
large number of total memory accesses. The block-based
scheme has less memory accesses but at the cost of a
higher memory size. The RC-technique has the least
memory accesses but needs the largest memory size. Using
the in-place property of the wavelet transform however, we
were able to reduce this amount of memory dramatically
(see §111.4.2).

The RC-technique requires an intermediate data copy (in
on-chip memory) of the currently processed line or column
(figure 5) to reduce the amount of memory transfers to the
off-chip memory. All the other schemes require the storage
of extra lines and/or blocks in the on-chip memory, raising
the required cache size far above the available 2 kWord.
Seen the limited availability of on-chip memory for the Tl
TMS320C40, we selected the RC-technique. Although
rejected here on the basis of memory constraints of the
implementation platform, the other techniques remain
attractive alternatives for ASICs and processors with larger
on-chip memories.

As explained in previous paragraph, the RC-scheme only
starts releasing complete trees, when processing the highest
level of the wavelet pyramid. This introduces an
important, fixed delay in the pipeline of the EZW coder

and decoder.
Line Buffer

Filter Buffer (R)

Image Buffer (P2)

Figure 5 — Different buffers necessary to perform the wavelet transform
for the RC-method.

[11.3 Memory Allocation/Assignment

The memory used by a C program is divided into four
logical areas, which are mapped at load time into the
available physical memories of the implementation
environment. The logical areas are (1) the stack storage,
(2) the heap storage, (3) the static storage and (4) the code
storage [Thre95]. The physical memories are the two on-
chip memory blocks of 1 kWord (32-hit) featuring separate
address busses and two off-chip EDRAM blocks of 1
MWord (C40) or 512 kWord (C44). The first two are
capable of handling two reads or one write during each
processor cycle, while the latter two possess separated
address busses and a multiplexed data bus, allowing two

frdecroo@vub.ac.be

An Integer Wavelet Transform, Implemented on a Parallel TI TM S320C40 Platform

VUB/IMEC

Page 4

reads or one write for both off-chip memories, during each
cycle [SPRU96]. Even though, when page misses do
occur, throughput is decreased.

In the ThreeL Paralel C programming environment, one
can choose to define data objects as (1) arrays on the stack,
(2) dynamically allocated on the heap, (3) static or (4)
assigned to an address (e.g. the start address of an on-chip
area). After compilation, a configuration process guided by
user directives inserts mapping information into the
application file. The bootstrap and loading software uses
this information to map the logical areas into the available
memories.

In the CPU core, two data operands from the processor data
bus are accessed in one cycle by two dedicated CPU busses
and released for the multiplier, ALU or register file. At the
same time, two register busses are able to deliver two data
values from the register file to the multiplier or the ALU.

The temporal locality introduced in paragraph 111.2 does
not assure that the compiler will keep two calculated high-
pass values in registers near the CPU in order to use them
immediately in the calculation of the low-pass value. On
the contrary, the values will be stored and retrieved again.
A way to impose register usage is to store the high-pass
values in temporal variables (see the intermediate example
code in figure 6). When programming C, one has to rely
on the compiler to assign temporary variables to registers.
Only hand coding in assembly ensures full user control of
the assignment to registers (only directives are possible in
C). If however not enough registers are available (e.g.
small register files), a significant influence on the
performance will be noticed. This becomes apparent for
the inverse transform, where four supplementary variables
are needed to store the values from the inverse update step
in order to calculate the inverse prediction step.

f or (r owsedge; r onchedge; r owt+) Ior(rmwedge;rmm+edge;rovm+)

{
Qopyl nageToli ne(i nage, | i ne); Qopyl nageToli ne(i nage, 1 i ne);

x=edge- 1, x=edge- 1,

dcol =edge- 1; dcol =edge- 1;

/] Prediction step /1 Prediction step

high[row}[dcol] i ne[X] - tnpl=ine[X] -

nearest (HP_3*line[x-3] + nearest (H? 3*line[x-3] +

HP 1*ling[x-1] + HP 1*line[x-1] +
HPL *ling[x+1] + HPL *line[x+1] +
H3 *|ine[x+3], HD); H3 *line[x+3], H);

deol + dcol ++

f or (x=edge+1; x<wredge; x+=2)

{
/1 Prediction step

f or (x=edge+l; x<wtedge; x+=2)
{
/1 Prediction step

hi gh[row}[dcol =i ne[X] - tnp2=1ine[x] -
nearest (H?_3*ine[x-3] + near est (HP_3*l i ne[x-3] +
HP 1*ling[x-1] + I-Pl*llne[x 1 +
HPL *ling[x+l] + HPL *line[x+]] +
H3 *ling[x+3], HY); H3 *[ine[x+3], H);
/1 Updat e step hi ghl row [deol] =t np2;
lowrow [deol] ine[x-1] + /1 pdate step

nearest (LP 1*line[x-2] +
LP1L *line[X],LS);
dcol ++

} t npl=t np2;
} decol ++

}
}

lowrow [deo] ine[x-1] +
near est (LP_1*t npl+
LPL *tnp2, LS);

@ (b)
Figure 6 : Simplified code example with (a) the original and (b) the
modified implementation using temporary variables.

July 1999

DSPS Fest 99

[11.4 In-place Optimisations
Some extra optimizations can further reduce the amount of
consumed memory and speed up the implementation.

.4.1

During the prediction and update stages the odd/even
sample data can be replaced by the calculated prediction
and update values (see 8Il). This in-place wavelet
organization [Swel95] is generaly considered as an inter-
array storage order optimization (figure 7) in the context of
the DTS-methodology of [Catt98]. The advantage is that
the obsolete memory units (i.e. the locations where the
update coefficients are stored) can be reused to store the
newly caculated data (i.e. output from succeeding
prediction and update stages), seen the irrelevance of the
ancient data during the further calculation of the wavelet
tree.

In-place Wavelet Organisation

A
Address Space

LL Image

LH Image ~-__

HL Image ---___)
HH Image -------_

\ Output Image

@

H Image

Input Image

Time

Inter-array storage ordering

#Address Space

(b)

Input/Output Image

Time

Figure 7 — Required memory size and buffers in case of the Mallat-
organization (a) and the in-place Sweldens-organization (b) where the
number of buffersis reduced to one single buffer of input image size.

[11.4.2 LineBuffering

The data transfer time from the off-chip memory to the on-
chip memory (line buffer) and backwards, has to be
considered too. Therefore, it is certainly useful that while
one line is processed, the next line is already copied into
the on-chip memory, and the previous processed line is
copied back to the off-chip memory partition (figure 8).
This is an application of the data reuse decision step of our
methodology [Catt98] for which an efficient search space
exploration has been performed. For example, line i is
copied from off-chip memory into buffer 1 during a first
timeframe, then processed in the next timeframe and finally
copied back to the off-chip memory. In the meanwhile,
during the first timeframe, buffer 2 is processed and buffer
3iscopied into the off-chip image buffer. Of course, these
"background" transfers should not interfere with the CPU.
In our development environment, the paralledl DMA-
processor of the TM S320C40 was exploited for this task.

[11.4.3 Framebuffering

The previous data reuse technique has also been applied on
the frame level for inter-chip frame buffering. Since the

frdecroo@vub.ac.be

An Integer Wavelet Transform, Implemented on a Parallel TI TM S320C40 Platform

Page5

parallel development system does not offer shared memory,
complete frames had to be moved continuously from one
processor to another through slow inter-processor
communication ports. Nevertheless, it turned out to be
possible to increase the throughput of the entire application
by carrying out these frame transfers in parallel with the
wavelet transform.

fill process empty fill process empty fill process empty

VUB/IMEC

to linei t1 linei+1 t2 linei+2 t3 t
@
fill process empty fill process empty
Buffer1] i | i T 3] i+3
process | empty fill process | empty fill
Buifer 2| i1 [IEEN [i+2] i+2 i+5
empty fill process | empty fill process
Buffer 3 [i+1 | i+1 i+4 | i+ |
(b)

Figure 8 — (a) Sequential line buffering: the line buffer isfilled before and
emptied after processing while in (b) paralel line buffering, lines are
processed while the previous processed line is stored into an off-chip
image buffer and the next one is retrieved from another off-chip image
buffer.

As a result, this has lead to additional input and output
buffers. The transport of the frame buffers is again
performed by the DMA-coprocessor. We have chosen a
setup with four frame buffers (figure 9). In parallel, the
following action had to take place in the different buffers:
(2) receive an image in buffer 1 via the communication port
from the frame grabber, (2) use buffer 2 as input for the
wavelet transform, (3) use buffer 3 as output for the
wavelet transformed data, (4) send buffer 4 to the next
processor port. |f more than one wavelet level needs to be
calculated, buffer 3 is used as input and output buffer for
the levels higher than 1 (No bottleneck occurs since for the
next wavelet levels the input image is successively
subsampled by a factor 4). In the next timeframe, the
function of the buffers is permutated, as it is the case for
the line buffering. Note also, that although the latency (i.e.
the difference between image capture and display), caused
by the pipeline structure remains unaffected by carrying out
frame transfers in parallel with the wavelet transform, the
frame rate is increased. Nevertheless, the capabilities of
the DMA-coprocessor are limited since it has single data
and address busses. Thus, the balancing of the four parallel
DMA-processes and the CPU is a critical issue in relation
to the obtained performance.

[11.5 Memory organization

The resulting memory organization for the considered
processor is shown in figure 10. The four frame buffers are
stored in local off-chip memory and the three line buffers
in the on-chip memory. Remark that the frame buffers are
contained by two off-chip memory partitions, having a
common data bus but separate address busses.

July 1999

DSPS Fest '99
read process write read process write
frame frame frame frame frame frame
to linei t1 linei+1 2t
@)
read frame read process read frame read process
from port input from port input
FrameBuffer 1| i | i i+2 | i+2 |
read process iread frame read process | read frame
input from port input from port
Frame Buffer 2 i-1 | i+1 | i+1 | i+3 |
write process | write frame write process | write frame
output to port output to port
Frame Buffer 3 T
fwriteframe | write process ‘writeframe | write process
i to port joutput i to port i output
rrame Buffer 4 [EEHEN O N -,
to t1 2 t
(b)

Figure 9 — (a) Sequential frame buffering where a frame has to be read
from a communication port before processing and the result is written to
another port while in (b) parallel frame buffering, processing goes on
while anext frameis read and a previous oneis stored.

Finally, the system was implemented for the transformation
of color images. The image format is YUV.Since two
processors were available, one was appointed to transform
the Y-frame and the other to transform the chrominance
frames. Since the latter are subsampled before processing,
the load of the second processor was not significantly
higher than the load of the first one.
ramblkO (on-chip) localO(off-chip, stack)

Line Frame
Buffer 1 Buffer 1
Frame
r Buffer 2
e
Data-path g ramblk1 (on-chip) localO(off-chip, heap)
f Line Frame
Buffer 2 Buffer 3
Foreground layer Line Frame
level 1 Buffer 3 Buffer 4
partitions 1, 2, 3 partitions 4,5
level 2 level 3

Figure 10 — Fina memory hierarchy with three hierarchy levels and
different memory partitions which are spread over the available physical
memory partitions.

IV.RESULTS

The obtained frame rates for the forward and inverse
wavelet transform are shown in Figure 11. The results are
displayed for both a 1-level and a 3-level wavelet transform
and a frame size of 256-by-256 pixels (Y UV-color image).
Remark that the introduction of the line buffers in the
sequential mode initially did reduce the frame rate dightly,
due to the increased number of memory transfers. The
time gained by localizing the memory transfersislost again
by the extra copy operations. However, paralleling the data
transfer then becomes feasible by exploiting the DMA-
channels (line and frame buffering). This alowed a
performance boost above a factor three. Frame rates of

frdecroo@vub.ac.be

An Integer Wavelet Transform, Implemented on a Parallel TI TM S320C40 Platform

VUB/IMEC

Page 6

19.9 fps for a 1-level transform, and 14.3 fps for a 3-level
transform were obtained. However, the drawback of those
extra buffersisthe increased amount of needed on-chip and
off-chip memory.

1-level transform 3-leve transform

A~ A
e N r N\

250

100

Frame Rate (1ps)

0.0

DWT IDWT DWT+IDWT DWT IDWT DWT+IDWT

0O Original lifting scheme 6.2 6.4 6.2 5.0 51 5.0
O Line buffer 58 6.4 58 46 5.0 4.6
@ Triple line buffer (DMA-access) 145 15.1 14.4 113 11.8 113

B Quadruple frame buffer (DMA- 19.6 19.9 195 143 14.6 143
access)

Figure 11 - Achieved frame rates on two Tl TM S320C40-processors for a
1- and 3-level wavelet transform (256x256 YUV frames, DWT: discrete
wavelet transform; IDWT: inverse DWT).

V. CONCLUSIONS

A 3-level wavelet transform for 256x256 YUV color
images was implemented on 2 TI TM S320C40-processors.
Due to the limited amount of available on-chip memory,
the design space exploration resulted in the selection of the
classical row-column approach. By exploiting the DMA-
facilities of the processor, a satisfactory (near real-time)
performance was obtained (14,3 fps for a 3 level wavelet
transform).

ACKNOWLEDGEMENTS

The presented work results from the research carried out in
the framework of the IWT-IT - TeleVision project, funded
by the IWT (Belgium).

REFERENCES

[Catt98] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.
Nachtergaele, A. Vandecappelle, “Custom Memory Management
Methodology: Exploration of Memory Organisation for Embedded
Multimedia System Design”, Kluwer Academic Publishers, Boston, 1998.

[Chak93] C. Chakrabarti, M. Vishwanath, R. Owens, “Architectures for
Wavelet Transforms’, VLS|l Signa Processing VI, IEEE specia
publications, New Y ork, pp. 507-515, 1993.

[Lafr99a) G. Lafruit, P. Schelkens, J. Bormans, “Proposal of weighting
factors for Scalable Texture Objects’, MPEG-4 Meeting, Seoul, ISO/IEC
JTC1/SC29/WG11 MPEG98/M 4454, March 1999

[Lafro9b] G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, |. Bolsens,
"Optimal Memory Organization for Scalable Texture Codecs in MPEG-
4", |IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 9, No. 2, pp. 218 —243, March 1999.

July 1999

DSPS Fest '99 An Integer Wavelet Transform, Implemented on a Parallel TI TM S320C40 Platform

[Mall89] S. Mallat, “A Theory for Multiresolution Signal Decomposition:
The Wavelet Representation”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol.11, No.7, pp. 674-693, 1989.

[Parh93] K.K. Parhi, T. Nishitani, “VLSI architectures for Discrete
Wavelet Transforms’, |IEEE Transactions on VLS| Systems, Vol.1, No.2,
pp. 191-202, 1993.

[Sche99a] P. Schelkens, G. Lafruit, F. Decroos, J. Corndlis, F. Catthoor,
“Power Exploration For Embedded Zero-Tree Wavelet Encoding”, IRIS
internal report TR 0057, Vrije Universiteit Brussel, 1999.

[Sche99b] P. Schelkens, F. Decroos, G. Lafruit, F. Catthoor, J. Cornélis,
"Efficient Implementation of Embedded Zero-Tree Wavelet Encoding”,
accepted for IEEE International Conference on Electronics, Circuits and
Systems (ICECS'99), Paphos, Cyprus, September 5-8, 1999.

[Shap93] J.M. Shapiro, “Embedded Image Coding Using Zerotrees of
Wavelet Coefficients’, IEEE Transactions on Signal Processing, Val. 41,
No.12, pp. 3445-3462, 1993.

[SPRU96] TMS320C40 User Guide, Texas Instruments Inc.,
Houston,1996.

[Swel95] W. Sweldens, “The Lifting Scheme: A New Philosophy in
Biorthogonal Wavelet Constructions’, SPIE Conference 1995, Vol. 2569,
pp. 68-79, 1995.

[Thre95] ThreeL parallel C User Guide V2.0, 3L Ltd., Edinburgh, pp.
385-394,1995.

[Vish94] M. Vishwanath, “The Recursive Pyramid Algorithm for the
Discrete Wavelet Transfer”, IEEE Transactions on Signal Processing, Vol.
42, No. 3, pp. 673-676, 1994.

frdecroo@vub.ac.be VUB/IMEC

Page 7

July 1999

