

119- and 165-Bump BGA
Commercial Temp
Industrial Temp
9M

9Mb SCD/DCD Sync Burst SRAMs

250 MHz—133MHz 2.5 V or 3.3 V V_{DD} 2.5 V or 3.3 V I/O

Features

- FT pin for user-configurable flow through or pipeline operation
- Single/Dual Cycle Deselect selectable
- IEEE 1149.1 JTAG-compatible Boundary Scan
- On-chip read parity checking; even or odd selectable
- ZQ mode pin for user-selectable high/low output drive
- 2.5 V or 3.3 V +10%/-10% core power supply
- 2.5 V or 3.3 V I/O supply
- LBO pin for Linear or Interleaved Burst mode
- Internal input resistors on mode pins allow floating mode pins
- Default to SCD x18/x36 Interleaved Pipeline mode
- Byte Write (BW) and/or Global Write (GW) operation
- Internal self-timed write cycle
- Automatic power-down for portable applications
- JEDEC-standard 119- and 165-bump BGA packages

		-250	-225	-200	-166	-150	-133	Unit
Pipeline	t _{KQ}	2.5	2.7	3.0	3.4	3.8	4.0	ns
3-1-1-1	tCycle	4.0	4.4	5.0	6.0	6.7	7.5	ns
3.3 V	Curr (x18)	280	255	230	200	185	165	mΑ
3.3 V	Curr (x32/x36)	330	300	270	230	215	190	mΑ
2.5 V	Curr (x18)	275	250	230	195	180	165	mΑ
Z.J V	Curr (x32/x36)	320	295	265	225	210	185	mΑ
Flow	t_{KO}	5.5	6.0	6.5	7.0	7.5	8.5	ns
Through 2-1-1-1	t _{KQ} tCycle	5.5 5.5	6.0 6.0	6.5 6.5	7.0 7.0	7.5 7.5	8.5 8.5	ns ns
Through 2-1-1-1								-
Through	tCycle	5.5	6.0	6.5	7.0	7.5	8.5	ns
Through 2-1-1-1	tCycle Curr (x18)	5.5	6.0	6.5	7.0	7.5	8.5	ns mA

Functional Description

Applications

The GS88218/36A is a 9,437,184-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support.

Controls

Addresses, data I/Os, chip enable $(\overline{E1})$, address burst control inputs $(\overline{ADSP}, \overline{ADSC}, \overline{ADV})$, and write control inputs $(\overline{Bx}, \overline{BW}, \overline{GW})$ are synchronous and are controlled by a positive-edgetriggered clock input (CK). Output enable (\overline{G}) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either \overline{ADSP} or \overline{ADSC} inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by \overline{ADV} . The burst address counter may be configured to count in

either linear or interleave order with the Linear Burst Order (\overline{LBO}) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.

Flow Through/Pipeline Reads

The function of the Data Output register can be controlled by the user via the FT mode . Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM in Pipeline mode, activating the rising-edge-triggered Data Output Register.

SCD and DCD Pipelined Reads

The GS88218/36A is a SCD (Single Cycle Deselect) and DCD (Dual Cycle Deselect) pipelined synchronous SRAM. DCD SRAMs pipeline disable commands to the same degree as read commands. SCD SRAMs pipeline deselect commands one stage less than read commands. SCD RAMs begin turning off their outputs immediately after the deselect command has been captured in the input registers. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock. The user may configure this SRAM for either mode of operation using the SCD mode input.

Byte Write and Global Write

Byte write operation is performed by using Byte Write enable (\overline{BW}) input combined with one or more individual byte write signals (\overline{Bx}) . In addition, Global Write (\overline{GW}) is available for writing all bytes at one time, regardless of the Byte Write control inputs.

FLXDrive™

The ZQ pin allows selection between high drive strength (ZQ low) for multi-drop bus applications and normal drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.

Sleep Mode

Low power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.

Core and Interface Voltages

The GS88218/36A operates on a 2.5 V or 3.3 V power supply. All input are 3.3 V and 2.5 V compatible. Separate output power $(V_{\rm DDQ})$ pins are used to decouple output noise from the internal circuits and are 3.3 V and 2.5 V compatible.

165 Bump BGA—x18 Commom I/O—Top View (Package D)

	1	2	3	4	5	6	7	8	9	10	11	
Α	NC	Α	E1	BB	NC	E3	BW	ADSC	ADV	Α	A18	А
В	NC	Α	E2	NC	BA	CK	GW	G	ADSP	Α	NC	В
С	NC	NC	V_{DDQ}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{DDQ}	NC	DQPA	С
D	NC	DQB	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	NC	DQA	D
E	NC	DQB	$V_{\rm DDQ}$	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	NC	DQA	Е
F	NC	DQB	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	NC	DQA	F
G	NC	DQB	V_{DDQ}	V_{DD}	V _{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	NC	DQA	G
Н	FT	MCL	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC	ZQ	ZZ	Н
J	DQB	NC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	DQA	NC	J
K	DQB	NC	$V_{\rm DDQ}$	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	DQA	NC	K
L	DQB	NC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	DQA	NC	L
М	DQB	NC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	DQA	NC	М
N	DQPB	SCD	V_{DDQ}	V_{SS}	NC	NC	NC	V _{SS}	V_{DDQ}	NC	NC	N
Р	NC	NC	Α	Α	TDI	A1	TDO	Α	Α	Α	A17	Р
R	LBO	NC	Α	Α	TMS	A0	TCK	Α	Α	Α	Α	R

11 x 15 Bump BGA—13mm x 15 mm Body—1.0 mm Bump Pitch

165 Bump BGA—x36 Common I/O—Top View (Package D)

1	2	3	4	5	6	7	8	9	10	11	
NC	Α	E1	BC	BB	E3	BW	ADSC	ADV	Α	NC	Α
NC	Α	E2	BD	BA	CK	GW	G	ADSP	Α	NC	В
DQPC	NC	V _{DDQ}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{DDQ}	NC	DQPB	С
DQC	DQC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQB	DQB	D
DQC	DQC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQB	DQB	Е
DQC	DQC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQB	DQB	F
DQC	DQC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQB	DQB	G
FT	MCL	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC	ZQ	ZZ	Н
DQD	DQD	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	DQA	DQA	J
DQD	DQD	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQA	DQA	K
DQD	DQD	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	DQA	DQA	L
DQD	DQD	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	$V_{\rm DDQ}$	DQA	DQA	М
DQPD	SCD	V_{DDQ}	V_{SS}	NC	NC	NC	V_{SS}	V_{DDQ}	NC	DQPA	N
NC	NC	Α	Α	TDI	A1	TDO	Α	Α	Α	A17	Р
LBO	NC	Α	Α	TMS	A0	TCK	А	Α	Α	Α	R
	NC NC DQPC DQC DQC DQC DQC DQC DQC DQC DQC DQC NC	NC A NC A DQPC NC DQC	NC A E1 NC A E2 DQPC NC VDDQ DQC DQC VDDQ DQD DQD VDDQ NC NC A	NC A E1 BC NC A E2 BD DQPC NC VDDQ VSS DQC DQC VDDQ VDD DQD DQD VDDQ VSS NC NC A A	NC A E1 BC BB NC A E2 BD BA DQPC NC VDDQ VSS VSS DQC DQC VDDQ VDD VSS FT MCL NC VDD VSS DQD DQD VDDQ VDD VSS NC NC NC A A TDI	NC A E1 BC BB E3 NC A E2 BD BA CK DQPC NC VDDQ VSS VSS VSS DQC DQC VDDQ VDD VSS VSS DQC DQC VDDQ VDD VSS VSS DQC DQC VDDQ VDD VSS VSS FT MCL NC VDD VSS VSS DQD DQD VDDQ VDD VSS VSS DQD SCD VDDQ VSS NC NC	NC A E1 BC BB E3 BW NC A E2 BD BA CK GW DQPC NC VDDQ VSS VSS VSS VSS DQC DQC VDDQ VDD VSS VSS VSS FT MCL NC VDD VSS VSS VSS DQD DQD VDDQ VDD VSS VSS VSS DQPD SCD <	NC A E1 BC BB E3 BW ADSC NC A E2 BD BA CK GW G DQPC NC VDDQ VSS VSS VSS VSS VSS DQC DQC VDDQ VDD VSS VSS VSS VDD FT MCL NC VDD VSS VSS VSS VDD DQD DQD VDDQ VDD VSS VSS VSS VDD DQD DQD VDDQ VDD VSS VSS VSS VDD DQD DQD VDDQ VDD VSS VSS VSS VDD <td>NC A E1 BC BB E3 BW ADSC ADV NC A E2 BD BA CK GW G ADSP DQC NC VDDQ VSS VSS VSS VSS VSS VDD DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ FT MCL NC VDD VSS VSS VSS VDD NC DQD DQD VDDQ VDD VSS VSS VDD VDDQ VDDQ DQD DQD VDDQ VDD VSS VSS VSS VDD</td> <td>NC A E1 BC BB E3 BW ADSC ADV A NC A E2 BD BA CK GW G ADSP A DQPC NC VDDQ VSS VSS VSS VSS VDQ NC DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB FT MCL NC VDD VSS VSS VSS VDD VDDQ DQA DQD DQD VDDQ VSS VSS VSS VDD VDDQ DQA DQD</td> <td>NC A ET BC BB E3 BW ADSC ADV A NC NC A E2 BD BA CK GW G ADSP A NC DQPC NC VDDQ VSS VSS VSS VSS VDDQ NC DQPB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB FT MCL NC VDD VSS VSS VSS VDD VDDQ DQA DQA DQD DQD VDDQ</td>	NC A E1 BC BB E3 BW ADSC ADV NC A E2 BD BA CK GW G ADSP DQC NC VDDQ VSS VSS VSS VSS VSS VDD DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ FT MCL NC VDD VSS VSS VSS VDD NC DQD DQD VDDQ VDD VSS VSS VDD VDDQ VDDQ DQD DQD VDDQ VDD VSS VSS VSS VDD	NC A E1 BC BB E3 BW ADSC ADV A NC A E2 BD BA CK GW G ADSP A DQPC NC VDDQ VSS VSS VSS VSS VDQ NC DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB FT MCL NC VDD VSS VSS VSS VDD VDDQ DQA DQD DQD VDDQ VSS VSS VSS VDD VDDQ DQA DQD	NC A ET BC BB E3 BW ADSC ADV A NC NC A E2 BD BA CK GW G ADSP A NC DQPC NC VDDQ VSS VSS VSS VSS VDDQ NC DQPB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB DQC DQC VDDQ VDD VSS VSS VSS VDD VDDQ DQB DQB FT MCL NC VDD VSS VSS VSS VDD VDDQ DQA DQA DQD DQD VDDQ

11 x 15 Bump BGA—13mm x 15 mm Body—1.0 mm Bump Pitch

GS88218/36 165-Bump BGA Pin Description

Pin Location	Symbol	Туре	Description		
R6, P6	A0, A1	I	Address field LSBs and Address Counter Preset Inputs		
A2, A10, B2, B10, P3, P4, P8, P9, P10, R3, R4, R8, R9, R10, R11	An	I	Address Inputs		
P11	A 17		Address Input		
A11	A 18	I	Address Input (x18 Version)		
J10, K10, L10, M10, J11, K11, L11, M11, N11 G10, F10, E10, D10, G11, F11, E11, D11, C11 G2, F2, E2, D2, G1, F1, E1, D1, C1 J2, K2, L2, M2, J1, K1, L1, M1, N1	DQa1-DQa9 DQB1-DQB9 DQc1-DQc9 DQD1-DQD9	I/O	Data Input and Output pins. (x36 Version)		
B5, A5, A4, B4	Ba, Bb, Bc, Bd	ı	Byte Write Enable for DQA, DQB, DQc, DQD I/Os; active low (x36 Version)		
M10, L10, K10, J10, G11, F11, E11, D11, C11 D2, E2, F2, G2, J1, K1, L1, M1, N1	DQa1-DQa9 DQc1-DQc9	I/O	Data Input and Output pins (x18 Version)		
B5, A4	Ba, Bc	I	Byte Write Enable for DQA, DQB I/Os; active low (x18 Version)		
A1, B1, B11, C2, C10, H3, H9, N5, N6, N7, N10, P1, P2, R2	NC	_	No Connect		
A5, B4, C1, D1, D10, E1, E10, F1, F10, G1, G10, J2, J11, K2, K11, L2, L11, M2, M11, N11	NC	_	No Connect (x18 Version)		
A11	NC	_	No Connect (x36 Version)		
B6	CK	I	Clock Input Signal; active high		
A7	BW		Byte Write—Writes all enabled bytes; active low		
B7	GW	I	Global Write Enable—Writes all bytes; active low		
A3	<u>E</u> 1	I	Chip Enable; active low		
A6	<u>E</u> 3	I	Chip Enable; active low (x36 version)		
B3	E ₂		Chip Enable; active high (x36 version)		
B8	G	I	Output Enable; active low		
A9	ADV	I	Burst address counter advance enable; active I0w		
A8, B9	ADSC, ADSP	I	Address Strobe (Processor, Cache Controller); active low		
H11	ZZ	I	Sleep mode control; active high		
H1	FT	I	Flow Through or Pipeline mode; active low		
R1	LBO		Linear Burst Order mode; active low		
H10	ZQ	I	FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [Low Drive])		
R5	TMS		Scan Test Mode Select		
P5	TDI	I	Scan Test Data In		

Rev: 1.01 3/2002 4/44 © 2001, Giga Semiconductor, Inc.

GS88218/36 165-Bump BGA Pin Description

Pin Location	Symbol	Туре	Description
P7	TDO	0	Scan Test Data Out
R7	TCK	1	Scan Test Clock
H2	MCL	_	Must Connect Low
N2	SCD	_	Single Cycle Deselect/Dual Cyle Deselect Mode Control
D4, D8, E4, E8, F4, F8, G4, G8, H4, H8, J4, J8, K4, K8, L4, L8, M4, M8	V _{DD}	I	Core power supply
C4, C5, C6, C7, C8, D5, D6, D7, E5, E6, E7, F5, F6, F7, G5, G6, G7, H5, H6, H7, J5, J6, J7, K5, K6, K7, L5, L6, L7, M5, M6, M7, N4, N8	V _{SS}	I	I/O and Core Ground
C3, C9, D3, D9, E3, E9, F3, F9, G3, G9, J3, J9, K3, K9, L3, L9, M3, M9, N3, N9	V_{DDQ}	I	Output driver power supply

GS88236A Pad Out

119 Bump BGA—Top View

i	1	2	3	4	5	6	7
Α	V_{DDQ}	A 6	A 7	ADSP	A 8	A 9	V_{DDQ}
В	NC	E2	A4	ADSC	A 15	A 17	NC
С	NC	A 5	Аз	V_{DD}	A14	A 16	NC
D	DQc4	DQc9	V_{SS}	ZQ	V_{SS}	DQ _{B9}	DQB4
E	DQc3	DQc8	V_{SS}	E ₁	V_{SS}	DQ _{B8}	DQ _B 3
F	V_{DDQ}	DQc7	V_{SS}	G	V_{SS}	DQ _{B7}	V_{DDQ}
G	DQc2	DQc6	Bc	ADV	BB	DQB6	DQB2
Н	DQc1	DQc5	V_{SS}	GW	V_{SS}	DQ _{B5}	DQ _B 1
J	V_{DDQ}	V_{DD}	NC	V_{DD}	NC	V_{DD}	V_{DDQ}
K	DQ _{D1}	DQ _{D5}	V_{SS}	CK	V_{SS}	DQA5	DQA1
L	DQ _{D2}	DQD6	BD	SCD	BA	DQA6	DQA2
M	V_{DDQ}	DQ _{D7}	V_{SS}	BW	V_{SS}	DQA7	V_{DDQ}
N	DQ _{D3}	DQD8	V_{SS}	A 1	V_{SS}	DQA8	DQA3
Р	DQ _{D4}	DQ _{D9}	V_{SS}	A 0	V_{SS}	DQA9	DQA4
R	NC	A 2	LBO	V_{DD}	FT	A 13	PE
T	NC	NC	A 10	A 11	A12	NC	ZZ
U	V_{DDQ}	TMS	TDI	TCK	TDO	NC	V_{DDQ}

GS88218A Pad Out

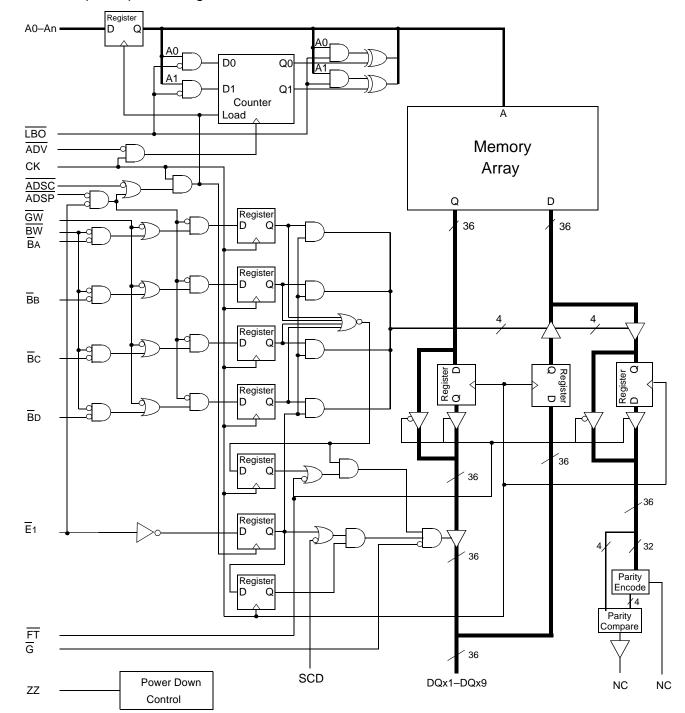
119 Bump BGA—Top View

·	1	2	3	4	5	6	7
Α	V_{DDQ}	A 6	A 7	ADSP	A 8	A 9	V_{DDQ}
В	NC	E2	A4	ADSC	A 15	A 17	NC
С	NC	A 5	Аз	V_{DD}	A 14	A 16	NC
D	DQ _B 1	NC	V_{SS}	ZQ	V_{SS}	DQA9	NC
E	NC	DQB2	V_{SS}	<u>-</u> E1	V_{SS}	NC	DQA8
F	V_{DDQ}	NC	V_{SS}	G	V_{SS}	DQA7	V_{DDQ}
G	NC	DQ _{B3}	BB	ADV	NC	NC	DQA6
Н	DQB4	NC	V_{SS}	GW	V_{SS}	DQA5	NC
J	V_{DDQ}	V_{DD}	NC	V_{DD}	NC	V_{DD}	V_{DDQ}
K	NC	DQ _{B5}	V_{SS}	CK	V_{SS}	NC	DQA4
L	DQB6	NC	NC	SCD	BA	DQA3	NC
M	V_{DDQ}	DQ _{B7}	V_{SS}	BW	V_{SS}	NC	V_{DDQ}
N	DQB8	NC	V_{SS}	A 1	V_{SS}	DQA2	NC
Р	NC	DQ _{B9}	V_{SS}	A 0	V_{SS}	NC	DQA1
R	NC	A2	LBO	V_{DD}	FT	A 13	PE
T	NC	A 10	A 11	NC	A12	A 18	ZZ
U	$V_{\rm DDQ}$	TMS	TDI	TCK	TDO	NC	V_{DDQ}

BPR1999.05.18

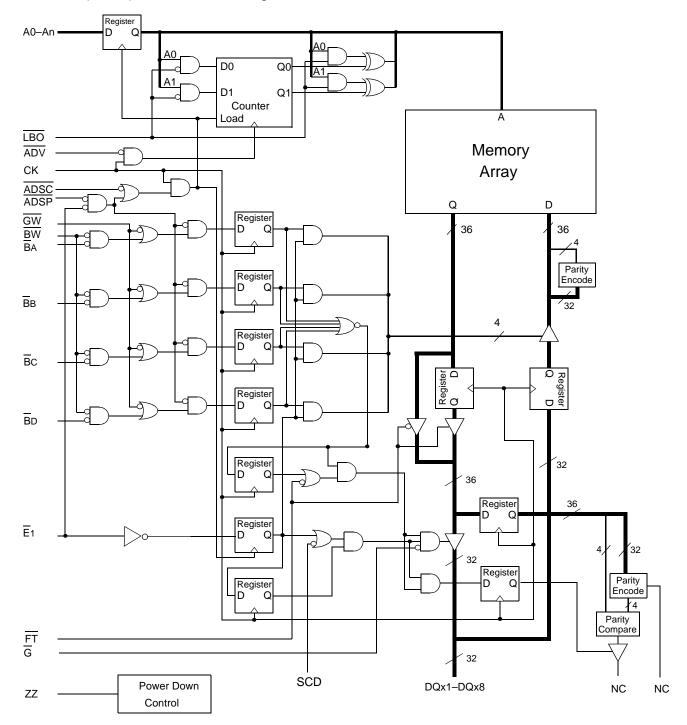
GS88218/36A BGA Pin Description

Pin Location	Symbol	Туре	Description		
P4, N4	A0, A1	-	Address field LSBs and Address Counter Preset Inputs		
A2, A3, A5, A6, B3, B5, C2, C3, C5, C6, R2, R6, T3, T5	An	I	Address Inputs		
T4	An	ļ	Address Input (x36 Versions)		
T2, T6	NC	_	No Connect (x36 Versions)		
T2, T6	An	ļ	Address Input (x18 Version)		
K7, L7, N7, P7, K6, L6, M6, N6, P6 H7, G7, E7, D7, H6, G6, F6, E6, D6 H1, G1, E1, D1, H2, G2, F2, E2, D2 K1, L1, N1, P1, K2, L2, M2, N2, P2	DQA1-DQA9 DQB1-DQB9 DQC1-DQC9 DQD1-DQD9	I/O	Data Input and Output pins (x36 Versions)		
L5, G5, G3, L3	BA, BB, BC, BD	- 1	Byte Write Enable for DQA, DQB, DQc, DQD I/Os; active low (x36 Version)		
P7, N6, L6, K7, H6, G7, F6, E7, D6 D1, E2, G2, H1, K2, L1, M2, N1, P2	DQA1–DQA9 DQB1–DQB9	I/O	Data Input and Output pins (x18 Version)		
L5, G3	Ba, Bb	I	Byte Write Enable for DQA, DQB I/Os; active low (x18 Version)		
B1, C1, R1, T1, U6, B7, C7, J3, J5	NC	_	No Connect		
P6, N7, M6, L7, K6, H7, G6, E6, D7, D2, E1, F2, G1, H2, K1, L2, N2, P1, G5, L3, T4	NC	_	No Connect (x18 Version)		
K4	CK	ļ	Clock Input Signal; active high		
M4	BW	ļ	Byte Write—Writes all enabled bytes; active low		
H4	GW	I	Global Write Enable—Writes all bytes; active low		
E4	E ₁	I	Chip Enable; active low		
B2	E ₂	I	Chip Enable; active high		
F4	G	I	Output Enable; active low		
G4	ADV	I	Burst address counter advance enable; active low		
A4, B4	ADSP, ADSC	I	Address Strobe (Processor, Cache Controller); active low		
T7	ZZ	I	Sleep Mode control; active high		
R5	FT	I	Flow Through or Pipeline mode; active low		
R3	LBO	I	Linear Burst Order mode; active low		
L4	SCD	1	Single Cycle Deselect/Dual Cycle Deselect Mode Control		
R7	PE	1	Parity Bit Enable; active low (High = x16/32 Mode, Low = x18/36 Mode)		
D4	ZQ	I	FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [Low Drive])		



GS88218/36A BGA Pin Description

Pin Location	Symbol	Type	Description
U2	TMS	ı	Scan Test Mode Select
U3	TDI	I	Scan Test Data In
U5	TDO	0	Scan Test Data Out
U4	TCK	ı	Scan Test Clock
J2, C4, J4, R4, J6	V_{DD}	I	Core power supply
D3, E3, F3, H3, K3, M3, N3, P3, D5, E5, F5, H5, K5, M5, N5, P5	V _{SS}	I	I/O and Core Ground
A1, F1, J1, M1, U1, A7, F7, J7, M7, U7	V_{DDQ}	I	Output driver power supply


GS88218/36A (PE = 0) Block Diagram

Note: Only x36 version shown for simplicity.

GS88218/36A (PE = 1) x32 Mode Block Diagram

Note: Only x36 version shown for simplicity.

Mode Pin Functions

Mode Name	Pin Name	State	Function
Burst Order Control	LBO	L	Linear Burst
Buist Order Control	LDO	Н	Interleaved Burst
Output Register Control	FT	L	Flow Through
Output Register Control	ГІ	H or NC	Pipeline
Dawar Dawa Cantral	77	L or NC	Active
Power Down Control	ZZ	Н	Standby, I _{DD} = I _{SB}

Note:

There are is a pull-up devices on the and $\overline{\mathsf{FT}}$ pin and a pull-down devices on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.

Enable / Disable Parity I/O Pins

This SRAM <u>allo</u>ws the user to configure the device to operate in Parity I/O active (x18 or x36) or in Parity I/O inactive (x16, x32, or x64) mode. Holding the PE bump low or letting it float will activate the 9th I/O on each byte of the RAM.

Burst Counter Sequences Linear Burst Sequence

	A[1:0]	A[1:0]	A[1:0]	A[1:0]
1st address	00	01	10	11
2nd address	01	10	11	00
3rd address	10	11	00	01
4th address	11	00	01	10

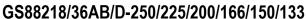

Note: The burst counter wraps to initial state on the 5th clock.

Interleaved Burst Sequence

	A[1:0]	A[1:0]	A[1:0]	A[1:0]
1st address	00	01	10	11
2nd address	01	00	11	10
3rd address	10	11	00	01
4th address	11	10	01	00

Note: The burst counter wraps to initial state on the 5th clock.

BPR 1999.05.18



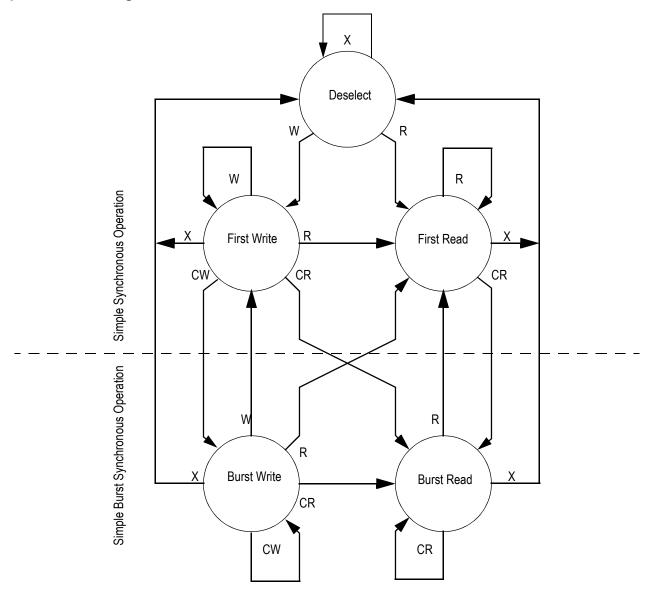
Byte Write Truth Table

Function	GW	BW	BA	Вв	Bc	BD	Notes
Read	Н	Н	Х	Х	Х	Х	1
Read	Н	L	Н	Н	Н	Н	1
Write byte a	Н	L	L	Н	Н	Н	2, 3
Write byte b	Н	L	Н	L	Н	Н	2, 3
Write byte c	Н	L	Н	Н	L	Н	2, 3, 4
Write byte d	Н	L	Н	Н	Н	L	2, 3, 4
Write all bytes	Н	L	L	L	L	L	2, 3, 4
Write all bytes	L	Х	Х	Х	Х	Х	

Notes:

- 1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.
- 2. Byte Write Enable inputs BA, BB, BC, and/or BD may be used in any combination with BW to write single or multiple bytes.
- 3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
- 4. Bytes "C" and "D" are only available on the x36 version.

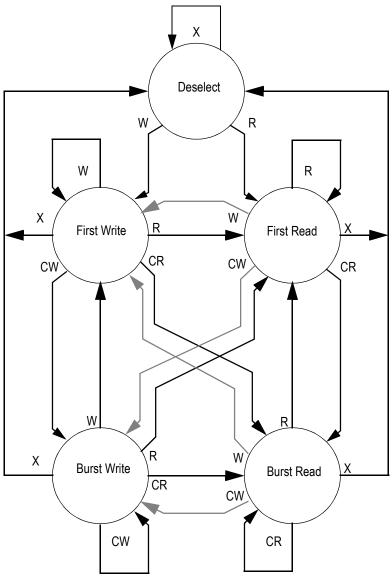
Synchronous Truth Table


Operation	Address Used	State Diagram Key ⁵	<u>-</u> E1	ADSP	ADSC	ADV	W ³	DQ ⁴
Deselect Cycle, Power Down	None	Х	Н	Х	L	Χ	Х	High-Z
Read Cycle, Begin Burst	External	R	L	L	Х	Х	Х	Q
Read Cycle, Begin Burst	External	R	L	Н	L	Х	F	Q
Write Cycle, Begin Burst	External	W	L	Н	L	Χ	T	D
Read Cycle, Continue Burst	Next	CR	Χ	Н	Н	L	F	Q
Read Cycle, Continue Burst	Next	CR	Н	Х	Н	L	F	Q
Write Cycle, Continue Burst	Next	CW	Χ	Н	Н	L	T	D
Write Cycle, Continue Burst	Next	CW	Н	Х	Н	L	T	D
Read Cycle, Suspend Burst	Current		Х	Н	Н	Н	F	Q
Read Cycle, Suspend Burst	Current		Н	Х	Н	Н	F	Q
Write Cycle, Suspend Burst	Current		Х	Н	Н	Н	T	D
Write Cycle, Suspend Burst	Current		Н	Х	Н	Н	T	D

Notes:

- 1. X = Don't Care, H = High, L = Low
- 2. $\underline{W} = T$ (True) and F (False) is defined in the Byte Write Truth Table preceding
- 3. \overline{G} is an asynchronous input. \overline{G} can be driven high at any time to disable active output drivers. \overline{G} low can only enable active drivers (shown as "Q" in the Truth Table above).
- 4. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish basic synchronous or synchronous burst operations and may be avoided for simplicity.
- 5. Tying <u>ADSP</u> high and <u>ADSC</u> low allows simple <u>non-burst</u> synchronous operations. See **BOLD** items above.
- 6. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See *ITALIC* items above.

Simplified State Diagram


Notes:

- 1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes \overline{G} is tied low.
- 2. The <u>upper portion</u> of the diagram assumes active use of only the Enable (E1) and Write (BA, BB, BC, BD, BW, and GW) control inputs, and that ADSP is tied high and ADSC is tied low.
- 3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs and assumes ADSP is tied high and ADV is tied low.

Rev: 1.01 3/2002 15/44 © 2001, Giga Semiconductor, Inc.

Simplified State Diagram with \overline{G}

Notes:

- 1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of \overline{G} .
- 2. Use of "Dummy Reads" (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passing through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.
- 3. Transitions shown in grey tone assume \overline{G} has been pulsed high long enough to turn the RAM's drivers off and for incoming data to meet Data Input Set Up Time.

Absolute Maximum Ratings

(All voltages reference to V_{SS})

Symbol	Description	Value	Unit
V_{DD}	Voltage on V _{DD} Pins	-0.5 to 4.6	V
V_{DDQ}	Voltage in V _{DDQ} Pins	-0.5 to 4.6	V
V _{CK}	Voltage on Clock Input Pin	-0.5 to 6	V
V _{I/O}	Voltage on I/O Pins	-0.5 to V _{DDQ} +0.5 (\leq 4.6 V max.)	V
V _{IN}	Voltage on Other Input Pins	$-0.5 \text{ to V}_{DD} + 0.5 \ (\leq 4.6 \text{ V max.})$	V
I _{IN}	Input Current on Any Pin	+/-20	mA
I _{OUT}	Output Current on Any I/O Pin	+/-20	mA
P_{D}	Package Power Dissipation	1.5	W
T _{STG}	Storage Temperature	-55 to 125	°C
T _{BIAS}	Temperature Under Bias	-55 to 125	°C

Note:

Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.

Power Supply Voltage Ranges

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
3.3 V Supply Voltage	V _{DD3}	3.0	3.3	3.6	V	
2.5 V Supply Voltage	V _{DD2}	2.3	2.5	2.7	V	
3.3 V V _{DDQ} I/O Supply Voltage	V _{DDQ3}	3.0	3.3	3.6	V	
2.5 V V _{DDQ} I/O Supply Voltage	V _{DDQ2}	2.3	2.5	2.7	V	

Notes:

- 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be $-2 \text{ V} > \text{Vi} < \text{V}_{DDn} + 2 \text{ V}$ not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.

V_{DDQ3} Range Logic Levels

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
V _{DD} Input High Voltage	V _{IH}	2.0	_	V _{DD} + 0.3	V	1
V _{DD} Input Low Voltage	V _{IL}	-0.3	_	0.8	V	1
V _{DDQ} I/O Input High Voltage	V _{IHQ}	2.0	_	V _{DDQ} + 0.3	V	1,3
V _{DDQ} I/O Input Low Voltage	V _{ILQ}	-0.3	_	0.8	V	1,3

Notes:

- 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be -2 V > Vi < V_{DDn}+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
- 3. V_{IHQ} (max) is voltage on V_{DDQ} pins plus 0.3 V.

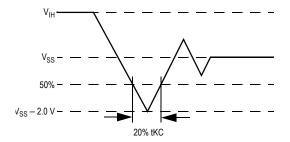
V_{DDQ2} Range Logic Levels

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
V _{DD} Input High Voltage	V _{IH}	0.6*V _{DD}	_	V _{DD} + 0.3	V	1
V _{DD} Input Low Voltage	V _{IL}	-0.3	_	0.3*V _{DD}	V	1
V _{DDQ} I/O Input High Voltage	V _{IHQ}	0.6*V _{DD}	_	V _{DDQ} + 0.3	V	1,3
V _{DDQ} I/O Input Low Voltage	V _{ILQ}	-0.3	_	0.3*V _{DD}	V	1,3

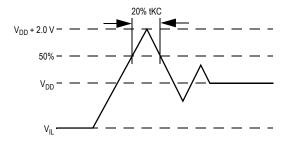
Notes:

- 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be -2 V > Vi < V_{DDn}+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
- 3. V_{IHQ} (max) is voltage on V_{DDQ} pins plus 0.3 V.

Rev: 1.01 3/2002 18/44 © 2001, Giga Semiconductor, Inc.


Recommended Operating Temperatures

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Ambient Temperature (Commercial Range Versions)	T _A	0	25	70	°C	2
Ambient Temperature (Industrial Range Versions)	T _A	-4 0	25	85	°C	2


Note:

- 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be $-2 \text{ V} > \text{Vi} < \text{V}_{DDn} + 2 \text{ V}$ not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.

Undershoot Measurement and Timing

Overshoot Measurement and Timing

Capacitance

$$(T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{DD} = 2.5 \text{ V})$$

Parameter	Symbol	Test conditions	Тур.	Max.	Unit
Input Capacitance	C _{IN}	V _{IN} = 0 V	4	5	pF
Input/Output Capacitance	C _{I/O}	V _{OUT} = 0 V	6	7	pF

Note: These parameters are sample tested.

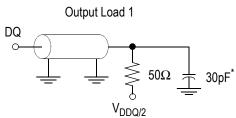
Package Thermal Characteristics

Rating	Layer Board	Symbol	Max	Unit	Notes
Junction to Ambient (at 200 lfm)	single	R_{\ThetaJA}	40	°C/W	1,2
Junction to Ambient (at 200 lfm)	four	$R_{\Theta JA}$	24	°C/W	1,2
Junction to Case (TOP)	_	$R_{\Theta JC}$	9	°C/W	3

Notes:

- 1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temperature air flow, board density, and PCB thermal resistance.
- 2. SCMI G-38-87
- 3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1

Rev: 1.01 3/2002 19/44 © 2001, Giga Semiconductor, Inc.



AC Test Conditions

Parameter	Conditions
Input high level	V _{DD} – 0.2 V
Input low level	0.2 V
Input slew rate	1 V/ns
Input reference level	V _{DD} /2
Output reference level	V _{DDQ} /2
Output load	Fig. 1

Notes:

- 1. Include scope and jig capacitance.
- Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.
- 3. Device is deselected as defined by the Truth Table.

* Distributed Test Jig Capacitance

DC Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Max
Input Leakage Current (except mode pins)	I _{IL}	V _{IN} = 0 to V _{DD}	−1 uA	1 uA
ZZ and PE Input Current	I _{IN1}	$V_{DD} \ge V_{IN} \ge V_{IH}$ $0 \ V \le V_{IN} \le V_{IH}$	−1 uA −1 uA	1 uA 100 uA
FT, SCD, ZQ Input Current	I _{IN2}	$V_{DD} \ge V_{IN} \ge V_{IL}$ $0 \ V \le V_{IN} \le V_{IL}$	−100 uA −1 uA	1 uA 1 uA
Output Leakage Current	I _{OL}	Output Disable, V _{OUT} = 0 to V _{DD}	−1 uA	1 uA
Output High Voltage	V _{OH2}	$I_{OH} = -8 \text{ mA}, V_{DDQ} = 2.375 \text{ V}$	1.7 V	_
Output High Voltage	V _{OH3}	I _{OH} = -8 mA, V _{DDQ} = 3.135 V	2.4 V	_
Output Low Voltage	V _{OL}	I _{OL} = 8 mA	_	0.4 V

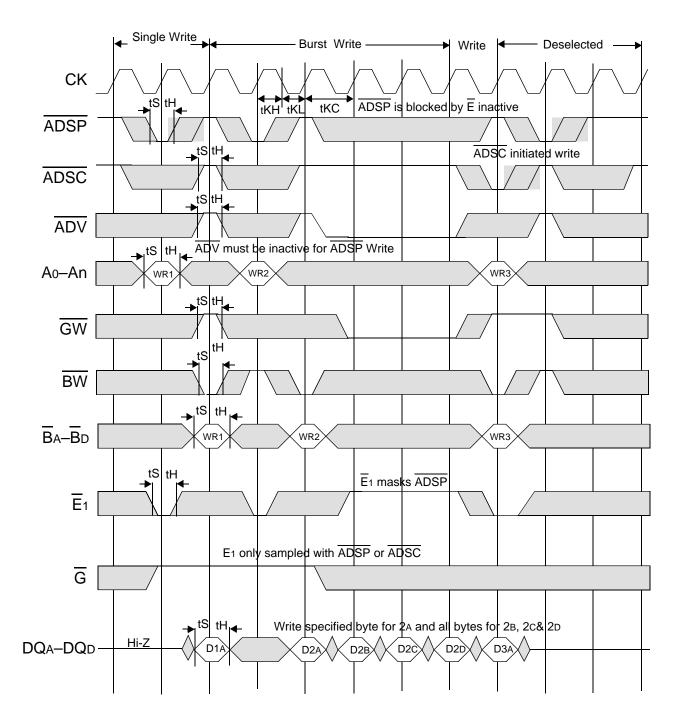
	ווייי	3
	בבב	֭֭֭֭֭֭֭֭֝֟֝֟֝֟֝֟֩֟֩֟֩֟֩֟֩֟
	202	5 5
(,

					-2	-250	-2,	-225	-2	-200	-166	99	-150	09	-133	83	
		_	979	1940	0	-40	0	-40	0	-40	0	40	0	-40	0	-40	;; -
rarameter	lest conditions	_	Mode	Symbol	to	ţ	\$	ţ	ţ.	ţ	\$	\$	Q	ţ Q	ţ.	\$	
					70°C	85°C	20°C	85°C	70°C	85°C	70°C	85°C	2°07	85°C	70°C	85°C	
		(4.36)	Pipeline	lpo Ipoa	290 40	300	265 35	275 35	240 30	250 30	205 25	215 25	190 25	200 25	170 20	180 20	ΨΨ
Operating Current	Device Selected; All other inputs	(SCV)	Flow Through	loo loog	180 20	190	170 20	180 20	165 15	175 15	155 15	165 15	150 15	160 15	140	150 10	шĄ
3.3 V	≥V _{IH} or ≤ V _{IL} Output open	(418)	Pipeline	od Pood	260 20	270	235 20	245 20	215 15	225 15	185 15	195 15	170 15	180 15	155	165 10	ШA
		<u> </u>	Flow Through	loo Poo	165 10	175	155 10	165 10	150 10	160 10	140	150 1	135	145 10	125 10	135	ШĄ
		(98,4)	Pipeline	od Pood	290	300	265 30	275 30	240 25	250 25	205	215 20	190 20	200	170 15	180 15	шĄ
Operating Current	Device Selected; All other inputs	(Soy)	Flow Through	od Poo	180 20	190	170 20	180 20	165 15	175 15	155 15	165 15	150 15	160 15	140	150 10	шĄ
2.5 V	≥V _{IH} or ≤ V _{IL} Output open	(418)	Pipeline	od Pood	260 15	270 15	235 15	245 15	215 15	225 15	185	195 10	170 10	9 2 2	155 10	165 10	ШĄ
		<u> </u>	Flow Through	loo Jood	165 10	175	155 10	165 10	150 10	160 10	140	150 10	135 10	145 10	125 10	135	шĄ
Standhy	:		Pipeline	SB	20	30	20	30	20	30	20	30	20	30	20	30	mA
Current	$ZZ \ge V_{DD} - 0.2 \text{ V}$		Flow Through	ISB	20	30	20	30	20	30	20	30	20	30	20	30	mA
Deselect	Device Deselected;		Pipeline	aa _l	98	06	08	92	22	08	64	20	09	99	20	22	mA
Current	All other inputs $\geq V_{\parallel}$ or $\leq V_{\parallel}$	1	Flow Through	lop	90	65	09	9	50	22	20	55	50	55	45	50	mA
Noto:																	7

1. IDD and IDDQ apply to any combination of V_{DD3}, V_{DD2}, V_{DDQ3}, and V_{DDQ2} operation.
2. All parameters listed are worst case scenario.

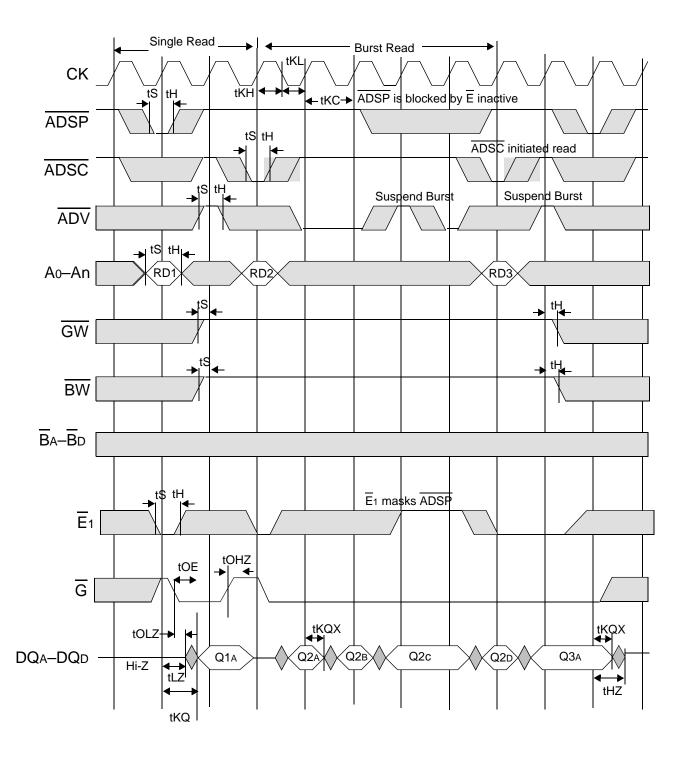
GS88218/36AB/D-250/225/200/166/150/133

AC Electrical Characteristics

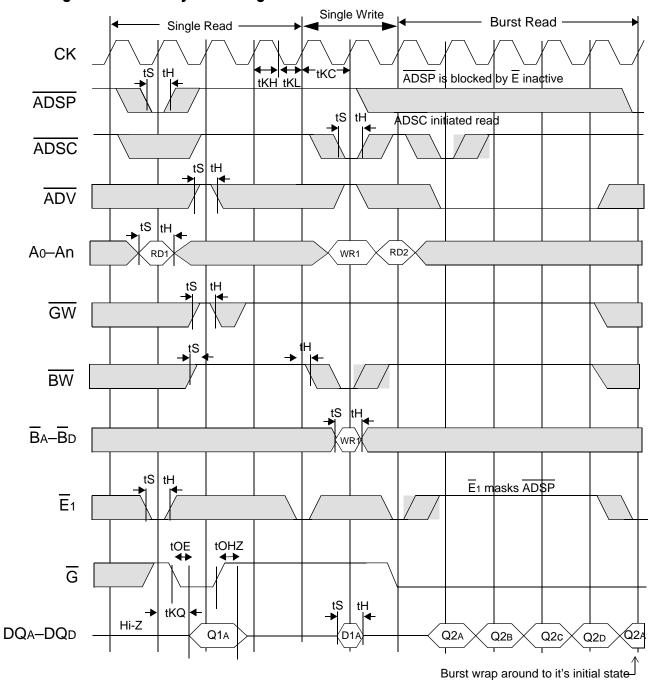

	Parameter	Symbol	-25	50	-22	25	-20	00	-16	66	-1	50	-1	33	Unit
	raiailletei	Syllibol	Min	Max	Oilit										
	Clock Cycle Time	tKC	4.0	_	4.4		5.0	_	6.0	_	6.7	_	7.5	_	ns
	Clock to Output Valid	tKQ	_	2.5	_	2.7	_	3.0	_	3.4	_	3.8	_	4.0	ns
Dinalina	Clock to Output Invalid	tKQX	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
Pipeline	Clock to Output in Low-Z	tLZ ¹	1.5	_	1.5	_	1.5	_	1.5		1.5	_	1.5		ns
	Setup time	tS	1.2	_	1.3	_	1.4	_	1.5	_	1.5	_	1.5	_	ns
	Hold time	tH	0.2	_	0.3	_	0.4	_	0.5	_	0.5	_	0.5	_	ns
	Clock Cycle Time	tKC	5.5	_	6.0	_	6.5	_	7.0	_	7.5	_	8.5	_	ns
	Clock to Output Valid	tKQ	_	5.5	_	6.0	_	6.5	_	7.0	_	7.5	_	8.5	ns
Flow	Clock to Output Invalid	tKQX	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	3.0	_	ns
Through	Clock to Output in Low-Z	tLZ ¹	3.0	_	3.0	_	3.0	_	3.0		3.0	_	3.0		ns
	Setup time	tS	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
	Hold time	tH	0.5	_	0.5	_	0.5	_	0.5	_	0.5	_	0.5	_	ns
	Clock HIGH Time	tKH	1.3	_	1.3	_	1.3	_	1.3	_	1.5	_	1.7	_	ns
	Clock LOW Time	tKL	1.5	_	1.5	_	1.5	_	1.5	_	1.7	_	2	_	ns
	Clock to Output in High-Z	tHZ ¹	1.5	2.3	1.5	2.5	1.5	3.0	1.5	3.0	1.5	3.0	1.5	3.0	ns
	G to Output Valid	tOE	_	2.3	_	2.5	_	3.2	_	3.5	_	3.8	_	4.0	ns
	G to output in Low-Z	tOLZ ¹	0	_	0	_	0	_	0	_	0	_	0	_	ns
	G to output in High-Z	tOHZ ¹	_	2.3	_	2.5	_	3.0	_	3.0	_	3.0	_	3.0	ns
	ZZ setup time	tZZS ²	5	_	5	_	5	_	5	_	5	_	5	_	ns
	ZZ hold time	tZZH ²	1	_	1	_	1	_	1	_	1	_	1	_	ns
	ZZ recovery	tZZR	20	_	20		20	_	20		20	_	20	_	ns

Notes:

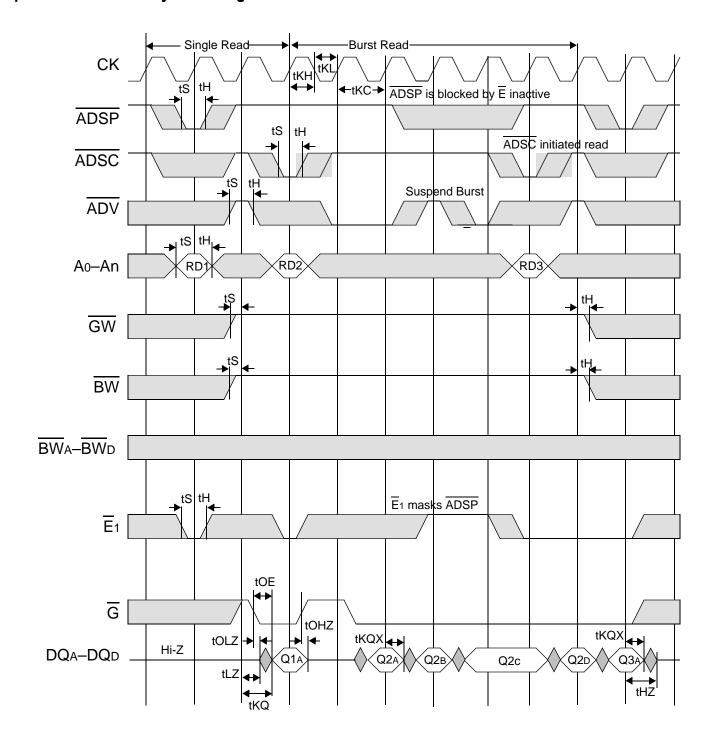
- 1. These parameters are sampled and are not 100% tested.
- 2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold times as specified above.



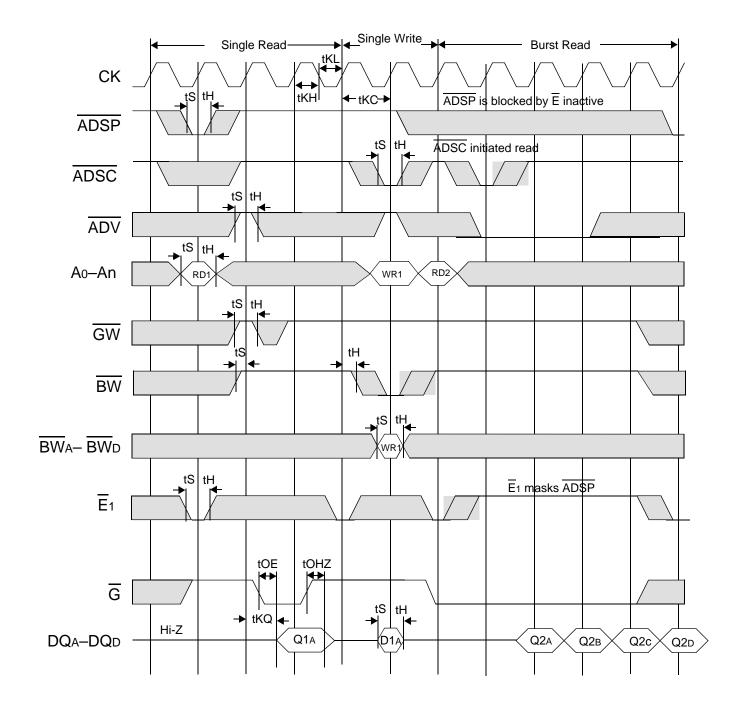
Write Cycle Timing



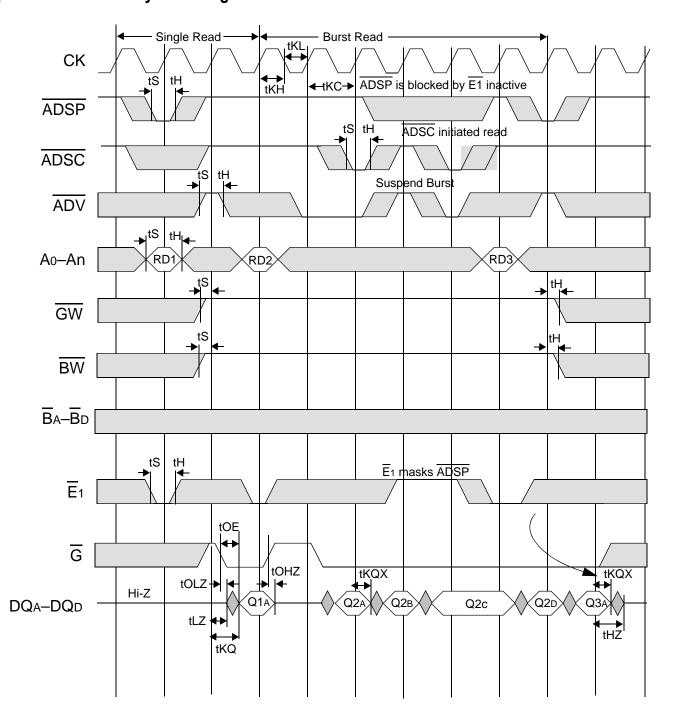
Flow Through Read Cycle Timing



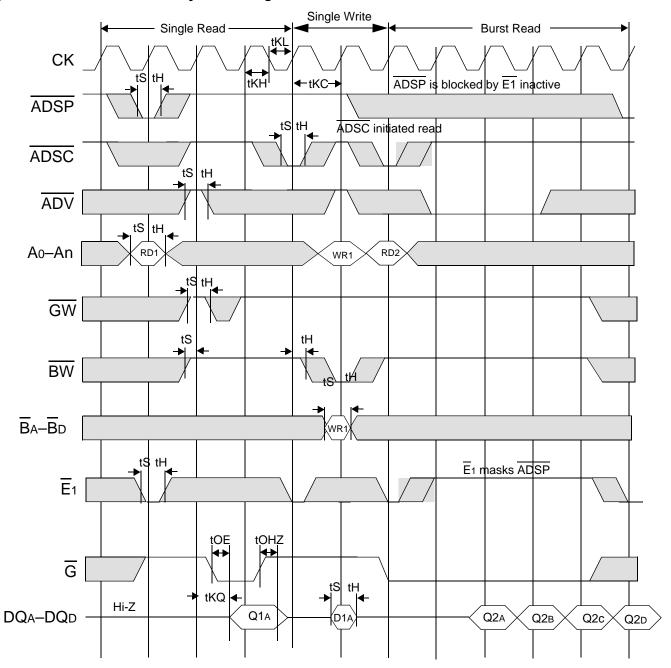
Flow Through Read-Write Cycle Timing



Pipelined SCD Read Cycle Timing

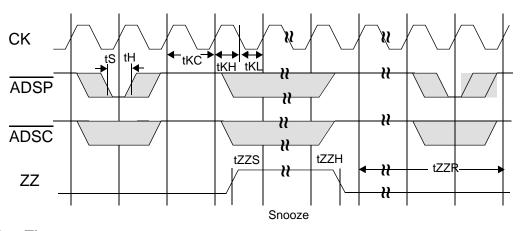


Pipelined SCD Read-Write Cycle Timing



Pipelined DCD Read Cycle Timing

Pipelined DCD Read-Write Cycle Timing



Sleep Mode

During normal operation, ZZ must be pulled low, either by the user or by it's internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.

Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to $I_{SB}2$. The duration of Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, $I_{SB}2$ is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.

Sleep Mode Timing Diagram

Application Tips

Single and Dual Cycle Deselect

SCD devices (like this one) force the use of "dummy read cycles" (read cycles that are launched normally, but that are ended with the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.

JTAG Port Operation

Overview

The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V_{DD} . The JTAG output drivers are powered by V_{DDO} .

Disabling the JTAG Port

It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits. To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V_{DD} or V_{SS} . TDO should be left unconnected.

JTAG Pin Descriptions

Pin	Pin Name	I/O	Description
TCK	Test Clock	ln	Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	Test Mode Select	ln	The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.
TDI	Test Data In	ln	The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.
TDO	Test Data Out	Out	Output that is active depending on the state of the TAP state machine. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.

Note:

This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.

JTAG Port Registers

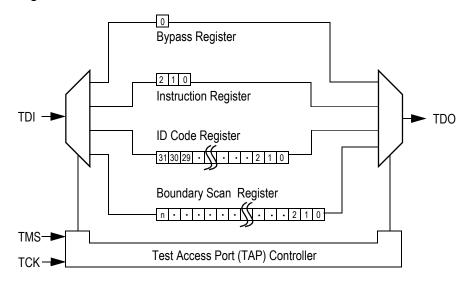
Overview

The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.

Instruction Register

The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.

Bypass Register


The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM's JTAG Port to another device in the scan chain with as little delay as possible.

Boundary Scan Register

The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM's input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port's TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.

JTAG TAP Block Diagram

Identification (ID) Register

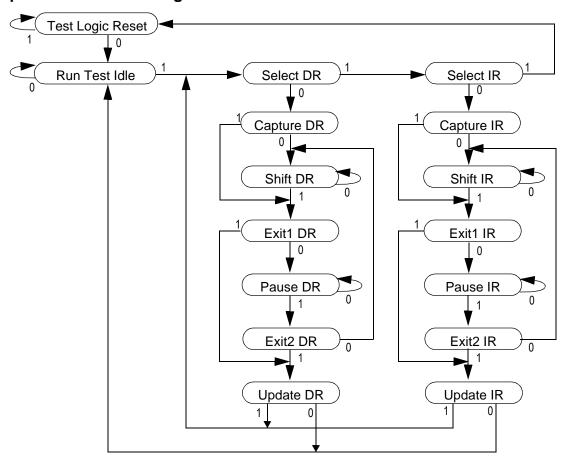
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM. It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.

ID Register Contents

		Revi	ie ision ide	ı					1	Not (Used	i					Co	l/ onfig	O urati	on				ED	EC	hnd Ver	ndo					Presence Register
Bit#	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
x36	1	Х	Χ	Х	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	1	1	0	0 ′	1	1
x18	1	Χ	Χ	Χ	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	1	0	1	1	0	0 ′	1	1

Tap Controller Instruction Set

Overview


There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific (Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load address, data or control signals into the RAM or to preload the I/O buffers.

When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01. When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this device is listed in the following table.

Rev: 1.01 3/2002 © 2001, Giga Semiconductor, Inc.

JTAG Tap Controller State Diagram

Instruction Descriptions

BYPASS

When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the TDI and TDO pins.

EXTEST

Rev: 1.01 3/2002 33/44 © 2001, Giga Semiconductor, Inc.

GS88218/36AB/D-250/225/200/166/150/133

EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The EXTEST command does not block or override the RAM's input pins; therefore, the RAM's internal state is still determined by its input pins.

Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST command is used to output the Boundary Scan Register's contents, in parallel, on the RAM's data output drivers on the falling edge of TCK when the controller is in the Update-IR state.

Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM's input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM's output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.

IDCODE

The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.

SAMPLE-Z

If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.

RFU

These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.

JTAG TAP Instruction Set Summary

Instruction	Code	Description	Notes
EXTEST	000	Places the Boundary Scan Register between TDI and TDO.	1
IDCODE	001	Preloads ID Register and places it between TDI and TDO.	1, 2
SAMPLE-Z	010	Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO. Forces all RAM output drivers to High-Z.	1
RFU	011	Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.	1
SAMPLE/PRELOAD	100	Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.	1
GSI	101	GSI private instruction.	1
RFU	110	Do not use this instruction; Reserved for Future Use. Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.	1
BYPASS	111	Places Bypass Register between TDI and TDO.	1

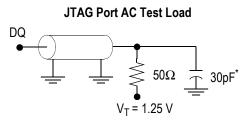
Notes:

- 1. Instruction codes expressed in binary, MSB on left, LSB on right.
- 2. Default instruction automatically loaded at power-up and in test-logic-reset state.

JTAG Port Recommended Operating Conditions and DC Characteristics

Parameter	Symbol	Min.	Max.	Unit	Notes
3.3 V Test Port Input High Voltage	V _{IHJ3}	2.0	V _{DD3} +0.3	V	1
3.3 V Test Port Input Low Voltage	V _{ILJ3}	-0.3	0.8	V	1
2.5 V Test Port Input High Voltage	V _{IHJ2}	0.6 * V _{DD2}	V _{DD2} +0.3	V	1
2.5 V Test Port Input Low Voltage	V _{ILJ2}	-0.3	0.3 * V _{DD2}	V	1
TMS, TCK and TDI Input Leakage Current	I _{INHJ}	-300	1	uA	2
TMS, TCK and TDI Input Leakage Current	I _{INLJ}	- 1	100	uA	3
TDO Output Leakage Current	I _{OLJ}	– 1	1	uA	4
Test Port Output High Voltage	V _{OHJ}	1.7	_	V	5, 6
Test Port Output Low Voltage	V _{OLJ}	_	0.4	V	5, 7
Test Port Output CMOS High	V _{OHJC}	V _{DDQ} – 100 mV	_	V	5, 8
Test Port Output CMOS Low	V _{OLJC}	_	100 mV	V	5, 9

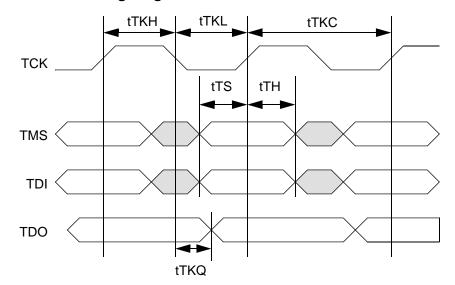
Notes:


- 1. Input Under/overshoot voltage must be -2 V > Vi < V_{DDn} +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.
- $2. \quad V_{ILJ} \le V_{IN} \le V_{DDn}$
- $3. \quad 0 \ V \leq V_{IN} \leq V_{ILJn}$
- 4. Output Disable, $V_{OUT} = 0$ to V_{DDn}
- 5. The TDO output driver is served by the $V_{\mbox{\scriptsize DDQ}}$ supply.
- 6. $I_{OHJ} = -4 \text{ mA}$
- 7. $I_{OIJ} = +4 \text{ mA}$
- 8. $I_{OHJC} = -100 \text{ uA}$
- 9. $I_{OHJC} = +100 \text{ uA}$

JTAG Port AC Test Conditions

Parameter	Conditions
Input high level	2.3 V
Input low level	0.2 V
Input slew rate	1 V/ns
Input reference level	1.25 V
Output reference level	1.25 V

Notes:


- 1. Include scope and jig capacitance.
- 2. Test conditions as as shown unless otherwise noted.

* Distributed Test Jig Capacitance

JTAG Port Timing Diagram

JTAG Port AC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
TCK Cycle Time	tTKC	50		ns
TCK Low to TDO Valid	tTKQ	_	20	ns
TCK High Pulse Width	tTKH	20	_	ns
TCK Low Pulse Width	tTKL	20	_	ns
TDI & TMS Set Up Time	tTS	10	_	ns
TDI & TMS Hold Time	tTH	10	_	ns

GS88218/36A Boundary Scan Chain Order

GS88218/36A Boundary Scan Chain Order

Oudou	v26	v40	Bu	mp
Order	x36	x18	x36	x18
1	F	PE .	F	R7
2		X	n	/a
3	,	X	n	/a
4	Д	1 10	Т	3
5	Д	\ 11	Т	4
6	Д	1 12	Т	5
7	Д	\ 13	F	R6
8	Д	1 14	C	5
9	Д	\ 15	E	35
10	Д	1 16	C	6
11	Q _{A9}	NC = 1	P6	n/a
12	Da9	PH = 0	P6	n/a
13	QA4	NC = 1	P7	n/a
14	DA4	PH = 0	P7	n/a
15	Q _A 3	NC = 1	N7	n/a
16	Dаз	PH = 0	N7	n/a
17	Q _{A8}	NC = 1	N6	n/a
18	Da8	PH = 0	N6	n/a
19	Q _A 7	NC = 1	M6	n/a
20	Da7	PH = 0	M6	n/a
21	Q _{A2}	Q _A 1	L7	P7
22	D _{A2}	D _A 1	L7	P7
23	Q _{A6}	Q _{A2}	L6	N6
24	D _A 6	D _A 2	L6	N6
25	Q _{A1}	Qаз	K7	L6
26	Da1	Dаз	K7	L6
27	Q _{A5}	QA4	K6	K7
28	D _A 5	D _A 4	K6	K7

x18	00	
	x36	x18
ZZ	Т	7
PH = 0		
NC = 1	J	5
Q _{A5}	H7	H6
D _A 5	H7	H6
QA6	H6	G7
Da6	H6	G7
Q _A 7	G7	F6
Da7	G7	F6
QA8	G6	E7
Da8	G6	E7
QA9	F6	D6
Da9	F6	D6
NC = 1	E7	n/a
PH = 0	E7	n/a
NC = 1	E6	n/a
PH = 0		
NC = 1	D7	n/a
PH = 0	D7	n/a
NC = 1	D6	n/a
PH = 0	D6	n/a
A 18		T6
A 9	А	6
A8	А	.5
ADV	G	64
ADSP	A	.4
ADSC	В	4
G	F	4
	.	1.4
BW	l N	14
	PH = 0 NC = 1 QA5 QA6 QA6 QA6 QA7 DA7 QA8 DA8 QA9 DA9 NC = 1 PH = 0 NC = 1 PH = 0 NC = 1 PH = 0 A18 A9 ABSP ADSC	PH = 0 NC = 1 QA5 H7 QA6 H6 DA6 H6 QA7 G7 DA7 G7 QA8 G6 DA8 G6 DA9 F6 NC = 1 E7 PH = 0 E7 NC = 1 E6 PH = 0 C = 1 C =

Rev: 1.01 3/2002 37/44

© 2001, Giga Semiconductor, Inc.

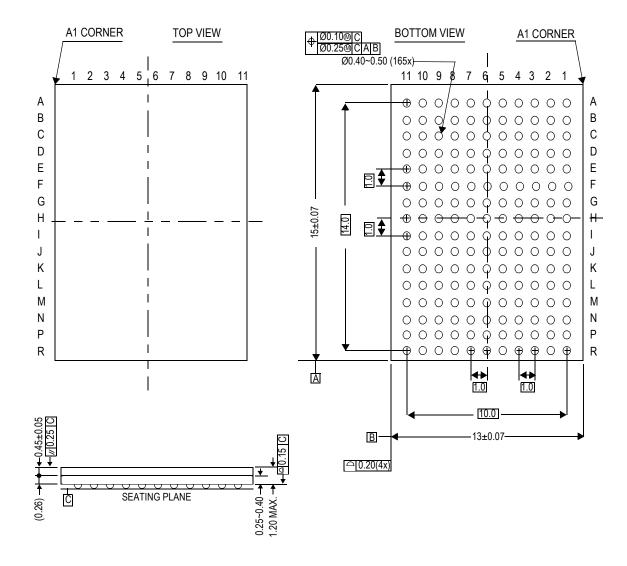
GS88218/36A Boundary Scan Chain Order

Ordor	w26	w40	Bu	mp
Order	x36	x18	x36	x18
59	NC	= 1	n	/a
60	NC	= 1	n	/a
61	NC	= 1	n	/a
62	NC	= 1	n	/a
63	C	K	k	(4
64	PH	= 0	n	/a
65	PH	= 0	n	/a
66	A	17	Е	36
67		BA	L	.5
68	 Вв	NC = 1	G5	n/a
69	Bc	Вв	(33
70	BD	NC = 1	L3	n/a
71	Ē	1	E	4
72	A	A 7	P	١3
73	A	\ 6	P	\2
74	Q _{C9}			
75	Dc ₉	PH = 0	D2	n/a
76	Qc4	NC = 1	D1	n/a
77	Dc4	PH = 0	D1	n/a
78	Qсз	NC = 1	E1	n/a
79	Dcз	PH = 0	E1	n/a
80	Qc8	NC = 1	E2	n/a
81	Dc8	PH = 0	E2	n/a
82	Qc7	NC = 1	F2	n/a
83	Dc7	PH = 0	F2	n/a
84	Qc2	Q _{B1}	G1	D1
85	Dc2	D в1	G1	D1
86	Qc6	Q _{B2}	G2	E2
87	Dc6	D _{B2}	G2	E2
88	Qc1	Q _B 3	H1	G2

GS88218/36A Boundary Scan Chain Order

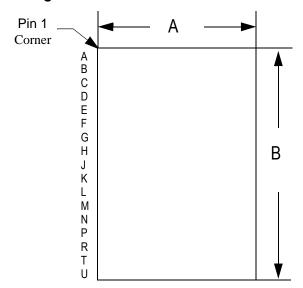
Order	x36	x18	Bu	ımp	
Order	X30	XIO	x36	x18	
89	Dc1	D _B 3	H1	G2	
90	Qc5	Q _{B4}	H2	H1	
91	Dc5	D _B 4	H2	H1	
92		FT	F	R5	
93	NO	C = 1		J3	
94	S	CD	I	_4	
95	Q _{D1}	Q _{B5}	K1	K2	
96	D _{D1}	D _{B5}	K1	K2	
97	Q _{D5}	Q _{B6}	K2	L1	
98	D _{D5}	D _B 6	K2	L1	
99	Q _{D2}	Q _{B7}	L1	M2	
100	D _{D2}	D в7	L1	M2	
101	QD6	Q _{B8}	L2	N1	
102	D _{D6}	D _{B8}	L2	N1	
103	Q _{D7}	Q _{B9}	M2	P2	
104	D _{D7}	D в9	M2	P2	
105	Q _{D3}	NC = 1	N1	n/a	
106	DD3	PH = 0	N1	n/a	
107	Q _{D8}	NC = 1	N2	n/a	
108	D _{D8}	PH = 0	N2	n/a	
109	Q _{D4}	NC = 1	P1	n/a	
110	D _D 4	PH = 0	P1	n/a	
111	Q _{D9}	NC = 1	P2	n/a	
112	D _{D9}	PH = 0	P2	n/a	
113	L	ВО	F	R3	
114		A 5	(C2	
115		A 4	В3		
116		A 3	(C3	

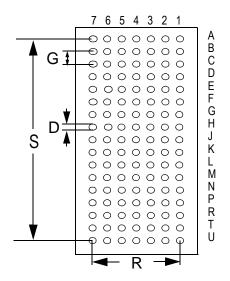
GS88218/36A Boundary Scan Chain Order

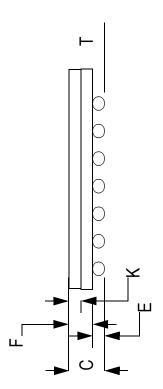

Order	Order x36 x18	Bump		
Order	X30	X 10	x36	x18
117	A ₂		R2	
118	A1		N4	
119	A ₀		P4	
120	ZQ		D4	
121	G		F4	

Notes:

- 1. Depending on the package, some input pads of the scan chain may not be connected to any external pin. In such case: LBO = 1, ZQ = 1, PE = 0, SD = 0, ZZ = 0, FT = 1, and SCD = 1.
- 2. Every DQ pad consists of two scan registers—D is for input capture, and Q is for output capture.
- 3. A single register (#121) for controlling tristate of all the DQ pins is at the end of the scan chain (i.e., the last bit shifted in this tristate control is effective after JTAG EXTEST instruction is executed.
- 4. 1 = no connect, internally set to logic value 1
- 5. 0 = no connect, internally set to logic value 0
- 6. X = no connect, value is undefined




Package Dimensions—165-Bump FPBGA (Package D)


Package Dimensions—119-Pin PBGA

Top View

Bottom View

Package Dimensions—119-Pin PBGA

Symbol	Description	Min.	Nom.	Max
Α	Width	13.9	14.0	14.1
В	Length	21.9	22.0	22.1
С	Package Height (including ball)	1.73	1.86	1.99
D	Ball Size	0.60	0.75	0.90
E	Ball Height	0.50	0.60	0.70
F	Package Height (excluding balls)	1.16	1.26	1.36
G	Width between Balls		1.27	
K	Package Height above board	0.65	0.70	0.75
R	Width of package between balls		7.62	
S	Length of package between balls		20.32	
T	Variance of Ball Height		0.15	

Unit: mm

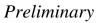
Side View

Ordering Information for GSI Synchronous Burst RAMs

Org	Part Number ¹	Туре	Package	Speed ² (MHz/ns)	T _A ³	Status	
512K x 18	GS88218AB-250	NBT Pipeline/Flow Through	119 BGA	250/5.5	С		
512K x 18	GS88218AB-225	NBT Pipeline/Flow Through	119 BGA	225/6	С		
512K x 18	GS88218AB-200	NBT Pipeline/Flow Through	119 BGA	200/6.5	С		
512K x 18	GS88218AB-166	NBT Pipeline/Flow Through	119 BGA	166/7	С		
512K x 18	GS88218AB-150	NBT Pipeline/Flow Through	119 BGA	150/7.5	С		
512K x 18	GS88218AB-133	NBT Pipeline/Flow Through	119 BGA	133/8.5	С		
256K x 36	GS88236AB-250	NBT Pipeline/Flow Through	119 BGA	250/5.5	С		
256K x 36	GS88236AB-225	NBT Pipeline/Flow Through	119 BGA	225/6	С		
256K x 36	GS88236AB-200	NBT Pipeline/Flow Through	119 BGA	200/6.5	С		
256K x 36	GS88236AB-166	NBT Pipeline/Flow Through	119 BGA	166/7	С		
256K x 36	GS88236AB-150	NBT Pipeline/Flow Through	119 BGA	150/7.5	С		
256K x 36	GS88236AB-133	NBT Pipeline/Flow Through	119 BGA	133/8.5	С	С	
512K x 18	GS88218AB-250I	NBT Pipeline/Flow Through	119 BGA 250/5.5		- 1	1	
512K x 18	GS88218AB-225I	NBT Pipeline/Flow Through	119 BGA	225/6	25/6 I		
512K x 18	GS88218AB-200I	NBT Pipeline/Flow Through	119 BGA	200/6.5	1		
512K x 18	GS88218AB-166I	NBT Pipeline/Flow Through	119 BGA	166/7	I		
512K x 18	GS88218AB-150I	NBT Pipeline/Flow Through	119 BGA	150/7.5	1		
512K x 18	GS88218AB-133I	NBT Pipeline/Flow Through	119 BGA	133/8.5	3.5 I		
256K x 36	GS88236AB-250I	NBT Pipeline/Flow Through	119 BGA	250/5.5	I		
256K x 36	GS88236AB-225I	NBT Pipeline/Flow Through	119 BGA	225/6	1		
256K x 36	GS88236AB-200I	NBT Pipeline/Flow Through	119 BGA	200/6.5	I		
256K x 36	GS88236AB-166I	NBT Pipeline/Flow Through	119 BGA	166/7	1		
256K x 36	GS88236AB-150I	NBT Pipeline/Flow Through	119 BGA	150/7.5	I		
256K x 36	GS88236AB-133I	NBT Pipeline/Flow Through	119 BGA	133/8.5	- 1	1	
512K x 18	GS88218AD-250	NBT Pipeline/Flow Through	165 BGA	250/5.5	С	С	
512K x 18	GS88218AD-225	NBT Pipeline/Flow Through	165 BGA	225/6	С	С	
512K x 18	GS88218AD-200	NBT Pipeline/Flow Through	e/Flow Through 165 BGA 20		С	С	
512K x 18	GS88218AD-166	NBT Pipeline/Flow Through	165 BGA 166/7		С		
512K x 18	GS88218AD-150	NBT Pipeline/Flow Through	NBT Pipeline/Flow Through 165 BGA		С		
512K x 18	GS88218AD-133	NBT Pipeline/Flow Through	165 BGA	133/8.5	С		

Notes:

- 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS88236A-100IT.
- 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user.
- 3. $T_A = C = Commercial Temperature Range. T_A = I = Industrial Temperature Range.$
- 4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings



GS88218/36AB/D-250/225/200/166/150/133

Org	Part Number ¹	Туре	Package	Speed ² (MHz/ns)	T _A ³	Status
256K x 36	GS88236AD-250	NBT Pipeline/Flow Through	165 BGA	250/5.5	С	
256K x 36	GS88236AD-225	NBT Pipeline/Flow Through	165 BGA	225/6	С	
256K x 36	GS88236AD-200	NBT Pipeline/Flow Through	165 BGA	200/6.5	С	
256K x 36	GS88236AD-166	NBT Pipeline/Flow Through	165 BGA	166/7	С	
256K x 36	GS88236AD-150	NBT Pipeline/Flow Through	165 BGA	150/7.5	С	
256K x 36	GS88236AD-133	NBT Pipeline/Flow Through	165 BGA	133/8.5	С	
512K x 18	GS88218AD-250I	NBT Pipeline/Flow Through	165 BGA	250/5.5	I	
512K x 18	GS88218AD-225I	NBT Pipeline/Flow Through	165 BGA	225/6	I	
512K x 18	GS88218AD-200I	NBT Pipeline/Flow Through	165 BGA	200/6.5	I	
512K x 18	GS88218AD-166I	NBT Pipeline/Flow Through	165 BGA	166/7	I	
512K x 18	GS88218AD-150I	NBT Pipeline/Flow Through 165 BGA		150/7.5	I	
512K x 18	GS88218AD-133I	NBT Pipeline/Flow Through 165 BGA		133/8.5	I	
256K x 36	GS88236AD-250I	NBT Pipeline/Flow Through 165 BGA		250/5.5	I	
256K x 36	GS88236AD-225I	NBT Pipeline/Flow Through 165 BGA 22		225/6	I	
256K x 36	GS88236AD-200I	NBT Pipeline/Flow Through 165 BGA 20		200/6.5	I	
256K x 36	GS88236AD-166I	NBT Pipeline/Flow Through 165 BGA 166/7		I		
256K x 36	GS88236AD-150I	NBT Pipeline/Flow Through	NBT Pipeline/Flow Through 165 BGA 150/7.5 I		I	
256K x 36	GS88236AD-133I	NBT Pipeline/Flow Through 165 BGA		133/8.5	I	

Notes:

- 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS88236A-100IT.
- 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user.
- 3. $T_A = C = Commercial Temperature Range. T_A = I = Industrial Temperature Range.$
- 4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings

GS88218/36AB/D-250/225/200/166/150/133

9Mb Sync SRAM Datasheet Revision History

DS/DateRev. Code: Old; New	Types of Changes Format or Content	Page;Revisions;Reason
88218A_r1		Creation of new datasheet
88218A_r1_01	Content	 Updated AC Characteristics table Updated FT power numbers Updated Mb references from 8Mb to 9Mb Removed ByteSafe references Added 165-bump FPBGA package Updated AC Test Conditions table and removed Output Load 2 diagram