

Thru-Hole/Gull Wing

Commercial: 0° to 70°C

TRISTATE, 3 MHz to 125 MHz

GUARANTEED CAPTURE RANGE/ABSOLUTE PULL RANGE

Guaranteed Capture Range (GCR) and Absolute Pull Range (APR) are terms often used interchangeably. MF's Guaranteed Capture Range (GCR) is defined as the minimum guaranteed frequency deviation or "pull" (in ppm) around the nominal frequency, with all effects of temperature, variations in V_{DD} and load taken into account. This amount of absolute frequency deviation is available under all operating conditions for modulation or capturing other signals. No additional frequency capture allowances are necessary.

FEATURES

- Wide voltage control capture range
- · Excellent incremental and best-straight-line linearity
- Start-up time is less than 5ms
- · Each unit is ATE-tested to guarantee full compliance with all electrical specifications

TYPICAL APPLICATIONS

- Phase locked loops and data acquisition projects, including:
- xDSL customer premise equipment
- Cable modems
- ATM/SONET/SDH

Description

FULL SIZE D.I.L.

M3321, M3322

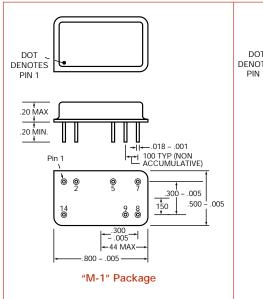
M3331, M3332

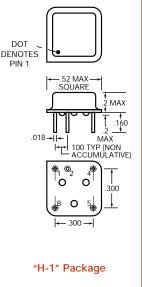
M3341, M3342

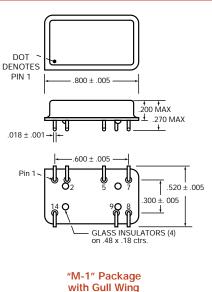
M package M3306 HALF SIZE D.I.L. H package

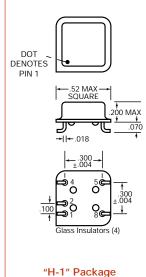
H3321, H3322

H3331, H3332


H3341, H3342


H3306


These thru-hole VCXOs generate a 3.3 volt HCMOS/TTL frequency output which is controlled ("pulled") by an input voltage. MF Electronics' VCXO specification defines not only the end-point frequency/voltage parameters, but also the center voltage at which the nominal frequency is acheived.


CONNECTIONS

	Full Size	Half Size
Pin 1.	Not used	Control Voltage, V _C
Pin 2.	Control Voltage, V _C	Tristate
Pin 4.	G	Ground & Case
Pin 5.	Tristate	Output
Pin 7.	Ground & Case	
Pin 8.	Output	+3.3V, V _{DD}
Pin 9.	Not used	
Pin14.	+3.3V, V _{DD}	

with Gull Wing

VOLTAGE CONTROLLED CRYSTAL OSCILLATORS HCMOS/TTL 3.3V

Thru-Hole / Gull Wing

Commercial: 0° to 70°C TRISTATE, 3 MHz to 125 MHz

Center Frequency is Between Two Voltages

MODEL	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
3306	0 to 3.0	± 150 min	± 150	_	± 30, typ ± 50, max

Center Frequency is at 1.5V with ±50 ppm stability

MODEL	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
3321	0.5 to 2.5	± 75 to 150	± 75	1.5	± 30, typ
3322	0.5 to 2.5	± 100 to 200	± 100	1.5	± 50, max

Center Frequency is at 2.5V with ±25 ppm stability

M	ODEL	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
3	3331	0.5 to 2.5	± 75 to 150	± 75	2.5	± 20, typ
3	3332	0.5 to 2.5	± 100 to 200	± 100	2.5	± 25, max

Center Frequency is at 1.5V with ±20 ppm stability

MODEL	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
3341	0.5 to 2.5	± 75 to 150	± 75	1.5	± 15, typ
3342	0.5 to 2.5	± 100 to 200	± 100	1.5	± 20, max

DESCRIPTIONS

M3306, H3306	±150 ppm, min. deviation when using 0 to 3 control-voltage
M3321, H3321	±75 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±50 ppm stability
M3322, H3322	±100 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±50 ppm stability
M3331, H3331	±75 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±25 ppm stability
M3332, H3332	±100 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±25 ppm stability
M3341, H3341	±75 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±20 ppm stability
M3342, H3342	±100 ppm capture when using using 0.5 to 2.5V control-voltage and 1.5V center with ±20 ppm stability

FULL SIZE D.I.L.	HALF SIZE D.I.L.
M package	H package
M3306	H3306
M3321, M3322	H3321, H3322
M3331, M3332	H3331, H3332
M3341, M3342	H3341, H3342

ELECTRICAL SPECIFICATIONS

Frequency Range 3 MHz to 125 MHz

Frequency Stability Includes calibration at 25°C, operating temperature, change of input voltage, change of load, shock and

vibration.

Center Frequency Range

 $V_C = 1.5V$ 3 MHz to 125 MHz

Frequency Stability

 $V_C = 1.5V$ ±25 or ±50 ppm, max.

as shown in model specification

	MIN	TYP	MAX	UNITS
Input Voltage, V _{DD}	3.0	3.3	3.6	volts
Input Current				
1 KHz to 10 MHz		8	14	mA
10.1 to 25 MHz		15	20	mA
25.1 to 50 MHz		20	30	mA
50.1 to 75 MHz		25	35	mA
75.1 to 125 MHz		30	40	mA
Output Levels				
"0" Level, sinking 16 mA			0.4	volts
"1" Level, sourcing 8 mA	V _{DD} 4		0.5	volts
Rise and Fall Times				
CMOS, 15 pf, 20 to 80% (<60 MHz)		3.0	4	ns
CMOS, 30 pf,		3.0	4	113
20 to 80% (<60 MHz)		4.0	5	ns
CMOS, 50 pf,				
20 to 80% (<60 MHz)		6.0	8	ns
CMOS, 15 pf,				
20 to 80% (>60 MHz)		2.0	2.5	ns
CMOS, 30 pf,				
20 to 80% (>60 MHz)		3.0	4.5	ns
Symmetry				
CMOS, @ 50% V _{DD}		48/52	45/55	percent
Aging				
First year		3		ppm
After first year		1		ppm/yr

Input Requirements for Pin 1.:

"1": On - Pin 1 may float

or 2.4V min., sourcing 400 microAmp

"0": Tristate -

Pin 1 requires 0.4V, sinking 400 microAmp

Control Voltage Bandwidth 15 150 KHz Jitter

Jitter is less than 80 ps peak-peak, when measured by Tektronix 11801B Digital Storage Oscilloscope with SD-22 Sampling head in Color Statistics mode.

Tristate

"1" Output is On - Pin 5 may float or 2.4V min, sourcing 400µa

"0" Output is disabled, tristate, high impedance -

Pin 5 requires 0.4V, sinking 400µa

ENVIRONMENTAL SPECIFICATIONS

Temperature

Operating 0° to 70°C Storage -55° to +125°C

Temperature Cycle – Not to exceed ± 5 ppm change when exposed to 2 hours maximum at each temperature from 0 to 120°C, with 25°C reference

 $\label{eq:shock-shock-shock} \textbf{Shock} - 1000 \; \text{Gs}, \; 0.35 \; \text{ms}, \; 1/2 \; \text{sine wave}, \; 3 \; \text{shocks in each plane} \\ \textbf{Vibration} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{of} \; .06 \text{"d.a.} \; \text{or} \; 20 \; \text{Gs}, \; \text{whichever is less} \\ \textbf{Shock} - 10\text{-}2000 \; \text{Hz} \; \text{or} \; 10\text{-}2000 \; \text{Hz}$

Humidity - Resistant to 85° R.H. at 85°C

VOLTAGE CONTROLLED CRYSTAL OSCILLATORS HCMOS/TTL 3.3V

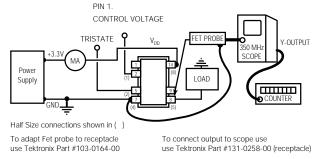
Thru-Hole/Gull Wing

Commercial: 0° to 70°C TRISTATE, 3 MHz to 125 MHz **FULL SIZE D.I.L.** HALF SIZE D.I.L. M package H package M3306 M3321, M3322 M3331, M3332 M3341, M3342

H3306 H3321, H3322 H3331, H3332 H3341, H3342

MECHANICAL SPECIFICATIONS

Gross Leak - Each unit checked in 125°C fluorocarbon


Fine Leak - Mass spectrometer leak rate less than 5 X 10 (-8) atoms, cc/sec of helium

Case - Ceramic with glass hermetic seal, sealed in 420°C furnace

Pads - 60 microinch of gold over nickel

Marking - Print is permanent white ink

Resistance to Solvents - MIL STD 202, Method 215

ALL OSCILLATORS HAVE INTERNAL BYPASS CAPACITORS

TEST CIRCUIT

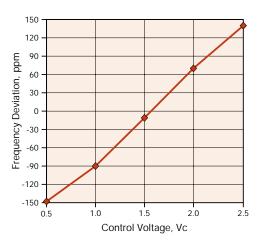


Fig. 1 Deviation vs. Control Voltage for M3322-14.912M

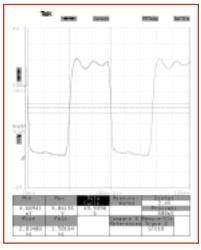


Fig. 3 H3223-19.44M, without load

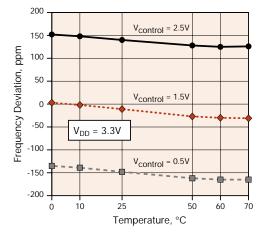


Fig. 2 Frequency Stability vs, Temperature for M3322-14.912M

HOW TO ORDER For Part Number, put package type before model number, and add frequency in MHz, for example: 3342-19.44M "M" is full size DIL "3342" "19 44 M Leave blank "H" is half size DIL is model frequency for straight leads type in MHz Add "G" for gullwing

SS# Rev. M3306

Unless customer-specific terms and conditions are signed by an officer of MF Electronics, the sale of this and all MF Electronics products are subject to terms and conditions set forth at www.mfelectronics.com/terms