C € SCM7B34/34N Isolated Linearized 2- Or 3-Wire RTD Input Modules

FEATURES

- ullet INTERFACES TO 100 Ω PLATINUM OR 120 Ω NICKEL RTDS
- PROVIDES 250µA RTD EXCITATION CURRENT
- LINEARIZES RTD SIGNAL RESPONSE
- PROVIDES HIGH LEVEL VOLTAGE OUTPUTS
- 1500Vrms TRANSFORMER ISOLATION
- ACCURACY, ±0.05% TO ±0.15% OF SPAN TYPICAL
- NONCONFORMITY, ±0.025% TO ±0.07% OF SPAN TYPICAL
- ANSI/IEEE C37.90.1-1989 TRANSIENT PROTECTION
- INPUT PROTECTED TO 120Vrms CONTINUOUS
- NOISE, 500µV PEAK (5MHz), 250µV RMS (100KHz)
- CMRR, UP TO 160dB
- NMR, UP TO 85dB
- EASY DIN RAIL MOUNTING
- CSA CERTIFIED, FM APPROVAL PENDING
- CE COMPLIANT

DESCRIPTION

Each SCM7B34/34N RTD input module accepts a single channel of 100Ω Platinum ($\alpha = 0.00385$) or 120Ω Nickel ($\alpha = 0.00672$) RTD input and produces an input voltage in response to a low level current excitation. The input signal is filtered, isolated, amplified, linearized, and converted to a high level analog voltage for output to the process control system (Figure 1).

These modules incorporate a five-pole filtering approach to maximize both time and frequency response by taking advantage of both Thomson (Bessel) and Butterworth characteristics. One pole of the filter is on the field side of the isolation barrier; four are on the process control system side.

In response to the low level current excitation signal, the RTD input signal is chopped by a proprietary chopper circuit and transferred across the transformer isolation barrier, suppressing transmission of common mode spikes and surges. The signal is then reconstructed and filtered for process control system output.

Linearization is achieved by creating a non-linear transfer function through the module itself. This non-linear transfer function is configured at the factory and is designed to be equal and opposite to the specific RTD non-linearity. Lead compensation is achieved by matching two current paths thus cancelling the effects of lead resistance.

Modules accept a wide 14 - 35VDC power supply range (+24VDC nominal). Their compact packages (2.13"x1.705"x0.605" max) save space and are ideal for high channel density applications. They are designed for easy DIN rail mounting using any of the "-DIN" backpanels.

Fig 1: SCM7B34/34N Block Diagram

Call 800-444-7644 For Information and Assistance

$\label{eq:specifications} SPECIFICATIONS \ {\tt Typical at 25^{\circ}C and +24VDC}$

Module	SCM7B34	SCM7B34N
Input Signal Range	100Ω Pt RTD (See Ordering Information below)	120 Ω Ni RTD
Protection Continous Transient	120Vrms max ANSI/IEEE C37.90.1-1989	*
Output Signal Range ¹ Effective Available Power ¹ Resistance Protection Voltage/Current Limit	40mW <1Ω Continuous Short-to-Ground ±12V, ±14mA	◆ * *
CMV (Input-to-Output) Continuous Transient CMRR (50 or 60Hz)	1500Vrms ANSI/IEEE C37.90.1-1989 160dB	* * *
Accuracy ² Nonconformity ³ Stability (-40C to +85°C) Gain Input Offset Zero Suppression Output Offset	(See Ordering Information below) (See Ordering Information below) ±60ppm/°C ±1µV/°C ±0.002% (R _z /R _{SPAN}) ^{4/°} C ±0.002% Span/°C	* * * *
Noise Peak @ 5MHz B/W RMS @ 10Hz to 100kHz B/W Peak @ 0.1Hz to 10Hz B/W Lead Resistance Effect Sensor Excitation Current ⁵	500μV 250μV 1μV ±0.02°C/Ω max ≈250μA	* * * *
Frequency and Time Response Bandwidth, -3dB NMR (50/60Hz) Step Response, 90% Span	3Hz 80/85dB 250ms	* * *
Supply Voltage Current ¹ Sensitivity	14 to 35VDC 12mA ±0.0001%/%V _s	* * *
Mechanical Dimensions(H)(W)(D)	2.13" x 1.705" x 0.605" max 54.1mm x 43.3mm x 15.4mm max	*
Environmental Operating Temperature Range Storage Temperature Range Relative Humidity Emmissions Immunity	-40°C to +85°C -40°C to +85°C 0 to 90% noncondensing EN50081-1, ISM Group 1, Class A (Radiated, Conducted) EN50082-1, ISM Group 1, Class A (ESD, RF, EFT)	* * * * *

** RTD ST <u>TYPE</u> 100Ω Pt 120Ω Ni	TANDARDS ALPHA COEFFICIENT 0.00385 0.00672	<u>DIN</u> DIN 43760	<u>JIS</u> JIS C 1604-1989	
NOTES *Specification same as preceding model. ¹ Output Range and Supply Current specifications are based on minimum output load resistance. Minimum output load resistance is calculated by V_{out}^2/P_{ev} , where P_e is the output Effective Available Power that guarantees output range, accuracy, and conformity specifications. ² Accuracy includes the effects of repeatability, hysteresis, and conformity. ³ Nonconformity is calculated using the best-fit straight line method. ⁴ R_z is the value of the RTD resistance at the lowest measurement point. R_{SPAN} is the change in resistance over the measurement span. ⁵ Sensor excitation current is model dependent.				

ORDERING INFORMATION

MODEL	INPUT RANGE	ACCURACY ²		NONCONFORMITY ³	
		TYPICAL	MAX	TYPICAL	MAX
100Ω Pt **					
SCM7B34-01	-100°C to +100°C (-148°F to +212°F)	±0.075% (0.15°C)	±0.15% (0.30°C)	±0.025% (0.05°C)	±0.05% (0.10°C)
SCM7B34-02	0°C to +100°C (+32°F to +212°F)	±0.10% (0.10°C)	±0.2% (0.20°C)	±0.025% (0.025°C)	±0.05% (0.05°C)
SCM7B34-03	0°C to +200°C (+32°F to +392°F)	±0.075% (0.15°C)	±0.15% (0.30°C)	±0.025% (0.05°C)	±0.05% (0.10°C)
SCM7B34-04	0°C to +600°C (+32°F to +1112°F)	±0.05% (0.30°C)	±0.1% (0.60°C)	±0.025% (0.15°C)	±0.05% (0.30°C)
SCM7B34-05	-50°C to +350°C (-58°F to +662°F)	±0.05% (0.20°C)	±0.1% (0.40°C)	±0.025% (0.1°C)	±0.05% (0.20°C)
120Ω Ni **					
SCM7B34N-01	0°C to +300°C (+32°F to +572°F)	±0.15% (0.45°C)	±0.3% (0.90°C)	±0.06% (0.18°C)	±0.12% (0.36°C)
SCM7B34N-02	0°C to +200°C (+32°F to +392°F)	±0.15% (0.30°C)	±0.3% (0.60°C)	±0.07% (0.14°C)	±0.14% (0.28°C)

115

•OUTPUT RANGES AVAILABLE

OUTPUT RANGE	PART NUMBER MODIFIER	EXAMPLE
+1 to +5V	(none)	SCM7B34-01
0 to +5V	A	SCM7B34-01A
0 to +10V	D	SCM7B34-01D

