Hitachi Single-Chip Microcomputer H8/3217 Series H8/3217, H8/3216 H8/3214, H8/3212 H8/3202

Hardware Manual

Notice

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Contents

Preface	1
Section 1 Overview	3
1.1 Overview	
1.2 Block Diagram.	8
1.3 Pin Assignments and Functions	9
1.3.1 Pin Arrangement	
1.3.2 Pin Functions	
Section 2 CPU	27
2.1 Overview	
2.1.1 Features	
2.1.2 Address Space.	
2.1.3 Register Configuration	
2.2 Register Descriptions	
2.2.1 General Registers.	
2.2.2 Control Registers	
<u> </u>	
2.3 Data Formats	
2.3.1 Data Formats in General Registers	
2.3.2 Memory Data Formats	
2.4 Addressing Modes	
2.4.1 Addressing Modes	
2.4.2 Effective Address Calculation	
2.5 Instruction Set	
2.5.2 Arithmetic Operations	
2.5.3 Logic Operations	
2.5.4 Shift Operations	
2.5.5 Bit Manipulations	
2.5.6 Branching Instructions	
2.5.7 System Control Instructions	
2.5.8 Block Data Transfer Instruction	
2.6 CPU States	
2.6.1 Program Execution State	
2.6.2 Exception-Handling State	
z n a rower-pown State	78

2.7 Access Timing and Bus Cycle	59
2.7.1 Access to On-Chip Memory (RAM and ROM)	59
2.7.2 Access to On-Chip Register Field and External Devices	
Section 3 MCU Operating Modes and Address Space	67
3.1 Overview	
3.1.1 Operating Modes	67
3.1.2 Mode and System Control Registers	67
3.2 System Control Register (SYSCR)	68
3.3 Mode Control Register (MDCR)	70
3.4 Mode Descriptions	70
3.5 Address Space Maps for Each Operating Mode	71
Section 4 Exception Handling	77
4.1 Overview	77
4.2 Reset	77
4.2.1 Overview	77
4.2.2 Reset Sequence	78
4.2.3 Disabling of Interrupts after Reset	81
4.3 Interrupts	81
4.3.1 Overview	81
4.3.2 Interrupt-Related Registers	83
4.3.3 External Interrupts	86
4.3.4 Internal Interrupts	87
4.3.5 Interrupt Handling	87
4.3.6 Interrupt Response Time	
4.3.7 Precaution	
4.4 Note on Stack Handling	94
4.5 Notes on the Use of Key-Sense Interrupts	95
Section 5 Wait-State Controller	97
5.1 Overview	97
5.1.1 Features	97
5.1.2 Block Diagram	98
5.1.3 Input/Output Pins	
5.1.4 Register Configuration	
5.2 Register Description	
5.2.1 Wait-State Control Register (WSCR)	
5.3 Wait Modes	100
Section 6 Clock Pulse Generator	
6.1 Overview	103
6.1.1 Block Diagram	103

6.1.2 Wait-State Control Register (WSCR)	104
6.2 Oscillator Circuit	105
6.3 Duty Adjustment Circuit	111
6.4 Prescaler	111
Section 7 I/O Ports	113
7.1 Overview	113
7.2 Port 1	120
7.2.1 Overview	120
7.2.2 Register Configuration and Descriptions	121
7.2.3 Pin Functions in Each Mode	123
7.2.4 MOS Input Pull-Ups	126
7.3 Port 2	127
7.3.1 Overview	127
7.3.2 Register Configuration and Descriptions	128
7.3.3 Pin Functions in Each Mode	130
7.3.4 MOS Input Pull-Ups	133
7.4 Port 3	134
7.4.1 Overview	134
7.4.2 Register Configuration and Descriptions	135
7.4.3 Pin Functions in Each Mode	137
7.4.4 Input Pull-Up Transistors1	138
7.5 Port 4	139
7.5.1 Overview	139
7.5.2 Register Configuration and Descriptions	140
7.5.3 Pin Functions	142
7.6 Port 5	145
7.6.1 Overview	145
7.6.2 Register Configuration and Descriptions	145
7.6.3 Pin Functions	147
7.7 Port 6	149
7.7.1 Overview	149
7.7.2 Register Configuration and Descriptions	150
7.7.3 Pin Functions	152
7.8 Port 7	154
7.8.1 Overview	154
7.8.2 Register Configuration and Descriptions	155
7.8.3 Pin Functions	157
Section 8 PWM Timers	161
8.1 Overview	161
8.1.1 Features	161
8.1.2 Block Diagram	162

8.1.3 Input and Output Pins	
8.1.4 Register Configuration	
8.2 Register Descriptions	
8.2.1 PWM Data Registers (PWDR0 to PWDR15)	
8.2.2 PWM Data Polarity Registers A and B (PWDPRA and PWDPRB)	165
8.2.3 PWM Output Enable Registers A and B (PWOERA and PWOERB)	166
8.2.4 Port 1 Data Direction Register (P1DDR)	
8.2.5 Port 2 Data Direction Register (P2DDR)	
8.2.6 Port 1 Data Register (P1DR)	
8.2.7 Port 2 Data Register (P2DR)	168
8.2.8 Serial/Timer Control Register (STCR)	168
8.3 Operation	170
8.3.1 Correspondence between	
PWM Data Register Contents and Output Waveform	170
Section 9 16-Bit Free-Running Timer	173
9.1 Overview	173
9.1.1 Features	173
9.1.2 Block Diagram	174
9.1.3 Input and Output Pins	175
9.1.4 Register Configuration	175
9.2 Register Descriptions	176
9.2.1 Free-Running Counter (FRC)—H'FF92	176
9.2.2 Output Compare Registers A and B (OCRA and OCRB)—	
H'FF94 and H'FF96	176
9.2.3 Input Capture Register (ICR)—H'FF98	177
9.2.4 Timer Control Register (TCR)—H'FF90	178
9.2.5 Timer Control/Status Register (TCSR)—H'FF91	180
9.3 CPU Interface	183
9.4 Operation	186
9.4.1 FRC Incrementation Timing	186
9.4.2 Output Compare Timing	188
9.4.3 FRC Clear Timing	188
9.4.4 Input Capture Timing	
9.4.5 Timing of Input Capture Flag (ICF) Setting	190
9.4.6 Setting of FRC Overflow Flag (OVF)	
9.5 Interrupts	
9.6 Sample Application	191
9.7 Application Notes	192
Section 10 8-Bit Timers	199
10.1 Overview	199
10.1.1 Features	199

10.1.2 Block Diagram	200
10.1.3 Input and Output Pins	201
10.1.4 Register Configuration	202
10.2 Register Descriptions	202
10.2.1 Timer Counter (TCNT)—	
H'FFCC (TMR0), H'FFD4 (TMR1), H'FF9E (TMRX)	202
10.2.2 Time Constant Registers A and B (TCORA and TCORB)—	
H'FFCA and H'FFCB (TMR0), H'FFD2 and H'FFD3 (TMR1),	
H'FF9C and H'FF9D (TMRX)	203
10.2.3 Timer Control Register (TCR)—H'FFC8 (TMR0), H'FFD0 (TMR1),	
H'FF9A (TMRX)	203
10.2.4 Timer Control/Status Register (TCSR)—	
H'FFC9 (TMR0), H'FFD1 (TMR1), H'FF9B (TMRX)	207
10.2.5 Serial/Timer Control Register (STCR)	210
10.3 Operation	
10.3.1 TCNT Incrementation Timing	211
10.3.2 Compare Match Timing	212
10.3.3 External Reset of TCNT	214
10.3.4 Setting of TCSR Overflow Flag	214
10.4 Interrupts.	215
10.5 Sample Application	216
10.6 Application Notes	217
10.6.1 Contention between TCNT Write and Clear	
10.6.2 Contention between TCNT Write and Increment	218
10.6.3 Contention between TCOR Write and Compare-Match	219
10.6.4 Contention between Compare-Match A and Compare-Match B	220
10.6.5 Incrementation Caused by Changing of Internal Clock Source	
Section 11 Timer Connection	223
11.1 Overview	
11.1.1 Features	
11.1.2 Block Diagram	
11.1.3 Input and Output Pins	
11.1.4 Register Configuration	
11.2 Register Descriptions	
11.2.1 Timer Connection Register (TCONR)	
11.2.2 Serial/Timer Control Register (STCR)	
11.2.3 Edge Sense Register (SEDGR)	
11.3 Operation	
11.3.1 PWM Decoding	
11.3.2 Clamp Waveform Generation	
11.3.2 Massurament of & Rit Timer Divided Waysform Pariod	233

Section 12 Watchdog Timer	235
12.1 Overview	
12.1.1 Features	235
12.1.2 Block Diagram	236
12.1.3 Register Configuration	236
12.2 Register Descriptions	237
12.2.1 Timer Counter (TCNT)	237
12.2.2 Timer Control/Status Register (TCSR)	237
12.2.3 Register Access	239
12.3 Operation	
12.3.1 Watchdog Timer Mode	240
12.3.2 Interval Timer Mode	241
12.3.3 Setting the Overflow Flag	241
12.4 Application Notes	
12.4.1 Contention between TCNT Write and Increment	242
12.4.2 Changing the Clock Select Bits (CKS2 to CKS0)	242
12.4.3 Recovery from Software Standby Mode	242
Section 13 Serial Communication Interface	243
13.1 Overview	243
13.1.1 Features	243
13.1.2 Block Diagram	245
13.1.3 Input and Output Pins	246
13.1.4 Register Configuration	247
13.2 Register Descriptions	
13.2.1 Receive Shift Register (RSR)	
13.2.2 Receive Data Register (RDR)	248
13.2.3 Transmit Shift Register (TSR)	248
13.2.4 Transmit Data Register (TDR)	248
13.2.5 Serial Mode Register (SMR)	249
13.2.6 Serial Control Register (SCR)	251
13.2.7 Serial Status Register (SSR)	254
13.2.8 Bit Rate Register (BRR)	257
13.2.9 Serial Communication Mode Register (SCMR)	263
13.3 Operation	264
13.3.1 Overview	264
13.3.2 Asynchronous Mode	266
13.3.3 Synchronous Mode	280
13.4 Interrupts	287
13.5 Application Notes	287

Section 14 I ² C Bus Interface [Option]	291
14.1 Overview	
14.1.1 Features	291
14.1.2 Block Diagram	293
14.1.3 Input/Output Pins	294
14.1.4 Register Configuration	294
14.2 Register Descriptions	295
14.2.1 I ² C Bus Data Register (ICDR)	295
14.2.2 Slave Address Register (SAR)	295
14.2.3 I ² C Bus Mode Register (ICMR)	296
14.2.4 I ² C Bus Control Register (ICCR)	297
14.2.5 I ² C Bus Status Register (ICSR)	300
14.2.6 Serial/Timer Control Register (STCR)	303
14.3 Operation	305
14.3.1 I ² C Bus Data Format	305
14.3.2 Master Transmit Operation	306
14.3.3 Master Receive Operation	308
14.3.4 Slave Transmit Operation	310
14.3.5 Slave Receive Operation	311
14.3.6 IRIC Set Timing and SCL Control	312
14.3.7 Noise Canceler	314
14.3.8 Sample Flowcharts	315
14.4 Application Notes	319
Section 15 Host Interface	321
15.1 Overview	321
15.1.1 Block Diagram	322
15.1.2 Input and Output Pins	323
15.1.3 Register Configuration	324
15.2 Register Descriptions	325
15.2.1 System Control Register (SYSCR)	325
15.2.2 Host Interface Control Register (HICR)	325
15.2.3 Input Data Register 1 (IDR1)	326
15.2.4 Output Data Register 1 (ODR1)	327
15.2.5 Status Register 1 (STR1)	327
15.2.6 Input Data Register 2 (IDR2)	328
15.2.7 Output Data Register 2 (ODR2)	329
15.2.8 Status Register 2 (STR2)	329
15.3 Operation	331
15.3.1 Host Interface Operation	
15.3.2 Control States	331
15.3.3 A20 Gate	331

15.4 Interrupts	335
15.4.1 IBF1, IBF2	335
15.4.2 HIRQ ₁₁ , HIRQ ₁ , and HIRQ ₁₂	335
15.5 Application Note	336
Section 16 RAM	337
16.1 Overview	
16.2 Block Diagram	
16.3 RAM Enable Bit (RAME)	
16.4 Operation	
16.4.1 Expanded Modes (Modes 1 and 2)	
16.4.2 Single-Chip Mode (Mode 3)	
Section 17 ROM	341
17.1 Overview	
17.1.1 Block Diagram	
17.2 PROM Mode (H8/3217 and H8/3214)	
17.2.1 PROM Mode Setup	
17.2.2 Socket Adapter Pin Assignments and Memory Map	
17.3 Programming	
17.3.1 Selection of Sub-Modes in PROM Mode	346
17.3.2 Programming and Verification	346
17.3.3 Notes on Writing	350
17.3.4 Reliability of Written Data	351
17.3.5 Erasing of Data	352
17.4 Handling of Windowed Packages	352
Section 18 Power-Down State	353
18.1 Overview	353
18.1.1 System Control Register (SYSCR)	354
18.2 Sleep Mode	355
18.2.1 Transition to Sleep Mode	355
18.2.2 Exit from Sleep Mode	355
18.3 Software Standby Mode	356
18.3.1 Transition to Software Standby Mode	356
18.3.2 Exit from Software Standby Mode	356
18.3.3 Clock Settling Time for Exit from Software Standby Mode	356
18.3.4 Sample Application of Software Standby Mode	358
18.3.5 Note on Current Dissipation	358
18.4 Hardware Standby Mode	359
18.4.1 Transition to Hardware Standby Mode	359
18.4.2 Recovery from Hardware Standby Mode	359
18.4.3 Timing Relationships	360

Section 19 Electrical Specifications	361
19.1 Absolute Maximum Ratings	
19.2 Electrical Characteristics	361
19.2.1 DC Characteristics	361
19.2.2 AC Characteristics	372
19.3 MCU Operational Timing	378
19.3.1 Bus Timing	379
19.3.2 Control Signal Timing	381
19.3.3 16-Bit Free-Running Timer Timing	383
19.3.4 8-Bit Timer Timing	384
19.3.5 Pulse Width Modulation Timer Output Timing	385
19.3.6 Serial Communication Interface Timing	386
19.3.7 I/O Port Timing	387
19.3.8 Host Interface Timing	388
19.3.9 I ² C Bus Interface (Option) Timing	389
19.3.10 External Clock Output Timing	390
Appendix A CPU Instruction Set	
A.1 Instruction Set List	
A.2 Operation Code Map	
A.3 Number of States Required for Execution	402
A dia D. D i. d E'-1.1	400
Appendix B Register Field	
B.1 Register Addresses and Bit Names	409
B.1.1 I/O Registers in Maximum Specification	400
(Except H8/3212 and H8/3202)	
B.1.2 H8/3212 I/O Registers	
B.1.3 H8/3202 I/O Registers	
B.2 Register Descriptions	424
Appendix C I/O Port Block Diagrams	473
C.1 Port 1 Block Diagram	
C.2 Port 2 Block Diagram	
C.3 Port 3 Block Diagram	
C.4 Port 4 Block Diagrams	
C.5 Port 5 Block Diagrams	
C.6 Port 6 Block Diagrams	
C.7 Port 7 Block Diagrams	
C.7 Tolt / Block Diagrams	100
Appendix D Pin States	491
rr	
Appendix E Timing of Transition to and Recovery from	
Hardware Standby Mode	493

Option List	495
7, HD6433216, HD6433214, HD6433212 Option List	495
2 Option List	497
•	
Product Code Lineup	499
1	
Package Dimensions	503
	7, HD6433216, HD6433214, HD6433212 Option List

x HITACHI

Preface

The H8/3217 Series is a family of high-performance single-chip microcomputers ideally suited for embedded control of industrial equipment. The chips are built around an H8/300 CPU core: a high-speed processor. On-chip supporting modules provide ROM, RAM, four types of timers, I/O ports, a serial communication interface, I²C bus interface, and host interface for easy implementation of compact, high-speed control systems.

The H8/3217 Series offers a selection of on-chip memory.

```
H8/3217: 60-kbyte ROM; 2-kbyte RAM
H8/3216: 48-kbyte ROM; 2-kbyte RAM
H8/3214: 32-kbyte ROM; 1-kbyte RAM
H8/3212: 16-kbyte ROM; 512-byte RAM
```

The H8/3217 and H8/3214 chips are available with electrically programmable ROM. Manufacturers can use the electrically programmable ZTATTM (Zero Turn-Around Time*) version to get production off to a fast start and make software changes quickly.

This manual describes the H8/3217 Series hardware. Refer to the *H8/300 Series Programming Manual* for a detailed description of the instruction set.

Note: * ZTAT is a trademark of Hitachi, Ltd.

2

Section 1 Overview

1.1 Overview

The H8/3217 Series is a series of single-chip microcomputers integrating a CPU core together with a variety of peripheral functions needed in control systems.

The H8/300 CPU is a high-speed processor featuring powerful bit-manipulation instructions, ideally suited for realtime control applications. The on-chip supporting modules include ROM, RAM, four types of timers (16-bit free-running timer, 8-bit timer, PWM timer, and watchdog timer), a serial communication interface, I²C bus interface (option), host interface, and I/O ports.

Note that the H8/3212 and H8/3202 have a subset specification that does not include certain of the on-chip supporting modules.

The H8/3217 Series can operate in single-chip mode or in two expanded modes, depending on the memory requirements of the application. The operating mode is referred to in this manual as the MCU mode (MCU: MicroComputer Unit).

In addition to the mask ROM versions, ZTAT^{TM*} versions are available with electrically programmable ROM that can be programmed at the user site.

Note: * ZTAT is a trademark of Hitachi, Ltd.

Table 1-1 lists the features of the H8/3217 Series.

Table 1-1 Features

Feature	Description
CPU	General register architecture Eight 16-bit general registers, or Sixteen 8-bit general registers
	 High speed Maximum clock rate: 16 MHz/5 V, 12 MHz/4 V, 10 MHz/3 V (φ clock) Add/subtract: 125 ns (16 MHz operation), 167 ns (12 MHz operation), 200 ns (10 MHz operation) Multiply/divide: 875 ns (16 MHz operation), 1167 ns (12 MHz operation), 1400 ns (10 MHz operation)
	 Concise, streamlined instruction set All instructions are 2 or 4 bytes long Register-register arithmetic and logic operations Register-memory data transfer by MOV instruction
	 Instruction set features Multiply instruction (8 bits × 8 bits) Divide instruction (16 bits ÷ 8 bits) Bit-accumulator instructions Register-indirect specification of bit positions
Memory	H8/3217 • ROM: 60 kbytes • RAM: 2 kbytes
	H8/3216 • ROM: 48 kbytes • RAM: 2 kbytes
	H8/3214 • ROM: 32 kbytes • RAM: 1 kbyte
	H8/3212 and H8/3202 • ROM: 16 kbytes • RAM: 512 bytes
16-Bit free-running timer module (FRT: 1 channel)	 One 16-bit free-running counter (also usable for external event counting) Two compare outputs One capture input
8-bit timer module*1	Each channel has: One 8-bit up-counter (also usable for external event counting) Two time constant registers
PWM timers (except H8/3202)	 Up to 16 outputs Duty cycle settable from 0 to 100% Resolution: 1/256 1 MHz maximum carrier frequency (at 16 MHz operation)
Watchdog timer (WDT: 1 channel)	Reset or NMI generation by overflowCan be switched to interval timer mode

Table 1-1 Features (cont)

Feature	Description				
Serial communication interface*2	 Selection of asynchronous and synchronous modes Simultaneous transmit and receive (full duplex operation) On-chip baud rate generator 				
I ² C bus interface*3 (option)	 Conforms to Philips I²C bus interface standard Single master mode/slave mode 				
Host interface (HIF) (except H8/3212)	 8-bit host interface port Three host interrupt requests (HIRQ₁, HIRQ₁₁, HIRQ₁₂) Normal and fast A₂₀ gate output Two register sets (each comprising two data registers and a status register) 				
Keyboard controller (except H8/3212)	Controls a matrix keyboard using a keyboard scan with wake-up interrupt and sense port configuration				
I/O ports	53 input/output pins (of which 16 can drive large current loads)				
Interrupts	 Four external interrupt pins: NMI, IRQ₀ to IRQ₂ Eight key-sense interrupt pins: KEYIN₀ to KEYIN₇ Twenty-six on-chip interrupt sources 				
Operating modes	 Mode 1: expanded mode with on-chip ROM enabled Mode 2: expanded mode with on-chip ROM enabled Mode 3: single-chip mode 				
Power-down state	Sleep modeSoftware standby modeHardware standby mode				
Other features	On-chip clos	ck oscillator			
Product lineup Type			Code		
	Product Name	5 V Series (16 MHz), 4 V Series (12 MHz)	3 V Series (10 MHz)	Package	ROM
	H8/3217 ZTAT	HD6473217C16	HD6473217C16	64-pin windowed shrink DIP (DC-64S)	PROM
		HD6473217P16	HD6473217P16	64-pin shrink DIP (DP-64S)	_
		HD6473217F16	HD6473217F16	64-pin QFP (FP-64A)	_
		HD6473217TF16	HD6473217TF16	80-pin TQFP (TFP-80C)	

Table 1-1 Features (cont)

Feature

Description

i cature	Description				
Product lineup		Туре	e Code		
	Product Name	5 V Series (16 MHz), 4 V Series (12 MHz)	3 V Series (10 MHz)	Package	ROM
	H8/3217*	HD6433217P16 HD6433217P12	HD6433217VP10	64-pin shrink DIP (DP-64S)	Mask ROM
		HD6433217F16 HD6433217F12	HD6433217VF10	64-pin QFP (FP-64A)	_
		HD6433217TF16 HD6433217TF12	HD6433217VTF10	80-pin TQFP (TFP-80C)	_
	H8/3216*	HD6433216P16 HD6433216P12	HD6433216VP10	64-pin shrink DIP (DP-64S)	Mask ROM
		HD6433216F16 HD6433216F12	HD6433216VF10	64-pin QFP (FP-64A)	_
		HD6433216TF16 HD6433216TF12	HD6433216VTF10	80-pin TQFP (TFP-80C)	_
	H8/3214 ZTAT	HD6473214P16	HD6473214P16	64-pin shrink DIP (DP-64S)	PROM
		HD6473214F16	HD6473214F16	64-pin QFP (FP-64A)	_
		HD6473214TF16	HD6473214TF16	80-pin TQFP (TFP-80C)	_
	H8/3214*	HD6433214P16 HD6433214P12	HD6433214VP10	64-pin shrink DIP (DP-64S)	Mask ROM
		HD6433214F16 HD6433214F12	HD6433214VF10	64-pin QFP (FP-64A)	_
		HD6433214TF16 HD6433214TF12	HD6433214VTF10	80-pin TQFP (TFP-80C)	
	H8/3212*	HD6433212P16 HD6433212P12	HD6433212VP10	64-pin shrink DIP (DP-64S)	Mask ROM
		HD6433212F16 HD6433212F12	HD6433216VF10	64-pin QFP (FP-64A)	_
		HD6433212TF16 HD6433212TF12	HD6433212VTF10	80-pin TQFP (TFP-80C)	_
	H8/3202*	HD6433202P16 HD6433202P12	HD6433202VP10	64-pin shrink DIP (DP-64S)	Mask ROM
		HD6433202F16 HD6433202F12	HD6433202VF10	64-pin QFP (FP-64A)	_
		HD6433202TF16 HD6433202TF12	HD6433202VTF10	80-pin TQFP (TFP-80C)	

Table 1-1 Features (cont)

Feature	Description								
On-chip peripheral functions	Product Name	FRT	TMR0 TMR1	TMRX, Tlimer Connection	PWM	WDT	SCI	IIC	HIF, Key-Sense Interrupt
	Except H8/3212 and H8/3202	Yes	Yes	Yes	Yes	Yes	×2	×2	Yes
	H8/3212	Yes	Yes	Yes	Yes	Yes	×1	×2	No
	H8/3202	Yes	Yes	No	No	Yes	×2	×1	Yes

Notes: The I²C bus interface is available as an option. Observe the following notes when using this option.

- 1. Please inform your Hitachi sales representative if you intend to use this option.
- 2. For mask-ROM versions, a W is added to the part number in products in which this optional function is used.
 - Examples: HD6433217WF16, HD6433212WP12
- 3. The product number is identical for ZTAT version. However, be sure to inform your Hitachi sales representative if you will be using this option.
- * Under development
- *1 2 channels incorporated in the H8/3202, and three channels in all other models.
- *2 1 channel incorporated in the H8/3212, and 2 channels in all other models.
- *3 1 channel incorporated in the H8/3202, and 2 channels in all other models.

1.2 Block Diagram

Figure 1-1 shows a block diagram of the H8/3217 Series.

Note that the H8/3212 and H8/3202 have a subset specification that does not include certain of the on-chip supporting modules. See tables 1-2 to 1-4, Pin Assignments in Each Operating Mode, for differences in the pin functions.

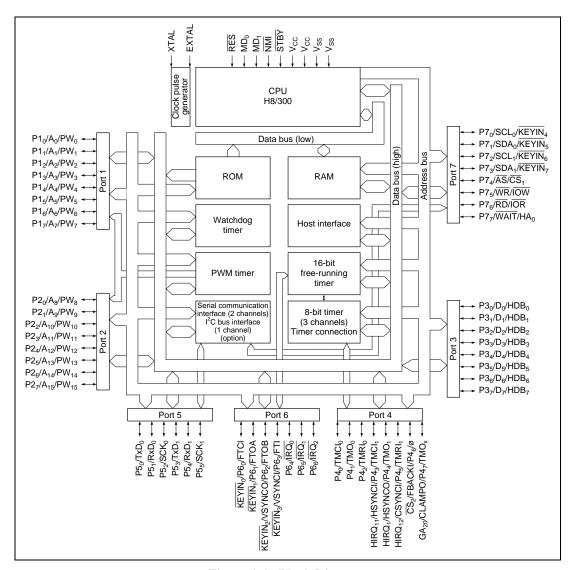


Figure 1-1 Block Diagram

1.3 Pin Assignments and Functions

1.3.1 Pin Arrangement

Figure 1-2 shows the pin arrangement of the H8/3217 Series in the DC-64S and DP-64S packages. Figure 1-3 shows the pin arrangement in the FP-64A package. Figure 1-4 shows the pin arrangement in the TFP-80C package.

Note that the H8/3212 and H8/3202 have a subset specification that does not include certain of the on-chip supporting modules. See tables 1-2 to 1-4, Pin Assignments in Each Operating Mode, for differences in the pin functions.

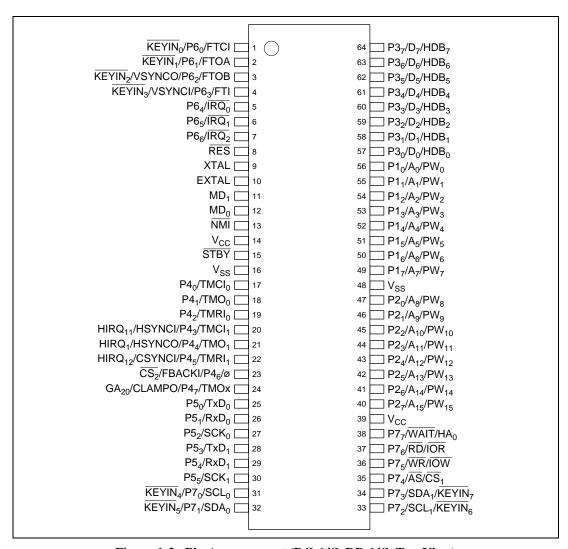


Figure 1-2 Pin Arrangement (DC-64S, DP-64S, Top View)

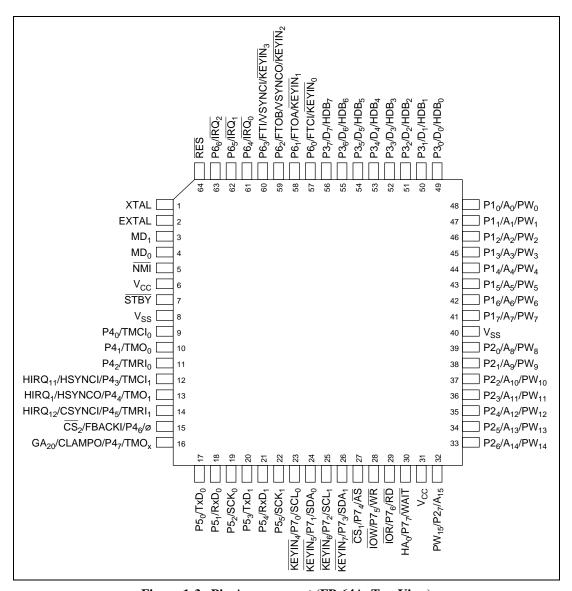


Figure 1-3 Pin Arrangement (FP-64A, Top View)

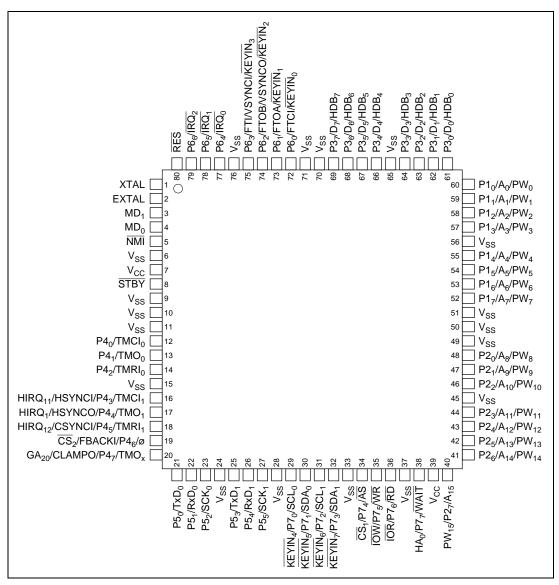


Figure 1-4 Pin Arrangement (TFP-80C, Top View)

12

1.3.2 Pin Functions

(1) Pin Assignments in Each Operating Mode: Table 1-2 to table 1-4 list the assignments of the pins of the DC-64S, DP-64S, FP-64A, and TFP-80C packages in each operating mode.

Table 1-2 Pin Assignments in Each Operating Mode (Except H8/3212 and H8/3202)

Pin No.		Expand	ed Modes	Single-Chip Mode		
DC-64S DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3	PROM Mode
_		71	V _{SS}	V _{SS}	V _{SS}	V _{SS}
1	57	72	P6 ₀ /FTCI/KEYIN ₀	P6 ₀ /FTCI/KEYIN ₀	P6 ₀ /FTCI/KEYIN ₀	NC
2	58	73	P6 ₁ /FTOA/KEYIN ₁	P6 ₁ /FTOA/KEYIN ₁	P6 ₁ /FTOA/KEYIN ₁	NC
3	59	74	P6 ₂ /FTOB/ VSYNCO/KEYIN ₂	P6 ₂ /FTOB/ VSYNCO/KEYIN ₂	P6 ₂ /FTOB/ VSYNCO/KEYIN ₂	NC
4	60	75	P6 ₃ /FTI/VSYNCI/ KEYIN ₃	P6 ₃ /FTI/VSYNCI/ KEYIN ₃	P6 ₃ /FTI/VSYNCI/ KEYIN ₃	NC
_		76	V _{SS}	V _{SS}	V _{SS}	V _{SS}
5	61	77	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀	NC
6	62	78	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁	NC
7	63	79	P6 ₆ /IRQ ₂	P6 ₆ /IRQ ₂	P6 ₆ /IRQ ₂	NC
8	64	80	RES	RES	RES	V_{PP}
9	1	1	XTAL	XTAL	XTAL	NC
10	2	2	EXTAL	EXTAL	EXTAL	NC
11	3	3	MD ₁	MD ₁	MD ₁	V _{SS}
12	4	4	MD_0	MD_0	MD ₀	V _{SS}
13	5	5	NMI	NMI	NMI	EA ₉
_		6	V _{SS}	V _{SS}	V _{SS}	V _{SS}
14	6	7	V _{CC}	V _{CC}	V _{CC}	V _{CC}
15	7	8	STBY	STBY	STBY	V _{SS}
16	8	9	V _{SS}	V _{SS}	V _{SS}	V_{SS}
_	_	10	V _{SS}	V _{SS}	V _{SS}	V _{SS}
_	_	11	V _{SS}	V _{SS}	V _{SS}	V_{SS}
17	9	12	P4 ₀ /TMCI ₀	P4 ₀ /TMCI ₀	P4 ₀ /TMCI ₀	EO ₀
18	10	13	P4 ₁ /TMO ₀	P4 ₁ /TMO ₀	P4 ₁ /TMO ₀	EO ₁
19	11	14	P4 ₂ /TMRI ₀	P4 ₂ /TMRI ₀	P4 ₂ /TMRI ₀	EO ₂
_	_	15	V _{SS}	V _{SS}	V _{SS}	V_{SS}

Table 1-2 Pin Assignments in Each Operating Mode (Except H8/3212 and H8/3202) (cont)

Pin No.		Expande	ed Modes	Single-Chip Mode		
DC-64S DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3	PROM Mode
20	12	16	P4 ₃ /TMCI ₁ / HSYNCI	P4 ₃ /TMCI ₁ / HSYNCI	P4 ₃ /TMCI ₁ / HSYNCI/HIRQ ₁₁	EO ₃
21	13	17	P4 ₄ /TMO ₁ / HSYNCO	P4 ₄ /TMO ₁ / HSYNCO	P4 ₄ /TMO ₁ / HSYNCO/HIRQ ₁	EO ₄
22	14	18	P4 ₅ /TMRI ₁ / CSYNCI	P4 ₅ /TMRI ₁ / CSYNCI	P4 ₅ /TMRI ₁ / CSYNCI/HIRQ ₁₂	EO ₅
23	15	19	ф	ф	P4 ₆ / ϕ /FBACKI/ $\overline{\text{CS}}_2$	EO ₆
24	16	20	P4 ₇ /TMO _x / CLAMPO	P4 ₇ /TMO _x / CLAMPO	P4 ₇ /TMO _x / CLAMPO/GA ₂₀	EO ₇
25	17	21	P5 ₀ /TxD ₀	P5 ₀ /TxD ₀	P5 ₀ /TxD ₀	EA ₁₅
26	18	22	P5 ₁ /RxD ₀	P5 ₁ /RxD ₀	P5 ₁ /RxD ₀	EA ₁₆
27	19	23	P5 ₂ /SCK ₀	P5 ₂ /SCK ₀	P5 ₂ /SCK ₀	PGM
_	_	24	V _{SS}	V _{SS}	V _{SS}	V _{SS}
28	20	25	P5 ₃ /TxD ₁	P5 ₃ /TxD ₁	P5 ₃ /TxD ₁	NC
29	21	26	P5 ₄ /RxD ₁	P5 ₄ /RxD ₁	P5 ₄ /RxD ₁	NC
30	22	27	P5 ₅ /SCK ₁	P5 ₅ /SCK ₁	P5 ₅ /SCK ₁	NC
_	_	28	V _{SS}	V _{SS}	V _{SS}	V _{SS}
31	23	29	P7 ₀ /SCL ₀ /KEYIN ₄	P7 ₀ /SCL ₀ /KEYIN ₄	P7 ₀ /SCL ₀ /KEYIN ₄	V _{CC}
32	24	30	P7 ₁ /SDA ₀ /KEYIN ₅	P7 ₁ /SDA ₀ /KEYIN ₅	P7 ₁ /SDA ₀ /KEYIN ₅	V _{CC}
33	25	31	P7 ₂ /SCL ₁ /KEYIN ₆	P7 ₂ /SCL ₁ /KEYIN ₆	P7 ₂ /SCL ₁ /KEYIN ₆	NC
34	26	32	P7 ₃ /SDA ₁ /KEYIN ₇	P7 ₃ /SDA ₁ /KEYIN ₇	P7 ₃ /SDA ₁ /KEYIN ₇	NC
_	_	33	V _{SS}	V _{SS}	V _{SS}	V _{SS}
35	27	34	ĀS	ĀS	P7 ₄ /CS ₁	NC
36	28	35	WR	WR	P7 ₅ /IOW	NC
37	29	36	RD	RD	P7 ₆ /IOR	NC
_	_	37	V _{SS}	V _{SS}	V _{SS}	V _{SS}
38	30	38	P7 ₇ /WAIT	P7 ₇ /WAIT	P7 ₇ /HA ₀	NC
39	31	39	V _{CC}	V _{CC}	V _{CC}	V _{CC}
40	32	40	A ₁₅	P2 ₇ /A ₁₅ /PW ₁₅	P2 ₇ /PW ₁₅	CE
41	33	41	A ₁₄	P2 ₆ /A ₁₄ /PW ₁₄	P2 ₆ /PW ₁₄	EA ₁₄
42	34	42	A ₁₃	P2 ₅ /A ₁₃ /PW ₁₃	P2 ₅ /PW ₁₃	EA ₁₃

Table 1-2 Pin Assignments in Each Operating Mode (Except H8/3212 and H8/3202) (cont)

	Pin No		Exp	anded Modes	Single-Chip Mode	•
DC-64S DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3	PROM Mode
43	35	43	A ₁₂	P2 ₄ /A ₁₂ /PW ₁₂	P2 ₄ /PW ₁₂	EA ₁₂
44	36	44	A ₁₁	P2 ₃ /A ₁₁ /PW ₁₁	P2 ₃ /PW ₁₁	EA ₁₁
_	_	45	V _{SS}	V _{SS}	V _{SS}	V _{SS}
45	37	46	A ₁₀	P2 ₂ /A ₁₀ /PW ₁₀	P2 ₂ /PW ₁₀	EA ₁₀
46	38	47	A ₉	P2 ₁ /A ₉ /PW ₉	P2 ₁ /PW ₉	ŌĒ
47	39	48	A ₈	P2 ₀ /A ₈ /PW ₈	P2 ₀ /PW ₈	EA ₈
_	_	49	V _{SS}	V _{SS}	V _{SS}	V _{SS}
_	_	50	V _{SS}	V _{SS}	V _{SS}	V _{SS}
48	40	51	V _{SS}	V _{SS}	V _{SS}	V _{SS}
49	41	52	A ₇	P1 ₇ /A ₇ /PW ₇	P1 ₇ /PW ₇	EA ₇
50	42	53	A ₆	P1 ₆ /A ₆ /PW ₆	P1 ₆ /PW ₆	EA ₆
51	43	54	A ₅	P1 ₅ /A ₅ /PW ₅	P1 ₅ /PW ₅	EA ₅
52	44	55	A ₄	P1 ₄ /A ₄ /PW ₄	P1 ₄ /PW ₄	EA ₄
_	_	56	V _{SS}	V _{SS}	V _{SS}	V _{SS}
53	45	57	A ₃	P1 ₃ /A ₃ /PW ₃	P1 ₃ /PW ₃	EA ₃
54	46	58	A ₂	P1 ₂ /A ₂ /PW ₂	P1 ₂ /PW ₂	EA ₂
55	47	59	A ₁	P1 ₁ /A ₁ /PW ₁	P1 ₁ /PW ₁	EA ₁
56	48	60	A ₀	P1 ₀ /A ₀ /PW ₀	P1 ₀ /PW ₀	EA ₀
57	49	61	D ₀	D ₀	P3 ₀ /HDB ₀	NC
58	50	62	D ₁	D ₁	P3 ₁ /HDB ₁	NC
59	51	63	D ₂	D ₂	P3 ₂ /HDB ₂	NC
60	52	64	D ₃	D ₃	P3 ₃ /HDB ₃	NC
_	_	65	V _{SS}	V _{SS}	V _{SS}	V _{SS}
61	53	66	D ₄	D ₄	P3 ₄ /HDB ₄	NC
62	54	67	D ₅	D ₅	P3 ₅ /HDB ₅	NC
63	55	68	D ₆	D ₆	P3 ₆ /HDB ₆	NC
64	56	69	D ₇	D ₇	P3 ₇ /HDB ₇	NC
_	_	70	V _{SS}	V_{SS}	V _{SS}	V _{SS}
	D:		111 16			

Notes: 1. Pins marked NC should be left unconnected.

^{2.} The PROM mode is a non-operating mode used for programming the on-chip ROM. See section 17, ROM, for details.

 Table 1-3
 Pin Assignments in Each Operating Mode (H8/3212)

Pin No.		Expand	Single-Chip Mode		
DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3
_	_	71	V _{SS}	V _{SS}	V _{SS}
1	57	72	P6 ₀ /FTCI	P6 ₀ /FTCI	P6 ₀ /FTCI
2	58	73	P6 ₁ /FTOA	P6 ₁ /FTOA	P6 ₁ /FTOA
3	59	74	P6 ₂ /FTOB/VSYNCO	P6 ₂ /FTOB/VSYNCO	P6 ₂ /FTOB/VSYNCO
4	60	75	P6 ₃ /FTI/VSYNCI	P6 ₃ /FTI/VSYNCI	P6 ₃ /FTI/VSYNCI
_	_	76	V _{SS}	V _{SS}	V _{SS}
5	61	77	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀
6	62	78	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁
7	63	79	P6 ₆ /IRQ ₂	P6 ₆ /IRQ ₂	P6 ₆ /IRQ ₂
8	64	80	RES	RES	RES
9	1	1	XTAL	XTAL	XTAL
10	2	2	EXTAL	EXTAL	EXTAL
11	3	3	MD_1	MD ₁	MD ₁
12	4	4	MD_0	MD_0	MD_0
13	5	5	NMI	NMI	NMI
_	_	6	V _{SS}	V _{SS}	V _{SS}
14	6	7	V _{CC}	V _{CC}	V _{CC}
15	7	8	STBY	STBY	STBY
16	8	9	V _{SS}	V _{SS}	V _{SS}
_	_	10	V _{SS}	V _{SS}	V _{SS}
_	_	11	V _{SS}	V _{SS}	V _{SS}
17	9	12	P4 ₀ /TMCI ₀	P4 ₀ /TMCI ₀	P4 ₀ /TMCl ₀
18	10	13	P4 ₁ /TMO ₀	P4 ₁ /TMO ₀	P4 ₁ /TMO ₀
19	11	14	P4 ₂ /TMRI ₀	P4 ₂ /TMRI ₀	P4 ₂ /TMRI ₀
_	_	15	V _{SS}	V _{SS}	V _{SS}
20	12	16	P4 ₃ /TMCI ₁ /HSYNCI	P4 ₃ /TMCI ₁ /HSYNCI	P4 ₃ /TMCI ₁ /HSYNCI
21	13	17	P4 ₄ /TMO ₁ /HSYNCO	P4 ₄ /TMO ₁ /HSYNCO	P4 ₄ /TMO ₁ /HSYNCO
22	14	18	P4 ₅ /TMRI ₁ /CSYNCI	P4 ₅ /TMRI ₁ /CSYNCI	P4 ₅ /TMRI ₁ /CSYNCI
23	15	19	ф	ф	P4 ₆ /φ/FBACKI
24	16	20	P4 ₇ /TMO _x /CLAMPO	P4 ₇ /TMO _x /CLAMPO	P4 ₇ /TMO _x /CLAMPO

Table 1-3 Pin Assignments in Each Operating Mode (H8/3212) (cont)

	Pin No).		Expanded Modes	Single-Chip Mode	
DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3	
25	17	21	P5 ₀ /TxD ₀	P5 ₀ /TxD ₀	P5 ₀ /TxD ₀	
26	18	22	P5 ₁ /RxD ₀	P5 ₁ /RxD ₀	P5 ₁ /RxD ₀	
27	19	23	P5 ₂ /SCK ₀	P5 ₂ /SCK ₀	P5 ₂ /SCK ₀	
_	_	24	V _{SS}	V_{SS}	V _{SS}	
28	20	25	P5 ₃	P5 ₃	P5 ₃	
29	21	26	P5 ₄	P5 ₄	P5 ₄	
30	22	27	P5 ₅	P5 ₅	P5 ₅	
_	_	28	V _{SS}	V_{SS}	V _{SS}	
31	23	29	P7 ₀ /SCL ₀	P7 ₀ /SCL ₀	P7 ₀ /SCL ₀	
32	24	30	P7 ₁ /SDA ₀	P7 ₁ /SDA ₀	P7 ₁ /SDA ₀	
33	25	31	P7 ₂ /SCL ₁	P7 ₂ /SCL ₁	P7 ₂ /SCL ₁	
34	26	32	P7 ₃ /SDA ₁	P7 ₃ /SDA ₁	P7 ₃ /SDA ₁	
_	_	33	V _{SS}	V_{SS}	V _{SS}	
35	27	34	ĀS	ĀS	P7 ₄	
36	28	35	WR	WR	P7 ₅	
37	29	36	RD	RD	P7 ₆	
_	_	37	V _{SS}	V _{SS}	V _{SS}	
38	30	38	P7 ₇ /WAIT	P7 ₇ /WAIT	P7 ₇	
39	31	39	V _{CC}	V _{CC}	V _{CC}	
40	32	40	A ₁₅	P2 ₇ /A ₁₅ /PW ₁₅	P2 ₇ /PW ₁₅	
41	33	41	A ₁₄	P2 ₆ /A ₁₄ /PW ₁₄	P2 ₆ /PW ₁₄	
42	34	42	A ₁₃	P2 ₅ /A ₁₃ /PW ₁₃	P2 ₅ /PW ₁₃	
43	35	43	A ₁₂	P2 ₄ /A ₁₂ /PW ₁₂	P2 ₄ /PW ₁₂	
44	36	44	A ₁₁	P2 ₃ /A ₁₁ /PW ₁₁	P2 ₃ /PW ₁₁	
_	_	45	V _{SS}	V _{SS}	V _{SS}	
45	37	46	A ₁₀	P2 ₂ /A ₁₀ /PW ₁₀	P2 ₂ /PW ₁₀	
46	38	47	A ₉	P2 ₁ /A ₉ /PW ₉	P2 ₁ /PW ₉	
47	39	48	A ₈	P2 ₀ /A ₈ /PW ₈	P2 ₀ /PW ₈	
_	_	49	V _{SS}	V _{SS}	V _{SS}	
_	_	50	V _{SS}	V _{SS}	V _{SS}	

Table 1-3 Pin Assignments in Each Operating Mode (H8/3212) (cont)

Pin No.			Expanded Modes	Single-Chip Mode	
DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3
48	40	51	V _{SS}	V_{SS}	V_{SS}
49	41	52	A ₇	P1 ₇ /A ₇ /PW ₇	P1 ₇ /PW ₇
50	42	53	A ₆	P1 ₆ /A ₆ /PW ₆	P1 ₆ /PW ₆
51	43	54	A ₅	P1 ₅ /A ₅ /PW ₅	P1 ₅ /PW ₅
52	44	55	A ₄	P1 ₄ /A ₄ /PW ₄	P1 ₄ /PW ₄
_	_	56	V _{SS}	V _{SS}	V _{SS}
53	45	57	A ₃	P1 ₃ /A ₃ /PW ₃	P1 ₃ /PW ₃
54	46	58	A ₂	P1 ₂ /A ₂ /PW ₂	P1 ₂ /PW ₂
55	47	59	A ₁	P1 ₁ /A ₁ /PW ₁	P1 ₁ /PW ₁
56	48	60	A ₀	P1 ₀ /A ₀ /PW ₀	P1 ₀ /PW ₀
57	49	61	D ₀	D ₀	P3 ₀
58	50	62	D ₁	D ₁	P3 ₁
59	51	63	D ₂	D ₂	P3 ₂
60	52	64	D ₃	D ₃	P3 ₃
_	_	65	V _{SS}	V _{SS}	V _{SS}
61	53	66	D ₄	D_4	P3 ₄
62	54	67	D ₅	D ₅	P3 ₅
63	55	68	D ₆	D ₆	P3 ₆
64	56	69	D ₇	D ₇	P3 ₇
_	_	70	V _{SS}	V _{SS}	V_{SS}

 Table 1-4
 Pin Assignments in Each Operating Mode (H8/3202)

	Pin No).	Expand	Single-Chip Mode	
DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3
_	_	71	V _{SS}	V _{SS}	V _{SS}
1	57	72	P6 ₀ /FTCI/KEYIN ₀	P6 ₀ /FTCI/KEYIN ₀	P6 ₀ /FTCI/KEYIN ₀
2	58	73	P6 ₁ /FTOA/KEYIN ₁	P6 ₁ /FTOA/KEYIN ₁	P6 ₁ /FTOA/KEYIN ₁
3	59	74	P6 ₂ /FTOB/KEYIN ₂	P6 ₂ /FTOB/KEYIN ₂	P6 ₂ /FTOB/KEYIN ₂
4	60	75	P6 ₃ /FTI/KEYIN ₃	P6 ₃ /FTI/KEYIN ₃	P6 ₃ /FTI/KEYIN ₃
_	_	76	V _{SS}	V _{SS}	V _{SS}
5	61	77	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀	P6 ₄ /IRQ ₀
6	62	78	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁	P6 ₅ /IRQ ₁
7	63	79	P6 ₆ /IRQ ₂	P6 ₆ /IRQ ₂	P6 ₆ /IRQ ₂
8	64	80	RES	RES	RES
9	1	1	XTAL	XTAL	XTAL
10	2	2	EXTAL	EXTAL	EXTAL
11	3	3	MD ₁	MD_1	MD ₁
12	4	4	MD_0	MD_0	MD_0
13	5	5	NMI	NMI	NMI
_	_	6	V _{SS}	V _{SS}	V _{SS}
14	6	7	V _{CC}	V _{CC}	V _{CC}
15	7	8	STBY	STBY	STBY
16	8	9	V _{SS}	V _{SS}	V _{SS}
_	_	10	V _{SS}	V _{SS}	V _{SS}
	_	11	V _{SS}	V _{SS}	V _{SS}
17	9	12	P4 ₀ /TMCI ₀	P4 ₀ /TMCI ₀	P4 ₀ /TMCI ₀
18	10	13	P4 ₁ /TMO ₀	P4 ₁ /TMO ₀	P4 ₁ /TMO ₀
19	11	14	P4 ₂ /TMRI ₀	P4 ₂ /TMRI ₀	P4 ₂ /TMRI ₀
	_	15	V _{SS}	V _{SS}	V _{SS}
20	12	16	P4 ₃ /TMCI ₁	P4 ₃ /TMCI ₁	P4 ₃ /TMCI ₁ /HIRQ ₁₁
21	13	17	P4 ₄ /TMO ₁	P4 ₄ /TMO ₁	P4 ₄ /TMO ₁ /HIRQ ₁
22	14	18	P4 ₅ /TMRI ₁	P4 ₅ /TMRI ₁	P4 ₅ /TMRI ₁ /HIRQ ₁₂
23	15	19	ф	ф	P4 ₆ /ф/ CS ₂
24	16	20	P4 ₇	P4 ₇	P4 ₇ /GA ₂₀

Table 1-4 Pin Assignments in Each Operating Mode (H8/3202) (cont)

Pin No.		Expand	Single-Chip Mode		
DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3
25	17	21	P5 ₀ /TxD ₀	P5 ₀ /TxD ₀	P5 ₀ /TxD ₀
26	18	22	P5 ₁ /RxD ₀	P5 ₁ /RxD ₀	P5 ₁ /RxD ₀
27	19	23	P5 ₂ /SCK ₀	P5 ₂ /SCK ₀	P5 ₂ /SCK ₀
_	_	24	V _{SS}	V _{SS}	V _{SS}
28	20	25	P5 ₃ /TxD ₁	P5 ₃ /TxD ₁	P5 ₃ /TxD ₁
29	21	26	P5 ₄ /RxD ₁	P5 ₄ /RxD ₁	P5 ₄ /RxD ₁
30	22	27	P5 ₅ /SCK ₁	P5 ₅ /SCK ₁	P5 ₅ /SCK ₁
_	_	28	V _{SS}	V _{SS}	V _{SS}
31	23	29	P7 ₀ /SCL ₀ /KEYIN ₄	P7 ₀ /SCL ₀ /KEYIN ₄	P7 ₀ /SCL ₀ /KEYIN ₄
32	24	30	P7 ₁ /SDA ₀ /KEYIN ₅	P7 ₁ /SDA ₀ /KEYIN ₅	P7 ₁ /SDA ₀ /KEYIN ₅
33	25	31	P7 ₂ /KEYIN ₆	P7 ₂ /KEYIN ₆	P7 ₂ /KEYIN ₆
34	26	32	P7 ₃ /KEYIN ₇	P7 ₃ /KEYIN ₇	P7 ₃ /KEYIN ₇
_	_	33	V _{SS}	V _{SS}	V _{SS}
35	27	34	ĀS	ĀS	P7 ₄ /CS ₁
36	28	35	WR	WR	P7 ₅ /IOW
37	29	36	RD	RD	P7 ₆ /IOR
_	_	37	V _{SS}	V _{SS}	V _{SS}
38	30	38	P7 ₇ /WAIT	P7 ₇ /WAIT	P7 ₇ /HA ₀
39	31	39	V _{CC}	V _{CC}	V _{CC}
40	32	40	A ₁₅	P2 ₇ /A ₁₅	P2 ₇
41	33	41	A ₁₄	P2 ₆ /A ₁₄	P2 ₆
42	34	42	A ₁₃	P2 ₅ /A ₁₃	P2 ₅
43	35	43	A ₁₂	P2 ₄ /A ₁₂	P2 ₄
44	36	44	A ₁₁	P2 ₃ /A ₁₁	P2 ₃
_	_	45	V _{SS}	V _{SS}	V _{SS}
45	37	46	A ₁₀	P2 ₂ /A ₁₀	P2 ₂
46	38	47	A ₉	P2 ₁ /A ₉	P2 ₁
47	39	48	A ₈	P2 ₀ /A ₈	P2 ₀
_	_	49	V _{SS}	V _{SS}	V _{SS}
_	_	50	V _{SS}	V _{SS}	V _{SS}

Table 1-4 Pin Assignments in Each Operating Mode (H8/3202) (cont)

Pin No.			Expanded Modes	Single-Chip Mode	
DP-64S	FP-64A	TFP-80C	Mode 1	Mode 2	Mode 3
48	40	51	V _{SS}	V_{SS}	V_{SS}
49	41	52	A ₇	P1 ₇ /A ₇	P1 ₇
50	42	53	A ₆	P1 ₆ /A ₆	P1 ₆
51	43	54	A ₅	P1 ₅ /A ₅	P1 ₅
52	44	55	A ₄	P1 ₄ /A ₄	P1 ₄
_	_	56	V _{SS}	V _{SS}	V _{SS}
53	45	57	A ₃	P1 ₃ /A ₃	P1 ₃
54	46	58	A ₂	P1 ₂ /A ₂	P1 ₂
55	47	59	A ₁	P1 ₁ /A ₁	P1 ₁
56	48	60	A ₀	P1 ₀ /A ₀	P1 ₀
57	49	61	D ₀	D ₀	P3 ₀ /HDB ₀
58	50	62	D ₁	D ₁	P3 ₁ /HDB ₁
59	51	63	D ₂	D ₂	P3 ₂ /HDB ₂
60	52	64	D ₃	D ₃	P3 ₃ /HDB ₃
_	_	65	V _{SS}	V _{SS}	V _{SS}
61	53	66	D ₄	D ₄	P3 ₄ /HDB ₄
62	54	67	D ₅	D ₅	P3 ₅ /HDB ₅
63	55	68	D ₆	D ₆	P3 ₆ /HDB ₆
64	56	69	D ₇	D ₇	P3 ₇ /HDB ₇
_	_	70	V _{SS}	V _{SS}	V _{SS}

(2) Pin Functions: Table 1-5 gives a concise description of the function of each pin.

Table 1-5 Pin Functions

Pin No.						
Туре	Symbol	DC-64S DP-64S	FP-64A	TFP-80C	I/O	Name and Function
Power	V _{CC}	14, 39	6, 31	7, 39	I	Power: Connected to the power supply. Connect both V _{CC} pins to the system power supply.
	V _{SS}	16, 48	8, 40	9, 51 6, 10, 11, 15, 24, 28, 33, 37, 45, 49, 50, 56, 65, 70, 71, 76		Ground: Connected to ground (0 V). Connect all V _{SS} pins to the system power supply (0 V).
Clock	XTAL	9	1	1	I	Crystal: Connected to a crystal oscillator. The crystal frequency must be the same as the desired system clock frequency. If an external clock is input at the EXTAL pin, a reversephase clock should be input at the XTAL pin.
	EXTAL	10	2	2	I	External crystal: Connected to a crystal oscillator or external clock. The frequency of the external clock must be the same as the desired system clock frequency. See section 6, Clock Pulse Generator, for examples of connections to a crystal and external clock.
	ф	23	15	19	0	System clock: Supplies the system clock to peripheral devices.
System control	RES	8	64	80	I	Reset: A low input causes the chip to reset.
	STBY	15	7	8	I	Standby: A transition to the hardware standby mode (a power-down state) occurs when a low input is received at the STBY pin.
Address bus	A ₁₅ to A ₀	40 to 47, 49 to 56,	32 to 39, 41 to 48	40 to 44, 46 to 48, 52 to 55, 57 to 60	0	Address bus: Address output pins.

Table 1-5 Pin Functions (cont)

Pin No.

					_				
Туре	Symbol	DC-64S DP-64S	FP-64A	TFP-80C	I/O	Name	e and F	unction	
Data bus	D ₇ to D ₀	64 to 57	56 to 49	69 to 66, 64 to 61	I/O	Data	bus: 8-	-bit bidirect	tional data bus.
Bus control	WAIT	38	30	38	I	states	s into th		PU to insert T _W e when an off- ed.
	RD	37	29	36	0	Read: Goes low to indicate that the CPU is reading an external address.			
	WR	36	28	35	0	Write : Goes low to indicate that the CPU is writing to an external address.			
	ĀS	35	27	34	0	Address strobe: Goes low to indicate that there is a valid address on the address bus.			
Interrupt signals	NMI	13	5	5	I	Non maskable interrupt: Highest-priority interrupt request. The NMIEG bit in the system control register determines whether the interrupt is requested on the rising or falling edge of the NMI input.			
	\overline{IRQ}_0 to \overline{IRQ}_2	5 to 7	61 to 63	77 to 79	I	Interrupt request 0 to 2: Maskable interrupt request pins.			
Operating mode control	MD ₁ , MD ₀	11 12	3 4	3 4	I	Mode: Input pins for setting the MCU operating mode according to the table below.			
						MD_1	MD_0	Mode	Description
						0	1	Mode 1	Expanded mode with on-chip ROM disabled
						1	0	Mode 2	Expanded mode with on-chip ROM enabled
						1	1	Mode 3	Single-chip mode

Table 1-5 Pin Functions (cont)

Pin No.

		DC-64S			_	
Туре	Symbol	DP-64S	FP-64A	TFP-80C	I/O	Name and Function
16-bit free- running timer	FTCI	1	57	72	I	FRT counter clock input: Input pin for an external clock signal for the free-running counter.
	FTOA	2	58	73	0	FRT output compare A: Output pins controlled by comparator A of the free-running timer.
	FTOB	3	59	74	0	FRT output compare B: Output pins controlled by comparator B of the free-running timer.
	FTI	4	60	75	I	FRT input capture: Input capture pin for the free-running timer.
8-bit timer	TMO_0 ,	18	10	13	0	8-bit timer output (channels 0, 1,
(channel	TMO_1 ,	21	13	17		and x): Compare- match output pins
X: except	TMO_xTMO_x	C2417	169	2012	1	for the 8-bit timers.8-bit timer clock
H8/3202)	I ₀ ,	20	12	16		input (channels 0, 1, and x):
	TMCI₁, FBACKI	23	15	19		External clock input pins for the 8-bit timer counters.
	TMRI ₀ ,	19	11	14	ı	8-bit timer reset input (channels 0,
	TMRI ₁ ,	22	14	18		1, and x): High input at these pins
	FBACKI	23	15	19		resets the 8-bit timers.
Serial	TxD ₀	25	17	21	0	Serial transmit data (channels 0
commu-	TxD_1	28	20	25		and 1): Data output pins for the serial
nication	RxD_0	26	18	22	1	communication interface.Serial
interface	RxD_1	29	21	26		receive data (channels 0
(channel	SCK_0	27	19	23	I/O	and 1): Data input pins for the serial
1: except	SCK ₁	30	22	27		communication interface. Serial clock
H8/3212)						(channels 0 and 1): Input/output pins for the serial clock signals.

Table 1-5 Pin Functions (cont)

P	in	П	N	n
_			N	u.

		DC-64S			_	
Туре	Symbol	DP-64S	FP-64A	TFP-80C	I/O	Name and Function
General- purpose I/O	P1 ₇ to P1 ₀	49 to 56	41 to 48	52 to 55, 57 to 60	I/O	Port 1: An 8-bit input/output port with programmable MOS input pull-ups and LED driving capability. The direction of each bit can be selected in the port 1 data direction register (P1DDR).
	P2 ₇ to P2 ₀	40 to 47	32 to 39	40 to 44, 46 to 48	I/O	Port 2: An 8-bit input/output port with programmable MOS input pull-ups and LED driving capability. The direction of each bit can be selected in the port 2 data direction register (P2DDR).
	P3 ₇ to P3 ₀	64 to 57	56 to 49	69 to 66, 64 to 61	I/O	Port 3: An 8-bit input/output port with programmable MOS input pull-ups and LED drive capability. The direction of each bit can be selected in the port 3 data direction register (P3DDR).
	P4 ₇ to P4 ₀	24 to 17	16 to 9	20 to 16, 14 to 12	I/O	Port 4: An 8-bit input/output port. The direction of each bit (except P46) can be selected in the port 4 data direction register (P4DDR).
	P5 ₅ to P5 ₀	30 to 25	22 to 17	27 to 25, 23 to 21	I/O	Port 5: A 6-bit input/output port. The direction of each bit can be selected in the port 5 data direction register (P5DDR).
	P6 ₆ to P6 ₀	7 to 1	63 to 57	79 to 77, 75 to 72	I/O	Port 6: A 7-bit input/output port. The direction of each bit can be selected in the port 6 data direction register (P6DDR).
	P7 ₇ to P7 ₀	38 to 31	30 to 23	38, 37 to 34, 32 to 29	I/O	Port 7: An 8-bit input/output port. The direction of each bit can be selected in the port 7 data direction register (P7DDR).
PWM timers (except H8/3202)	PW15 to PW0	40 to 47, 49 to 56	32 to 39, 41 to 48	40 to 44, 46 to 48, 52 to 55, 57 to 60	0	PWM timer outputs: PWM timer pulse output pins.

Table 1-5 Pin Functions (cont)

Р	9ir	١I	N	O.

	DC-64S				
Symbol	DP-64S	FP-64A	TFP-80C	I/O	Name and Function
VSYNCI HSYNCI	4 20	60 12	75 16	I	Timer connection inputs: Timer connection (FRT, TMR1, TMRX) input
CSYNCI	22	14	18		pins.
FBACKIV	233	1559	1974	0	Timer connection outputs: Timer
SYNCO	21	13	17		connection (FRT, TMR1, TMRX)
HSYNCO CLAMPO	24	16	20		output pins.
SCL_0	31	23	29	I/O	I ² C clock input/output (channels 0
SCL ₁		25	31		and 1): I ² C clock input/output pin. Has
SDA_0				I/O	a bus driving function.I2C data
SDA ₁	34	26	32		input/output (channels 0 and 1): I ² C
					data input/output pin. Has a bus driving function.
HDB ₀ to	57 to 64	49 to 56	61 to 64	I/O	Host interface data bus: Bidirectional
HDB ₇					8-bit bus for host interface access by
$\overline{\text{CS}}_1$				I	the host. Chip select 1 and 2: Input
$\overline{\text{CS}}_2$	23	15	19		pins for selecting host interface
					channel 1 or channel 2.
ĪŌR	37	29	36	I	I/O read: Input pin that enables reads on the host interface.
ĪŌW	36	28	35	I	I/O write: Input pin that enables writes to the host interface.
HA ₀	38	30	38	I	Command/data: Input pin that indicates a data access or command access.
GA ₂₀	24	16	20	0	GATE A ₂₀ : GATE A ₂₀ control signal
					output pin.
$HIRQ_1$	21	13	17	0	Host interrupt 1, 11, 12: Output pins
HIRQ ₁₁			16		for interrupt requests to the host.
HIRQ ₁₂	22	14	18		
KEYIN ₀ to KEYIN ₇	1 to 4 31 to 34	57 to 60 23 to 26	72 to 75 29 to 32	I	Keyboard input: Input pins for a matrix keyboard. (PI ₁ to PI ₇ and P2 ₀ to P2 ₇ are normally used as keyboard scan outputs, enabling a maximum 16-output × 8-input, 128-key matrix to be configured. The number of keys can be increased by using other port outputs.)
	VSYNCI HSYNCI CSYNCI FBACKIV SYNCO HSYNCO CLAMPO SCL ₀ SCL ₁ SDA ₀ SDA ₁ HDB ₀ to HDB ₇ CS ₁ CS ₂ IOR IOW HA ₀ GA ₂₀ HIRQ ₁ HIRQ ₁₁ HIRQ ₁₂ KEYIN ₀ to	VSYNCI 4 HSYNCI 20 CSYNCI 22 FBACKIV 233 SYNCO 21 HSYNCO 24 CLAMPO SCL ₀ 31 SCL ₁ 33 SDA ₀ 32 SDA ₁ 34 HDB ₀ to 57 to 64 HDB ₇ 35 CS ₂ 33 IOW 36 HA ₀ 38 GA ₂₀ 24 HIRQ ₁ 21 HIRQ ₁₁ 20 HIRQ ₁₂ 22 KEYIN ₀ 1 to 4 to 31 to 34	VSYNCI 4 60 60 HSYNCI 20 12 12 CSYNCI 22 14 14 FBACKIV 233 1559 1559 SYNCO 21 13 13 HSYNCO 24 16 16 CLAMPO SCL₀ 31 23 SCL₁ 33 25 24 SDA₀ 32 24 24 SDA₁ 34 26 26 HDB₀ to 57 to 64 49 to 56 49 to 56 HDB₁ 35 27 CS₁ 23 15 27 IOR 37 29 15 IOW 36 28 30 HA₀ 38 30 30 GA₂₀ 24 16 16 HIRQ₁ 21 13 11 HIRQ₁ 21 13 11 HIRQ₁ 22 14 12 HIRQ₁ 22 14 14 KEYIN₀ 1 1 to 4 57 to 60 57 to 60 to 31 to 34 23 to 26	VSYNCI 4 60 75 HSYNCI 20 12 16 CSYNCI 22 14 18 FBACKIV 233 1559 1974 SYNCO 21 13 17 HSYNCO 24 16 20 CLAMPO CLAMPO 23 29 SCL0 31 23 29 SCL1 33 25 31 SDA0 32 24 30 SDA1 34 26 32 HDB7 66 to 69 66 to 69 CS1 35 27 34 CS2 23 15 19 IOR 37 29 36 IOW 36 28 35 HA0 38 30 38 GA20 24 16 20 HIRQ1 21 13 17 HIRQ21 21 16 HIRQ12	VSYNCI 4 60 75 I HSYNCI 20 12 16 CSYNCI 22 14 18 FBACKIV 233 1559 1974 O SYNCO 21 13 17 HSYNCO 24 16 20 CLAMPO SCL0 31 23 29 I/O SCL1 33 25 31 SDA0 SDA0 SSDA0 SSDA0<

Section 2 CPU

2.1 Overview

The H8/3217 Series has the generic H8/300 CPU: an 8-bit central processing unit with a speed-oriented architecture featuring sixteen general registers. This section describes the CPU features and functions, including a concise description of the addressing modes and instruction set. For further details on the instructions, see the *H8/300 Series Programming Manual*.

2.1.1 Features

The main features of the H8/300 CPU are listed below.

- Two-way register configuration
 - Sixteen 8-bit general registers, or
 - Eight 16-bit general registers
- Instruction set with 57 basic instructions, including:
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct (Rn)
 - Register indirect (@Rn)
 - Register indirect with displacement (@(d:16, Rn))
 - Register indirect with post-increment or pre-decrement (@Rn+ or @-Rn)
 - Absolute address (@aa:8 or @aa:16)
 - Immediate (#xx:8 or #xx:16)
 - PC-relative (@(d:8, PC))
 - Memory indirect (@@aa:8)
- Maximum 64-kbyte address space
- High-speed operation
 - All frequently-used instructions are executed two to four states
 - The maximum clock rate is 16 MHz/5 V, 12 MHz/4 V, or 10 MHz/3 V (φ clock)
 - 8- or 16-bit register-register add or subtract: 125 ns (16 MHz), 167 ns (12 MHz) or 200 ns (10 MHz)
 - 8 × 8-bit multiply: 875 ns (16 MHz), 1167 ns (12 MHz) or 1400 ns (10 MHz)
 - 16 ÷ 8-bit divide: 875 ns (16 MHz), 1167 ns (12 MHz) or 1400 ns (10 MHz)
- Power-down mode
 - SLEEP instruction

2.1.2 Address Space

The H8/300 CPU supports an address space of up to 64 kbytes for storing program code and data. The memory map is different for each mode (modes 1, 2, and 3). See section 3.5, Address Space Maps for Each Operating Mode, for details.

2.1.3 Register Configuration

Figure 2-1 shows the register structure of the CPU. There are two groups of registers: the general registers and control registers.

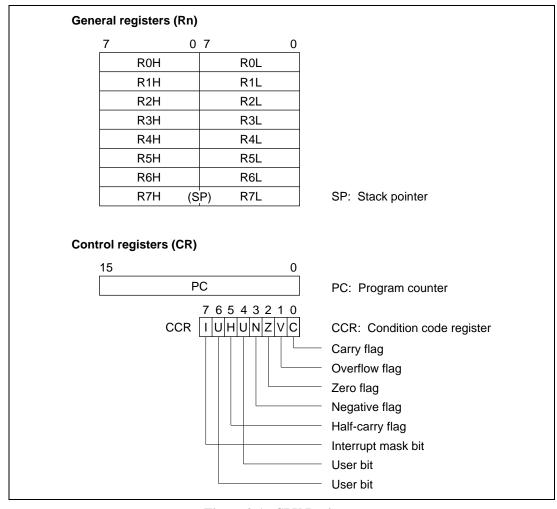


Figure 2-1 CPU Registers

2.2 Register Descriptions

2.2.1 General Registers

All the general registers can be used as both data registers and address registers. When used as address registers, the general registers are accessed as 16-bit registers (R0 to R7). When used as data registers, they can be accessed as 16-bit registers, or the high and low bytes can be accessed separately as 8-bit registers.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and subroutine calls. In assembly-language coding, R7 can also be denoted by the letters SP. As indicated in figure 2-2, R7 (SP) points to the top of the stack.

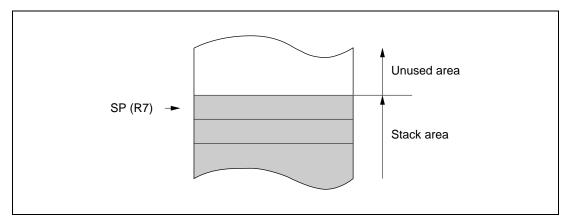


Figure 2-2 Stack Pointer

2.2.2 Control Registers

The CPU control registers include a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

- (1) **Program Counter (PC):** This 16-bit register indicates the address of the next instruction the CPU will execute. Each instruction is accessed in 16 bits (1 word), so the least significant bit of the PC is ignored (always regarded as 0).
- (2) Condition Code Register (CCR): This 8-bit register contains internal status information, including carry (C), overflow (V), zero (Z), negative (N), and half-carry (H) flags and the interrupt mask bit (I).
- **Bit 7—Interrupt Mask Bit (I):** When this bit is set to 1, all interrupts except NMI are masked. This bit is set to 1 automatically by a reset and at the start of interrupt handling.

Bit 6—User Bit (U): This bit can be written and read by software for its own purposes (using the LDC, STC, ANDC, ORC, and XORC instructions).

Bit 5—Half-Carry (H): This bit is set to 1 when the ADD.B, ADDX.B, SUB.B, SUBX.B, NEG.B, or CMP.B instruction causes a carry or borrow out of bit 3, and is cleared to 0 otherwise. Similarly, it is set to 1 when the ADD.W, SUB.W, or CMP.W instruction causes a carry or borrow out of bit 11, and cleared to 0 otherwise. It is used implicitly in the DAA and DAS instructions.

Bit 4—User Bit (U): This bit can be written and read by software for its own purposes (using the LDC, STC, ANDC, ORC, and XORC instructions).

Bit 3—Negative (N): This bit indicates the most significant bit (sign bit) of the result of an instruction.

Bit 2—Zero (Z): This bit is set to 1 to indicate a zero result and cleared to 0 to indicate a nonzero result.

Bit 1—Overflow (V): This bit is set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry (C): This bit is used by:

- Add and subtract instructions, to indicate a carry or borrow at the most significant bit of the result
- Shift and rotate instructions, to store the value shifted out of the most significant or least significant bit
- Bit manipulation and bit load instructions, as a bit accumulator

The LDC, STC, ANDC, ORC, and XORC instructions enable the CPU to load and store the CCR, and to set or clear selected bits by logic operations. The N, Z, V, and C flags are used in conditional branching instructions (Bcc).

Some instructions leave some or all of the flag bits unchanged. The action of each instruction on the flag bits is shown in Appendix A.1, Instruction Set List. See the *H8/300 Series Programming Manual* for further details.

2.2.3 Initial Register Values

When the CPU is reset, the program counter (PC) is loaded from the vector table and the interrupt mask bit (I) in the CCR is set to 1. The other CCR bits and the general registers are not initialized.

In particular, the stack pointer (R7) is not initialized. To prevent program crashes the stack pointer should be initialized by software, by the first instruction executed after a reset.

HITACHI

2.3 Data Formats

The H8/300 CPU can process 1-bit data, 4-bit (BCD) data, 8-bit (byte) data, and 16-bit (word) data.

- Bit manipulation instructions operate on 1-bit data specified as bit n (n = 0, 1, 2, ..., 7) in a byte operand.
- All arithmetic and logic instructions except ADDS and SUBS can operate on byte data.
- The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in packed BCD form. Each nibble of the byte is treated as a decimal digit.
- The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and DIVXU (16 bits ÷ 8 bits) instructions operate on word data.

2.3.1 Data Formats in General Registers

Data of all the sizes above can be stored in general registers as shown in figure 2-3.

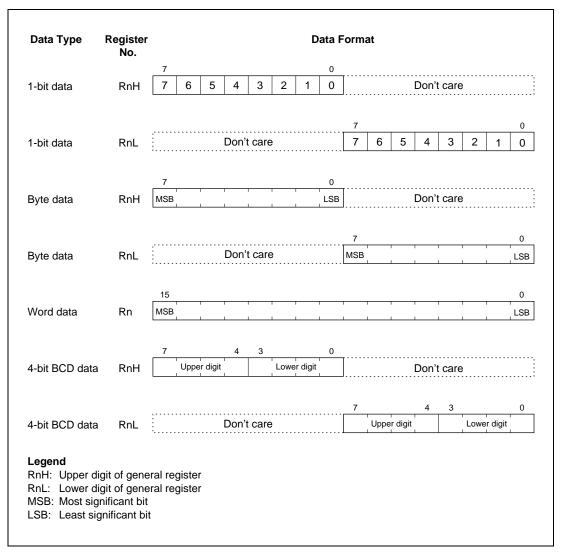


Figure 2-3 Register Data Formats

2.3.2 Memory Data Formats

Figure 2-4 indicates the data formats in memory.

Word data stored in memory must always begin at an even address. In word access the least significant bit of the address is regarded as 0. If an odd address is specified, no address error occurs but the access is performed at the preceding even address. This rule affects MOV.W instructions and branching instructions, and implies that only even addresses should be stored in the vector table.

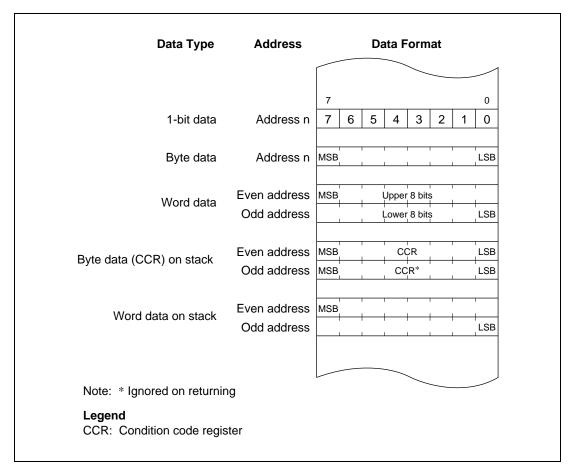


Figure 2-4 Memory Data Formats

The stack must always be accessed a word at a time. When the CCR is pushed on the stack, two identical copies of the CCR are pushed to make a complete word. When they are returned, the lower byte is ignored.

2.4 Addressing Modes

2.4.1 Addressing Modes

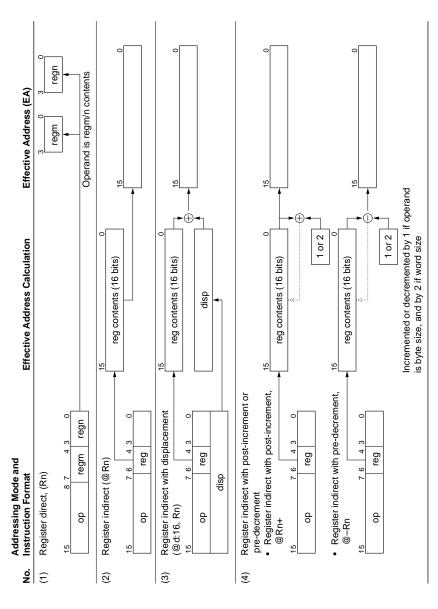
The H8/300 CPU supports eight addressing modes. Each instruction uses a subset of these addressing modes.

- (1) **Register Direct—Rn:** The register field of the instruction specifies an 8- or 16-bit general register containing the operand. In most cases the general register is accessed as an 8-bit register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.
- (2) **Register indirect**—@**Rn:** The register field of the instruction specifies a 16-bit general register containing the address of the operand.
- (3) Register Indirect with Displacement—@(d:16, Rn): This mode, which is used only in MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3 and 4) which is added to the contents of the specified general register to obtain the operand address. For the MOV.W instruction, the resulting address must be even.
- (4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @-Rn:
 - Register indirect with Post-Increment—@Rn+
 The @Rn+ mode is used with MOV instructions that load registers from memory. It is similar to the register indirect mode, but the 16-bit general register specified in the register field of the instruction is incremented after the operand is accessed. The size of the increment is 1 or 2 depending on the size of the operand: 1 for MOV.B; 2 for MOV.W. For MOV.W, the original contents of the 16-bit general register must be even.
 - Register Indirect with Pre-Decrement—@-Rn
 The @-Rn mode is used with MOV instructions that store register contents to memory. It is similar to the register indirect mode, but the 16-bit general register specified in the register field of the instruction is decremented before the operand is accessed. The size of the decrement is 1 or 2 depending on the size of the operand: 1 for MOV.B; 2 for MOV.W. For MOV.W, the original contents of the 16-bit general register must be even.
- (5) **Absolute Address**—@aa:8 or @aa:16: The instruction specifies the absolute address of the operand in memory. The MOV.B instruction uses an 8-bit absolute address of the form H'FFxx. The upper 8 bits are assumed to be 1, so the possible address range is H'FF00 to H'FFFF (65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute addresses.
- (6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain 16-bit immediate values.
 - The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data. Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or fourth byte of the instruction, specifying a bit number.

- (7) **PC-Relative**—@(**d:8, PC**): This mode is used to generate branch addresses in the Bcc and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-extended value to the program counter contents. The result must be an even number. The possible branching range is -126 to +128 bytes (-63 to +64 words) from the current address.
- (8) Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The second byte of the instruction code specifies an 8-bit absolute address from H'0000 to H'00FF (0 to 255). The word located at this address contains the branch address. Note that part of this area is located in the vector table. See section 3.5, Address Space Maps for Each Operating Mode, for details.

If an odd address is specified as a branch destination or as the operand address of a MOV.W instruction, the least significant bit is regarded as 0, causing word access to be performed at the address preceding the specified address. See section 2.3.2, Memory Data Formats, for further information.

2.4.2 Effective Address Calculation


Table 2-2 shows how an effective address (EA) is calculated in each addressing mode.

Arithmetic and logic instructions (ADD.B, ADDX, SUBX, CMP.B, AND, OR, XOR instructions) use (1) register direct and (6) immediate addressing modes.

Data transfer instructions can use all addressing modes except (7) program-counter relative and (8) memory indirect.

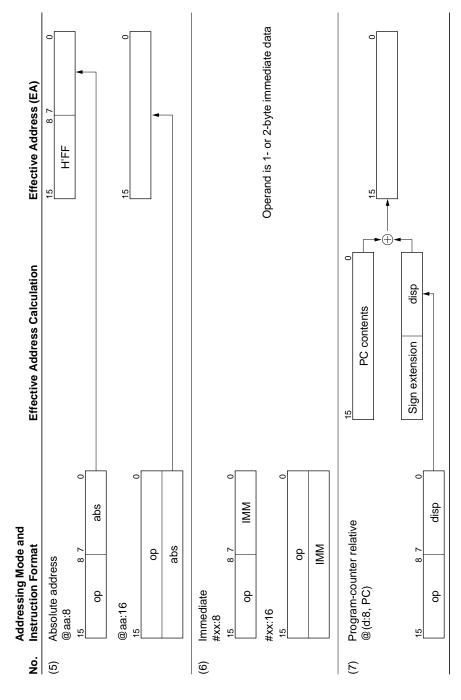

Bit manipulation instructions can use (1) register direct, (2) register indirect, or (5) absolute (@aa:8) addressing mode to specify an operand, and (1) register direct (BSET, BCLR, BNOT, and BTST instructions) or (6) immediate (3-bit) addressing mode to specify a bit number in the operand.

Table 2-2 Effective Address Calculation

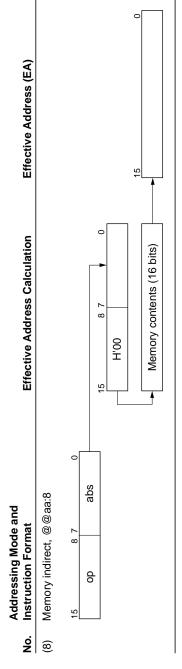

36

Table 2-2 Effective Address Calculation (cont)

37

Table 2-2 Effective Address Calculation (cont)

Legend
reg, regm, regn: Register field
op: Operation field
disp: Displacement
IMM: Immediate data
abs: Absolute address

2.5 Instruction Set

Table 2-1 lists the H8/300 CPU instruction set.

Table 2-1 Instruction Classification

Function	Instructions	Types
Data transfer	MOV, MOVTPE*1, MOVFPE*1, PUSH*2, POP*2	3
Arithmetic operations	ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA, DAS, MULXU, DIVXU, CMP, NEG	14
Logic operations	AND, OR, XOR, NOT	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST	14
Branch	Bcc*3, JMP, BSR, JSR, RTS	5
System control	RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	8
Block data transfer	EEPMOV	1

Total 57

Notes: 1. These instructions cannot be used with the H8/3217 Series.

- 2. PUSH Rn is equivalent to MOV.W Rn, @-SP. POP Rn is equivalent to MOV.W @SP+, Rn.
- 3. Bcc is a conditional branch instruction in which cc represents a condition code.

The following sections give a concise summary of the instructions in each category, and indicate the bit patterns of their object code. The notation used is defined next.

Operation Notation

Rd	General register (destination)
Rs	General register (source)
Rn, Rm	General register
r _n , r _m	General register field
<eas></eas>	Effective address: general
	register or memory location
(EAd)	Destination operand
(EAs)	Source operand
SP	Stack pointer
PC	Program counter
CCR	Condition code register
N	N (negative) bit of CCR
Z V	Z (zero) bit of CCR
V	V (overflow) bit of CCR
С	C (carry) bit of CCR
#imm	Immediate data
#xx:3	3-bit immediate data
#xx:8	8-bit immediate data
#xx:16	16-bit immediate data
ор	Operation field
disp	Displacement
abs	Absolute address
В	Byte
W	Word
+	Addition
+	Subtraction
	Multiplication
× ÷ ^ v	Division
^	Logical AND
<u></u>	Logical OR
⊕	Exclusive logical OR
\rightarrow	Move
\leftrightarrow	Exchange
_	NOT (logical complement)
СС	Condition field

2.5.1 Data Transfer Instructions

Table 2-2 describes the data transfer instructions. Figure 2-5 shows their object code formats.

Table 2-2 Data Transfer Instructions

Instruction	Size*	Function
MOV	B/W	(EAs) → Rd, Rs → (EAd) Moves data between two general registers or between a general register and memory, or moves immediate data to a general register. The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @-Rn, and @Rn+ addressing modes are available for byte or word data. The @aa:8 addressing mode is available for byte data only. The @-R7 and @R7+ modes require word operands. Do not specify byte size for these two modes.
MOVTPE	В	Cannot be used with the H8/3217 Series.
MOVFPE	В	Cannot be used with the H8/3217 Series.
PUSH	W	$Rn \rightarrow @-SP$ Pushes a 16-bit general register onto the stack. Equivalent to MOV.W Rn, $@-SP$.
POP	W	@SP+ → Rn Pops a 16-bit general register from the stack. Equivalent to MOV.W @SP+, Rn.

Note: * Size: operand size

B: Byte W: Word

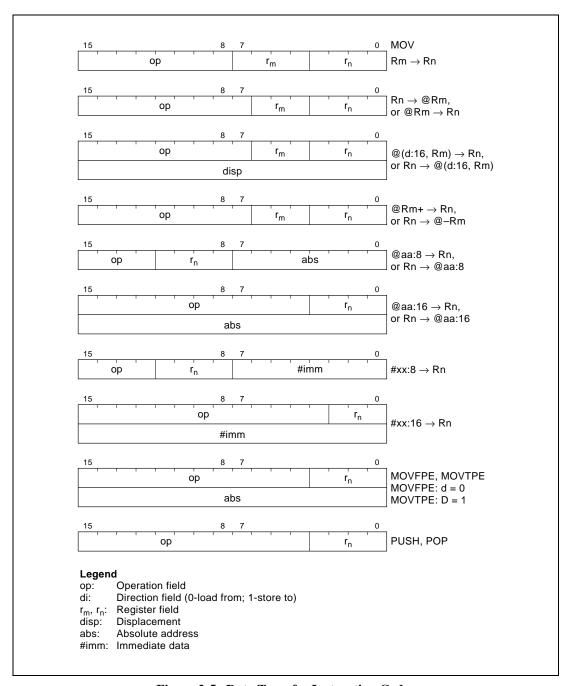


Figure 2-5 Data Transfer Instruction Codes

42

2.5.2 Arithmetic Operations

Table 2-3 describes the arithmetic instructions. See figure 2-6 in section 2.5.4, Shift Operations for their object codes.

Table 2-3 Arithmetic Instructions

Instruction	Size*	Function
ADD SUB	B/W	Rd \pm Rs \rightarrow Rd, Rd + #imm \rightarrow Rd Performs addition or subtraction on data in two general registers, or addition on immediate data and data in a general register. Immediate data cannot be subtracted from data in a general register. Word data can be added or subtracted only when both words are in general registers.
ADDX SUBX	В	$Rd \pm Rs \pm C \rightarrow Rd$, $Rd \pm \#imm \pm C \rightarrow Rd$ Performs addition or subtraction with carry or borrow on byte data in two general registers, or addition or subtraction on immediate data and data in a general register.
INC DEC	В	$Rd \pm #1 \rightarrow Rd$ Increments or decrements a general register.
ADDS SUBS	W	Rd \pm #imm \rightarrow Rd Adds or subtracts immediate data to or from data in a general register. The immediate data must be 1 or 2.
DAA DAS	В	Rd decimal adjust → Rd Decimal-adjusts (adjusts to packed BCD) an addition or subtraction result in a general register by referring to the CCR.
MULXU	В	$Rd \times Rs \rightarrow Rd$ Performs 8-bit × 8-bit unsigned multiplication on data in two general registers, providing a 16-bit result.
DIVXU	В	Rd ÷ Rs → Rd Performs 16-bit ÷ 8-bit unsigned division on data in two general registers, providing an 8-bit quotient and 8-bit remainder.
CMP	B/W	Rd – Rs, Rd – #imm Compares data in a general register with data in another general register or with immediate data. Word data can be compared only between two general registers.
NEG	В	0 − Rd → Rd Obtains the two's complement (arithmetic complement) of data in a general register.

Note: * Size: operand size

B: Byte W: Word

2.5.3 Logic Operations

Table 2-4 describes the four instructions that perform logic operations. See figure 2-6 in section 2.5.4, Shift Operations for their object codes.

Table 2-4 Logic Operation Instructions

Instruction	Size*	Function
AND	В	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#imm \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.
OR	В	$Rd \lor Rs \to Rd$, $Rd \lor \#imm \to Rd$ Performs a logical OR operation on a general register and another general register or immediate data.
XOR	В	$Rd \oplus Rs \rightarrow Rd$, $Rd \oplus \#imm \rightarrow Rd$ Performs a logical exclusive OR operation on a general register and another general register or immediate data.
NOT	В	\neg (Rd) \rightarrow (Rd) Obtains the one's complement (logical complement) of general register contents.

Note: * Size: operand size

B: Byte

2.5.4 Shift Operations

Table 2-5 describes the eight shift instructions. Figure 2-6 shows the object code formats of the arithmetic, logic, and shift instructions.

Table 2-5 Shift Instructions

Instruction	Size*	Function
SHAL	В	$Rd shift \rightarrow Rd$
SHAR		Performs an arithmetic shift operation on general register contents.
SHLL	В	$Rd shift \rightarrow Rd$
SHLR		Performs a logical shift operation on general register contents.
ROTL	В	Rd rotate \rightarrow Rd
ROTR		Rotates general register contents.
ROTXL	В	Rd rotate through carry → Rd
ROTXR		Rotates general register contents through the C (carry) bit.

Note: * Size: operand size

B: Byte

Figure 2-6 Arithmetic, Logic, and Shift Instruction Codes

2.5.5 Bit Manipulations

Table 2-6 describes the bit-manipulation instructions. Figure 2-7 shows their object code formats.

 Table 2-6
 Bit-Manipulation Instructions

Instruction	Size*	Function
BSET	В	1 → (<bit-no.> of <ead>) Sets a specified bit in a general register or memory to 1. The bit is specified by a bit number, given in 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>
BCLR	В	0 → (<bit>bit-No.> of <ead>) Clears a specified bit in a general register or memory to 0. The bit is specified by a bit number, given in 3-bit immediate data or the lower three bits of a general register.</ead></bit>
BNOT	В	\neg (<bit-no.> of <ead>) \rightarrow (<bit-no.> of <ead>) Inverts a specified bit in a general register or memory. The bit is specified by a bit number, given in 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.></ead></bit-no.>
BTST	В	\neg (<bit-no.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory and sets or clears the Z flag accordingly. The bit is specified by a bit number, given in 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>
BAND	В	$C \land (\mbox{bit-No.> of)} \rightarrow C$ ANDs the C flag with a specified bit in a general register or memory.
BIAND		$C \wedge [\neg (\text{shit-No.> of } \in \text{EAd>})] \to C$ ANDs the C flag with the inverse of a specified bit in a general register or memory.
		The bit number is specified by 3-bit immediate data.
BOR	В	$C \lor (\text{-bit-No} \text{ of -EAd-}) \to C$ ORs the C flag with a specified bit in a general register or memory.
BIOR		$C \vee [\neg \mbox{ (of)]} \to C$ ORs the C flag with the inverse of a specified bit in a general register or memory.
		The bit number is specified by 3-bit immediate data.
BXOR	В	$C \oplus (\text{sbit-No.}) \to C$ XORs the C flag with a specified bit in a general register or memory.
BIXOR	В	C ⊕ ¬ [(<bit-no.> of <ead>)] → C XORs the C flag with the inverse of a specified bit in a general register or memory.</ead></bit-no.>
		The bit number is specified by 3-bit immediate data.

Table 2-6 Bit-Manipulation Instructions (cont)

Instruction	Size*	Function
BLD	В	(<bit-no.> of <ead>) \rightarrow C Copies a specified bit in a general register or memory to the C flag.</ead></bit-no.>
BILD		\neg (<bit-no.> of <ead>) \rightarrow C Copies the inverse of a specified bit in a general register or memory to the C flag.</ead></bit-no.>
		The bit number is specified by 3-bit immediate data.
BST	В	$C \rightarrow \text{(of)}$ Copies the C flag to a specified bit in a general register or memory.
BIST		\neg C \rightarrow (<bit-no.> of <ead>) Copies the inverse of the C flag to a specified bit in a general register or memory.</ead></bit-no.>
		The bit number is specified by 3-bit immediate data.

Note: * Size: operand size

B: Byte

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-modify-write instructions. They read a byte of data, modify one bit in the byte, then write the byte back. Care is required when these instructions are applied to registers with write-only bits and to the I/O port registers.

Order	Operation
Read	Read one data byte at the specified address
Modify	Modify one bit in the data byte
Write	Write the modified data byte back to the specified address

Example: BCLR is executed to clear bit 0 in the port 4 data direction register (P4DDR) under the following conditions.

P4₇: Input pin, Low P4₆: Input pin, High P4₅-P4₀: Output pins, Low

The intended purpose of this BCLR instruction is to switch P40 from output to input.

Before Execution of BCLR Instruction

	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low	High	Low	Low	Low	Low	Low	Low
DDR	0	0	1	1	1	1	1	1
DR	1	0	0	0	0	0	0	0

Execution of BCLR Instruction

BCLR.B #0, @P4DDR ; Clear bit 0 in data direction register

After Execution of BCLR Instruction

	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀
Input/output	Output	Input						
Pin state	Low	High	Low	Low	Low	Low	Low	High
DDR	1	1	1	1	1	1	1	0
DR	1	0	0	0	0	0	0	0

Explanation: To execute the BCLR instruction, the CPU begins by reading P4DDR. Since P4DDR is a write-only register, it is read as H'FF, even though its true value is H'3F.

Next the CPU clears bit 0 of the read data, changing the value to H'FE.

Finally, the CPU writes this value (H'FE) back to P4DDR to complete the BCLR instruction.

As a result, $P4_0DDR$ is cleared to 0, making $P4_0$ an input pin. In addition, $P4_7DDR$ and $P4_6DDR$ are set to 1, making $P4_7$ and $P4_6$ output pins.

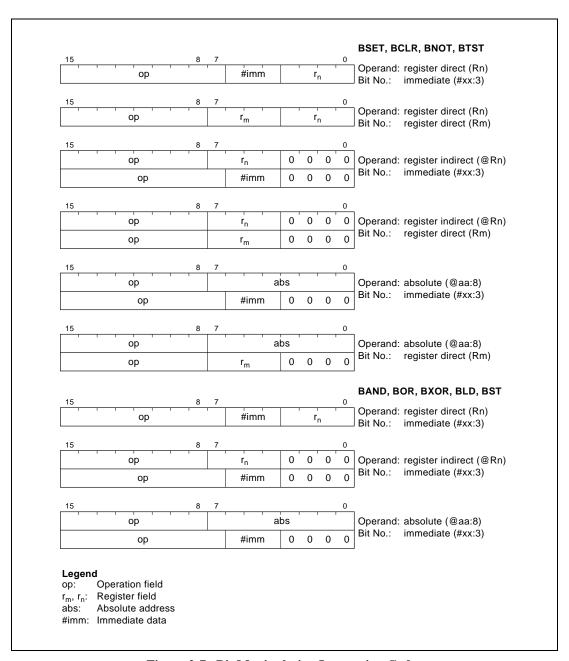
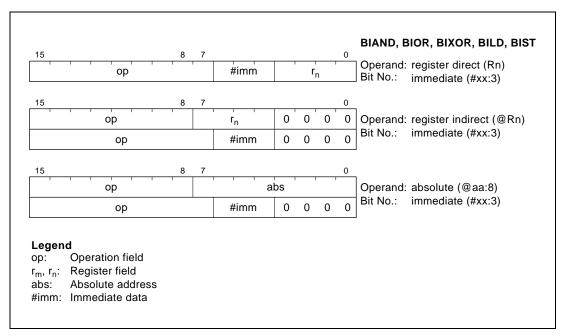
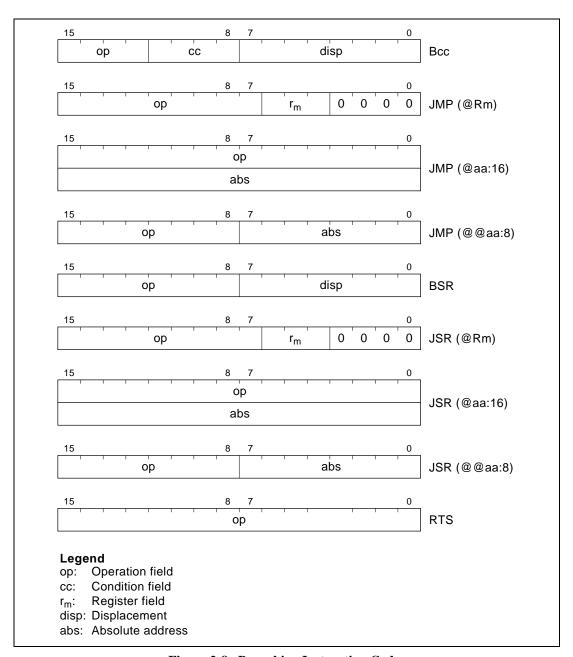


Figure 2-7 Bit Manipulation Instruction Codes




Figure 2-7 Bit Manipulation Instruction Codes (cont)

2.5.6 Branching Instructions

Table 2-7 describes the branching instructions. Figure 2-8 shows their object code formats.

Table 2-7 Branching Instructions

Instruction	Size	Function						
Bcc	_	Branches if co	Branches if condition cc is true.					
		Mnemonic	cc Field	Description	Condition			
		BRA (BT)	0000	Always (true)	Always			
		BRN (BF)	0001	Never (false)	Never			
		BHI	0010	High	$C \vee Z = 0$			
		BLS	0011	Low or same	$C \vee Z = 1$			
		BCC (BHS)	0100	Carry clear (high or same)	C = 0			
		BCS (BLO)	0101	Carry set (low)	C = 1			
		BNE	0110	Not equal	Z = 0			
		BEQ	0111	Equal	Z = 1			
		BVC	1000	Overflow clear	V = 0			
		BVS	1001	Overflow set	V = 1			
		BPL	1010	Plus	N = 0			
		BMI	1011	Minus	N = 1			
		BGE	1100	Greater or equal	$N \oplus V = 0$			
		BLT	1101	Less than	$N \oplus V = 1$			
		BGT	1110	Greater than	$Z \vee (N \oplus V) = 0$			
		BLE	1111	Less or equal	$Z \vee (N \oplus V) = 1$			
JMP	_	Branches und	Branches unconditionally to a specified address.					
JSR	_	Branches to a	Branches to a subroutine at a specified address.					
BSR	_	Branches to a address.	Branches to a subroutine at a specified displacement from the current address.					
RTS	_	Returns from	a subroutine					

Figure 2-8 Branching Instruction Codes

52

2.5.7 System Control Instructions

Table 2-8 describes the system control instructions. Figure 2-9 shows their object code formats.

Table 2-8 System Control Instructions

Instruction	Size*	Function
RTE	_	Returns from an exception-handling routine.
SLEEP	_	Causes a transition to the power-down state.
LDC	В	$\text{Rs} \to \text{CCR}, \ \#\text{imm} \to \text{CCR}$ Moves immediate data or general register contents to the condition code register.
STC	В	$CCR \to Rd$ Copies the condition code register to a specified general register.
ANDC	В	$CCR \wedge \#imm \rightarrow CCR$ Logically ANDs the condition code register with immediate data.
ORC	В	$CCR \lor \#imm \to CCR$ Logically ORs the condition code register with immediate data.
XORC	В	CCR \oplus #imm \to CCR Logically exclusive-ORs the condition code register with immediate data.
NOP	_	PC + 2 → PC Only increments the program counter.

Note: * Size: operand size

B: Byte

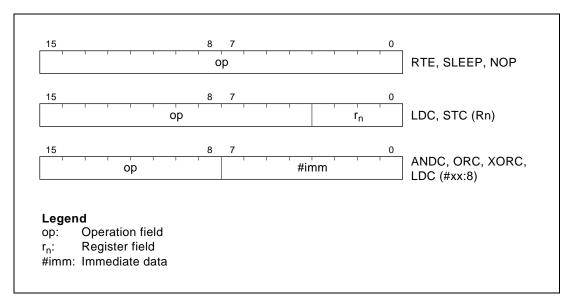


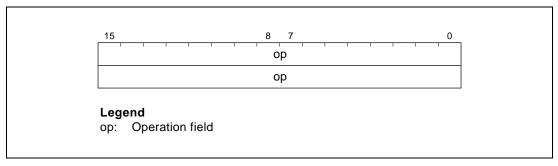
Figure 2-9 System Control Instruction Codes

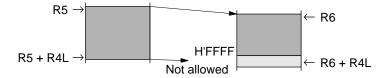
2.5.8 Block Data Transfer Instruction

Table 2-9 describes the EEPMOV instruction. Figure 2-10 shows its object code format.

Table 2-9 Block Data Transfer Instruction

Instruction	Size	Function
EEPMOV		if R4L _ 0 then
		repeat @R5+ \rightarrow @R6+ R4L - 1 \rightarrow R4L
		until $R4L = 0$
		else next;
		Moves a data block according to parameters set in general registers R4L, R5, and R6.
		R4L: size of block (bytes)R5: starting source addressR6: starting destination address
		Execution of the next instruction starts as soon as the block transfer is completed.




Figure 2-10 Block Data Transfer Instruction

Notes on EEPMOV Instruction

• The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes specified by R4L from the address specified by R5 to the address specified by R6.

• When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution of the instruction.

2.6 CPU States

The CPU has three states: the program execution state, exception-handling state, and power-down state. The power-down state is further divided into three modes: the sleep mode, software standby mode, and hardware standby mode. Figure 2-11 summarizes these states, and figure 2-12 shows a map of the state transitions.

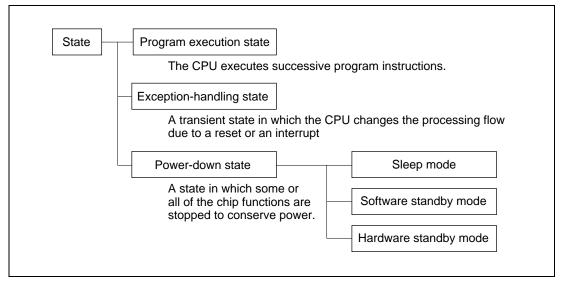


Figure 2-11 Operating States

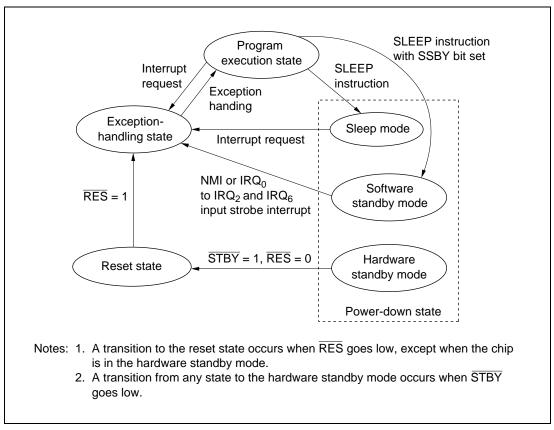


Figure 2-12 State Transitions

2.6.1 Program Execution State

In this state the CPU executes program instructions in sequence. The main program, subroutines, and interrupt-handling routines are all executed in this state.

2.6.2 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU is reset or accepts an interrupt. In this state the CPU carries out a hardware-controlled sequence that prepares it to execute a user-coded exception-handling routine.

In the hardware exception-handling sequence the CPU does the following:

- 1. Saves the program counter and condition code register to the stack (except in the case of a reset).
- 2. Sets the interrupt mask (I) bit in the condition code register to 1.
- 3. Fetches the start address of the exception-handling routine from the vector table.
- 4. Branches to that address, returning to the program execution state.

See section 4, Exception Handling, for further information on the exception-handling state.

2.6.3 Power-Down State

The power-down state includes three modes: the sleep mode, the software standby mode, and the hardware standby mode.

(1) **Sleep Mode:** The sleep mode is entered when a SLEEP instruction is executed. The CPU halts, but CPU register contents remain unchanged and the on-chip supporting modules continue to function.

When an interrupt or reset signal is received, the CPU returns through the exception-handling state to the program execution state.

- (2) **Software Standby Mode:** The software standby mode is entered if the SLEEP instruction is executed while the SSBY (Software Standby) bit in the system control register (SYSCR) is set. The CPU and all on-chip supporting modules halt. The on-chip supporting modules are initialized, but the contents of the on-chip RAM and CPU registers remain unchanged. I/O port outputs also remain unchanged.
- (3) Hardware Standby Mode: The hardware standby mode is entered when the input at the STBY pin goes low. All chip functions halt, including I/O port output. The on-chip supporting modules are initialized, but on-chip RAM contents are held.

See section 18, Power-Down State, for further information.

2.7 Access Timing and Bus Cycle

The CPU is driven by the system clock (ϕ) . The period from one rising edge of the system clock to the next is referred to as a "state."

Memory access is performed in a two- or three-state bus cycle as described below. Different accesses are performed to on-chip memory, the on-chip register field, and external devices. For more detailed timing diagrams of the bus cycles, see section 19, Electrical Specifications.

2.7.1 Access to On-Chip Memory (RAM and ROM)

On-chip ROM and RAM are accessed in a cycle of two states designated T_1 and T_2 . Either byte or word data can be accessed, via a 16-bit data bus. Figure 2-13 shows the on-chip memory access cycle. Figure 2-14 shows the associated pin states.

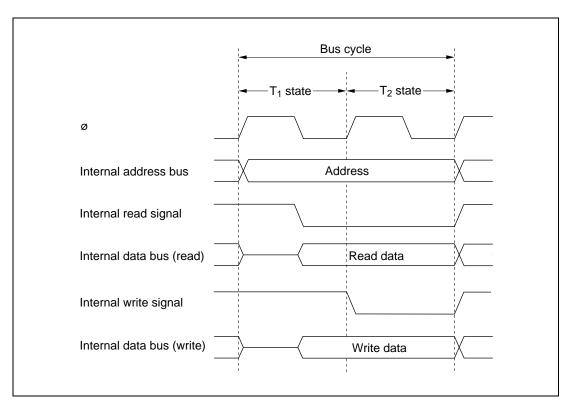


Figure 2-13 On-Chip Memory Access Cycle

60

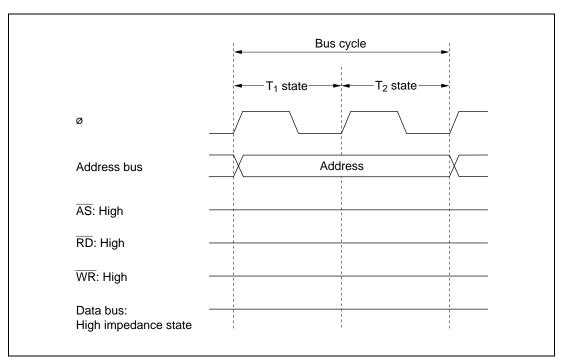


Figure 2-14 Pin States during On-Chip Memory Access Cycle

2.7.2 Access to On-Chip Register Field and External Devices

The on-chip register field (I/O ports, dual-port RAM, on-chip supporting module registers, etc.) and external devices are accessed in a cycle consisting of three states: T_1 , T_2 , and T_3 . Only one byte of data can be accessed per cycle, via an 8-bit data bus. Access to word data or instruction codes requires two consecutive cycles (six states).

Figure 2-15 shows the access cycle for the on-chip register field. Figure 2-16 shows the associated pin states. Figures 2-17 (a) and (b) show the read and write access timing for external devices.

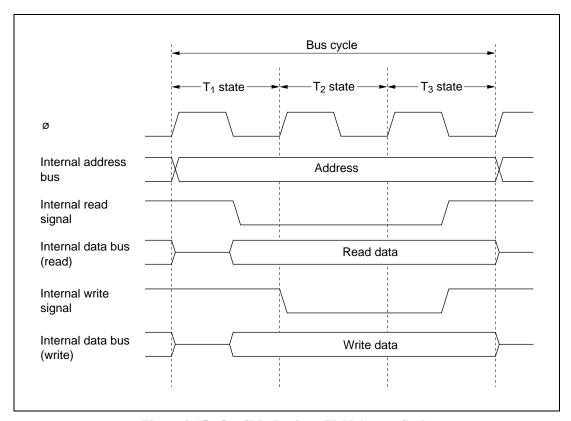


Figure 2-15 On-Chip Register Field Access Cycle

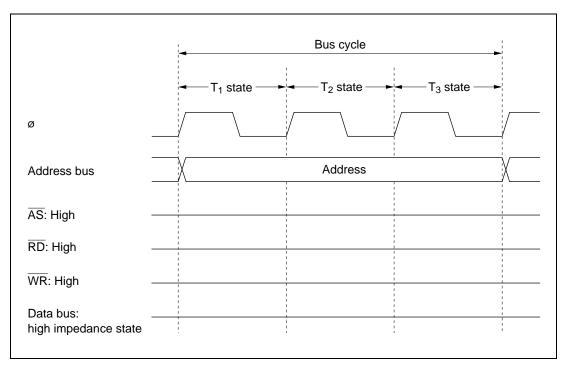


Figure 2-16 Pin States during On-Chip Supporting Module Access

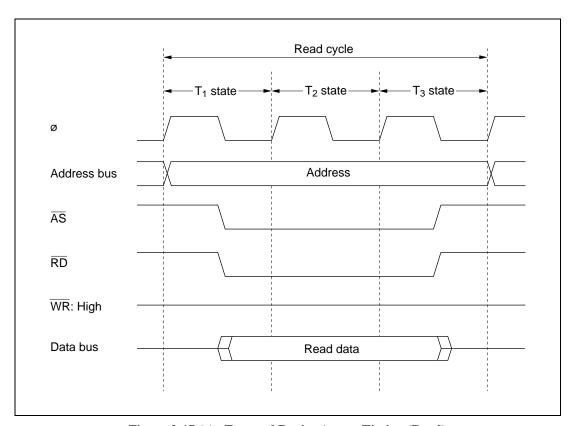


Figure 2-17 (a) External Device Access Timing (Read)

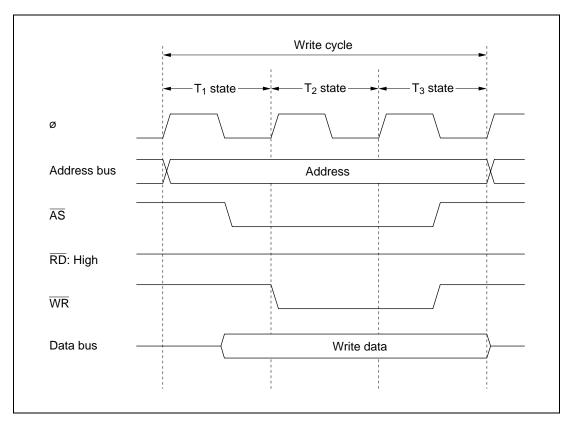


Figure 2-17 (b) External Device Access Timing (Write)

Section 3 MCU Operating Modes and Address Space

3.1 Overview

3.1.1 Operating Modes

The H8/3217 Series operates in three modes numbered 1, 2, and 3. An additional non-operating mode (mode 0) is used for PROM version programming. The mode is selected by the inputs at the mode pins (MD_1 and MD_0) at the instant when the chip comes out of a reset. As indicated in table 3-1, the mode determines the size of the address space and the usage of on-chip ROM and on-chip RAM.

Table 3-1 Operating Modes

MD_1	MD_0	Mode	Address Space	On-Chip ROM	On-Chip RAM
Low	Low	Mode 0	_	_	_
Low	High	Mode 1	Expanded	Disabled	Enabled*
High	Low	Mode 2	Expanded	Enabled	Enabled*
High	High	Mode 3	Single-chip	Enabled	Enabled

Note: * If the RAME bit in the system control register (SYSCR) is cleared to 0, off-chip memory can be accessed instead.

Modes 1 and 2 are expanded modes that permit access to off-chip memory and peripheral devices. The maximum address space supported by these externally expanded modes is 64 kbytes.

In mode 3 (single-chip mode), only on-chip ROM and RAM and the on-chip register field are used. All ports are available for general-purpose input and output.

Mode 0 is inoperative in the H8/3217 Series. Avoid setting the mode pins to mode 0.

3.1.2 Mode and System Control Registers

Table 3-2 lists the registers related to the chip's operating mode: the system control register (SYSCR) and mode control register (MDCR). The mode control register indicates the inputs to the mode pins MD1 and MD0.

Table 3-2 Mode and System Control Registers

Name	Abbreviation	Read/Write	Address
System control register	SYSCR	R/W	H'FFC4
Mode control register	MDCR	R	H'FFC5

3.2 System Control Register (SYSCR)

Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME
Initial value	0	0	0	0	1	0	0	1
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

The system control register (SYSCR) is an 8-bit register that controls the operation of the chip.

Bit 7—Software Standby (SSBY): Enables transition to the software standby mode. For details, see section 18, Power-Down State.

On recovery from software standby mode by an external interrupt, the SSBY bit remains set to 1. It can be cleared by writing 0.

Bit 7 SSBY	Description	
0	The SLEEP instruction causes a transition to sleep mode.	(Initial value)
1	The SLEEP instruction causes a transition to software standby mode.	

Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the clock settling time when the chip recovers from the software standby mode by an external interrupt. During the selected time the CPU and on-chip supporting modules continue to stand by. These bits should be set according to the clock frequency so that the settling time is at least 8 ms. For specific settings, see section 18.3.3, Clock Settling Time for Exit from Software Standby Mode.

Bit 6 STS2	Bit 5 STS1	Bit 4 STS0	Description	
0	0	0	Settling time = 8,192 states	(Initial value)
0	0	1	Settling time = 16,384 states	
0	1	0	Settling time = 32,768 states	
0	1	1	Settling time = 65,536 states	
1	0	_	Settling time = 131,072 states	
1	1	_	Unused	

Bit 3—External Reset (XRST): Indicates the source of a reset. A reset can be generated by input of an external reset signal, or by a watchdog timer overflow when the watchdog timer is used. XRST is a read-only bit. It is set to 1 by an external reset, and cleared to 0 by watchdog timer overflow.

Bit 3

XRST	Description	
0	Reset was caused by watchdog timer overflow.	
1	Reset was caused by external input.	(Initial value)

Bit 2—NMI Edge (NMIEG): Selects the valid edge of the NMI input.

Bit 2

NMIEG	Description	
0	An interrupt is requested on the falling edge of the $\overline{\text{NMI}}$ input.	(Initial value)
1	An interrupt is requested on the rising edge of the $\overline{\text{NMI}}$ input.	

Bit 1—Host Interface Enable (HIE): Enables or disables the host interface function. When enabled, the host interface processes host-slave data transfers, operating in slave mode.

Bit 1

HIE	Description	
0	The host interface is disabled.	(Initial value)
1	The host interface is enabled (slave mode).	_

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized by a reset, but is not initialized in the software standby mode.

Bit 0

RAME	Description	
0	The on-chip RAM is disabled.	
1	The on-chip RAM is enabled.	(Initial value)

3.3 Mode Control Register (MDCR)

Bit	7	6	5	4	3	2	1	0	
	_	_	_	_	_	_	MDS1	MDS0	
Initial value	1	1	1	0	0	1	*	*	
Read/Write	_	_	_	_	_	_	R	R	

Note: * Initialized according to MD₁ and MD₀ inputs.

The mode control register (MDCR) is an 8-bit register that indicates the operating mode of the chip.

Bits 7 to 5NReserved: These bits cannot be modified and are always read as 1.

Bits 4 and 3—Reserved: These bits cannot be modified and are always read as 0.

Bit 2—Reserved: This bit cannot be modified and is always read as 1.

Bits 1 and 0—Mode Select 1 and 0 (MDS1 and MDS0): These bits indicate the values of the mode pins (MD₁ and MD₀), thereby indicating the current operating mode of the chip. MDS1 corresponds to MD₁ and MDS₀ to MD₀. These bits can be read but not written. When the mode control register is read, the levels at the mode pins (MD₁ and MD₀) are latched in these bits.

3.4 Mode Descriptions

Mode 1 (Expanded Mode without On-Chip ROM): Mode 1 supports a 64-kbyte address space most of which is off-chip. In particular, the interrupt vector table is located in off-chip memory. The on-chip ROM is not used. Software can select whether to use the on-chip RAM. Ports 1, 2, 3 and 7 are used for the address and data bus lines and control signals as follows:

Ports 1 and 2: Address bus Port 3: Data bus

Port 7 (partly): Bus control signals

Mode 2 (Expanded Mode with On-Chip ROM): Mode 2 supports a 64-kbyte address space which includes the on-chip ROM. Software can select whether or not to use the on-chip RAM, and can select the usage of pins in ports 1 and 2.

Ports 1 and 2: Address bus (see note)

Port 3: Data bus

Port 7 (partly): Bus control signals

Note: In mode 2, ports 1 and 2 are initially general-purpose input ports. Software must change the desired pins to output before using them for the address bus. See section 7, I/O Ports for details.

Mode 3 (Single-Chip Mode): In this mode all memory is on-chip. Since no off-chip memory is accessed, there is no external address bus. All ports are available for general-purpose input and output.

3.5 Address Space Maps for Each Operating Mode

Figures 3-1 to 3-4 show memory maps of the H8/3217, H8/3216, H8/3214, H8/3212, and H8/3202 in each of the three operating modes.

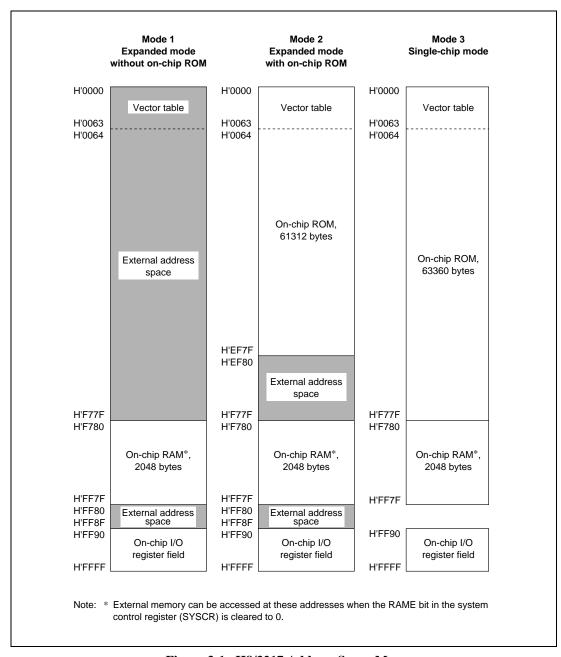


Figure 3-1 H8/3217 Address Space Map

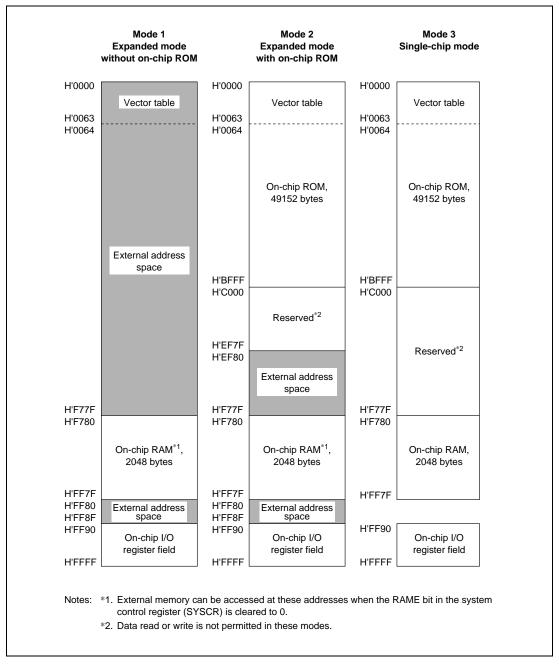


Figure 3-2 H8/3216 Address Space Map

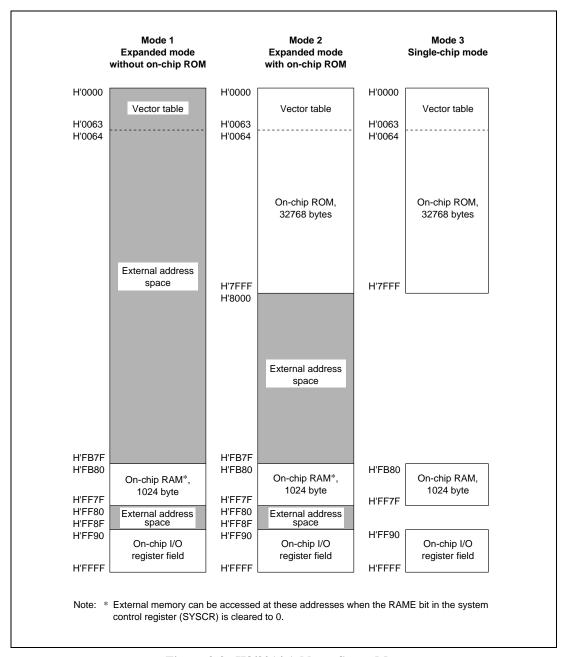


Figure 3-3 H8/3214 Address Space Map

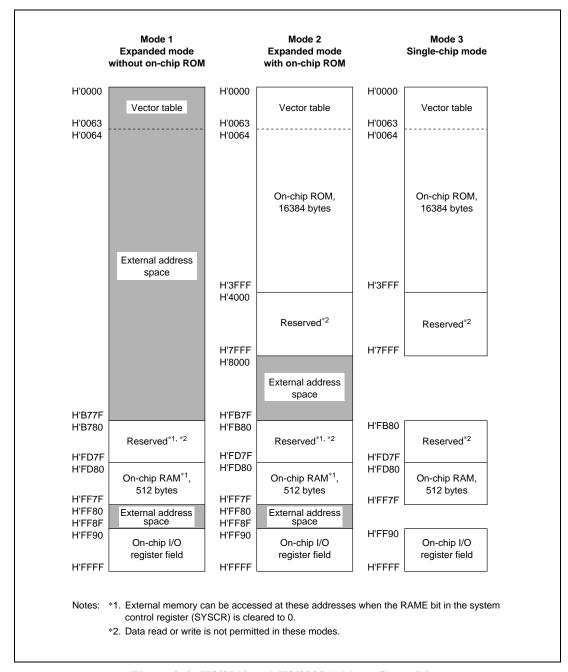


Figure 3-4 H8/3212 and H8/3202 Address Space Map

Section 4 Exception Handling

[Key-sense interrupt function incorporated in all models except the H8/3212]

Note that the H8/3212 does not have an IRQ₆ interrupt function controlled by the \overline{KEYIN}_0 to \overline{KEYIN}_7 input signals and the KMIMR register.

4.1 Overview

The H8/3217 Series recognizes only two kinds of exceptions: interrupts and the reset. Table 4-1 indicates their priority and the timing of their hardware exception-handling sequence.

Table 4-1 Reset and Interrupt Exceptions

Priority	Type of Exception	Detection Timing	Timing of Exception-Handling Sequence
High ↓	Reset	Clock synchronous	When RES goes low, the chip enters the reset state immediately. The hardware exception-handling sequence (reset sequence) begins as soon as RES goes high again.
Low	Interrupt	On completion of instruction execution*	When an interrupt is requested, the hardware exception-handling sequence (interrupt sequence) begins at the end of the current instruction, or at the end of the current hardware exception-handling sequence.

Note: * Not detected in case of ANDC, ORC, XORC, and LDC instructions.

4.2 Reset

4.2.1 Overview

A reset has the highest exception-handling priority. When the \overline{RES} pin goes low or a watchdog reset is started (watchdog timer overflow for which the reset option is selected), all current processing stops and the chip enters the reset state. The internal state of the CPU and the registers of the on-chip supporting modules are initialized. When \overline{RES} returns from low to high or the watchdog reset pulse ends, the chip comes out of the reset state via the reset exception-handling sequence.

4.2.2 Reset Sequence

The reset state begins when \overline{RES} goes low or a watchdog reset occurs. To ensure correct resetting, at power-on the \overline{RES} pin should be held low for at least 20 ms. In a reset during operation, the \overline{RES} pin should be held low for at least 10 system clock (ϕ) cycles. The watchdog reset pulse width is always 518 system clock cycles. For details of pin states in a reset, see appendix D, Pin States.

When reset exception handling is started, hardware carries out the following reset sequence.

- 1. In the condition code register (CCR), the I bit is set to 1 to mask interrupts.
- 2. The registers of the I/O ports and on-chip supporting modules are initialized.
- 3. The CPU loads the program counter with the first word in the vector table (stored at addresses H'0000 and H'0001) and starts program execution.

The \overline{RES} pin should be held low when power is switched off, as well as when power is switched on.

Figure 4-1 indicates the timing of the reset sequence when the vector table and reset routine are located in on-chip ROM (mode 2 or 3). Figure 4-2 indicates the timing when they are in off-chip memory (mode 1).

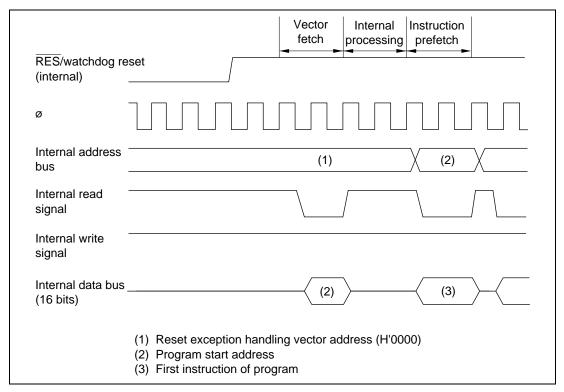


Figure 4-1 Reset Sequence (Mode 2 or 3, Program Area in On-Chip ROM)

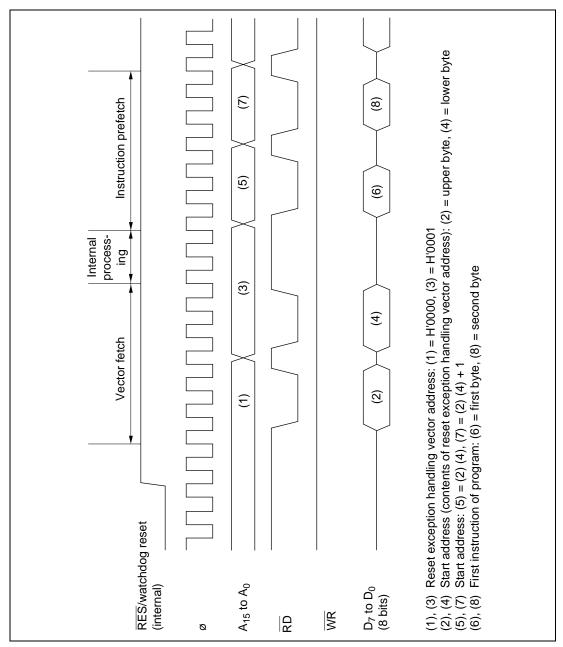


Figure 4-2 Reset Sequence (Mode 1)

80 HITACHI

4.2.3 Disabling of Interrupts after Reset

All interrupts, including NMI, are disabled immediately after a reset. The first program instruction, located at the address specified at the top of the vector table, is therefore always executed. To prevent program crashes, this instruction should initialize the stack pointer (example: MOV.W #xx:16, SP). After execution of this instruction, the NMI interrupt is enabled. Other interrupts remain disabled until their enable bits are set to 1.

After reset exception handling, a CCR manipulation instruction can be executed to fix the CCR contents before the instruction that initializes the stack pointer. After the CCR manipulation instruction is executed, all interrupts, including NMI, are disabled. The next instruction should be the instruction that initializes the stack pointer.

4.3 Interrupts

4.3.1 Overview

There are twelve input pins for five external interrupt sources (NMI, IRQ_0 to IRQ_2 , and IRQ_6). There are also 26 internal interrupts originating on-chip. The features of these interrupts are:

- All internal and external interrupts except NMI can be masked by the I bit in the CCR.
- IRQ₀ to IRQ₂ and IRQ₆ can be falling-edge-sensed or level-sensed. The type of sensing can be selected for each interrupt individually. NMI is edge-sensed, and either the rising or falling edge can be selected.
- Interrupts are individually vectored. The software interrupt-handling routine does not have to determine what type of interrupt has occurred.
- IRQ₆ is requested by eight external sources (KEYIN $_0$ to KEYIN $_7$). KEYIN $_0$ to KEYIN $_7$ can be masked individually by the user program.
- The watchdog timer can be made to generate an NMI interrupt or OVF interrupt according to its use. For details, see section 12, Watchdog Timer.

Table 4-2 lists all the interrupts in their order of priority and gives their vector numbers and the addresses of their entries in the vector table.

Table 4-2 Interrupts

				Address of Entry	
Interrupt Source			No.	in Vector Table	Priority
NMI			3	H'0006 to H'0007	High
IRQ ₀			4	H'0008 to H'0009	
IRQ ₁			5	H'000A to H'000B	
IRQ ₂			6	H'000C to H'000D	<u></u>
Reserved			7 to 9	H'000E to H'0013	
IRQ ₆	(KEYIN	to KEYIN ₇) (except H8/3212)	10	H'0014 to H'0015	_
Reserved			11 to 16	H'0016 to H'0021	_
Host interface (except H8/3212)	IBF1 (IC	PR1 reception complete)	17	H'0022 to H'0023	_
	IBF2 (ID	R2 reception complete)	18	H'0024 to H'0025	_
16-bit	ICI	(Input capture)	19	H'0026 to H'0027	
free-running	OCIA	(Output compare A)	20	H'0028 to H'0029	
timer	OCIB	(Output compare B)	21	H'002A to H'002B	
	FOVI	(Overflow)	22	H'002C to H'002D	
8-bit timer 0	CMI0A	(Compare-match A)	23	H'002E to H'002F	
	CMI0B	(Compare-match B)	24	H'0030 to H'0031	
	OVI0	(Overflow)	25	H'0032 to H'0033	
8-bit timer 1	CMI1A	(Compare-match A)	26	H'0034 to H'0035	
	CMI1B	(Compare-match B)	27	H'0036 to H'0037	
	OVI1	(Overflow)	28	H'0038 to H'0039	
Serial communication	ERI0	(Receive error)	29	H'003A to H'003B	
interface 0	RXI0	(Receive end)	30	H'003C to H'003D	
	TXI0	(TDR empty)	31	H'003E to H'003F	
	TEI0	(TSR empty)	32	H'0040 to H'0041	
Serial communication	ERI1	(Receive error)	33	H'0042 to H'0043	
interface 1	RXI1	(Receive end)	34	H'0044 to H'0045	
(except H8/3212)	TXI1	(TDR empty)	35	H'0046 to H'0047	
	TEI1	(TSR empty)	36	H'0048 to H'0049	
Reserved			37 to 43	H'004A to H'0057	
Watchdog timer	WOVF	(WDT overflow)	44	H0058 to H'0059	_
I ² C bus interface 0*3	IICI0	(Transfer end)	45	H'005A to H'005B	
I ² C bus interface 1 ^{*3} (except H8/3202)	IICI1	(Transfer end)	46	H'005C to H'005D	
8-bit timer X	CMIXA	(Compare-match A)	47	H'005E to H'005F	Low
(except H8/3202)	CMIXB	(Compare-match B)	48	H'0060 to H'0061	
	OVIX	(Overflow)	49	H'0062 to H'0063	

Notes: 1. H'0000 and H'0001 contain the reset vector.

- 2. H'0002 to H'0005 are reserved in the H8/3217 Series and are not available to the user.
- 3. The I²C bus interface is an option.

4.3.2 Interrupt-Related Registers

The interrupt-related registers are the system control register (SYSCR), IRQ sense control register (ISCR), IRQ enable register (IER), and keyboard matrix interrupt mask register (KMIMR).

Table 4-3 Registers Read by Interrupt Controller

Name	Abbreviation	Read/Write	Address
System control register	SYSCR	R/W	H'FFC4
IRQ sense control register	ISCR	R/W	H'FFC6
IRQ enable register	IER	R/W	H'FFC7
Keyboard matrix interrupt mask register	KMIMR	R/W	H'FFF1

(1) System Control Register (SYSCR)—H'FFC4

Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME
Initial value	0	0	0	0	1	0	0	1
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

Bit 2—Nonmaskable Interrupt Edge (NMIEG): Determines whether a nonmaskable interrupt is generated on the falling or rising edge of the NMI input signal.

Bit 2 NMIEG	Description	
0	An interrupt is generated on the falling edge of $\overline{\text{NMI}}$	(Initial value)
1	An interrupt is generated on the rising edge of $\overline{\text{NMI}}$	

See section 3.2, System Control Register (SYSCR), for information on the other SYSCR bits.

(2) IRQ Sense Control Register (ISCR)—H'FFC6

Bit	7	6	5	4	3	2	1	0
	_	IRQ6SC	_	_	_	IRQ2SC	IRQ1SC	IRQ0SC
Initial value	1	0	1	1	1	0	0	0
Read/Write	_	R/W	_	_	_	R/W	R/W	R/W

Bits 0 to 2 and 6—IRQ₀ to IRQ₂, IRQ₆ Sense Control (IRQ0SC to IRQ2SC, IRQ6SC): These bits select how the input at pins \overline{IRQ}_0 to \overline{IRQ}_2 and \overline{KEYIN}_0 to \overline{KEYIN}_7 is sensed.

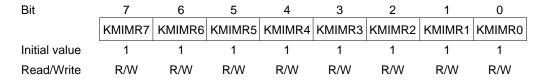
Bit i (i = 0 to 2, 6) IRQiSC	Description	
0	The low level of $\overline{\text{IRQ}}_0$ to $\overline{\text{IRQ}}_2$ or $\overline{\text{KEYIN}}_0$ to $\overline{\text{KEYIN}}_7$ generates an interrupt request	(Initial value)
1	The falling edge of $\overline{\text{IRQ}}_0$ to $\overline{\text{IRQ}}_2$ or $\overline{\text{KEYIN}}_0$ to $\overline{\text{KEYIN}}_7$ generates an interrupt request	

(3) IRQ Enable Register (IER)—H'FFC7

Bit	7	6	5	4	3	2	1	0
	_	IRQ6E	_	_	_	IRQ2E	IRQ1E	IRQ0E
Initial value	1	0	1	1	1	0	0	0
Read/Write	_	R/W	_	_	_	R/W	R/W	R/W

Bits 0 to 2, 6—IRQ₀ to IRQ₂ and IRQ₆ Enable (IRQ0E to IRQ2E, IRQ6E): These bits enable or disable the IRQ₀, IRQ₁, IRQ₂, and IRQ₆ interrupts individually.

Bit i (i = 0 to 2) IRQiE	Description	
0	IRQ ₀ to IRQ ₂ and IRQ ₆ are disabled	(Initial value)
1	IRQ ₀ to IRQ ₂ and IRQ ₆ are enabled	


When edge sensing is selected (by setting bits IRQOSC to IRQ2SC and IRQ6SC to 1), it is possible for an interrupt-handling routine to be executed even though the corresponding enable bit (IRQ0E to IRQ2E and IRQ6E) is cleared to 0 and the interrupt is disabled. If an interrupt is requested while the enable bit (IRQ0E to IRQ2E and IRQ6E) is set to 1, the request will be held pending until served. If the enable bit is cleared to 0 while the request is still pending, the request will remain pending, although new requests will not be recognized. If the interrupt mask bit (I) in the CCR is cleared to 0, the interrupt-handling routine can be executed even though the enable bit is now 0.

If execution of interrupt-handling routines under these conditions is not desired, it can be avoided by using the following procedure to disable and clear interrupt requests.

- 1. Set the I bit to 1 in the CCR, masking interrupts. Note that the I bit is set to 1 automatically when execution jumps to an interrupt vector.
- 2. Clear the desired bits from IRQ0E, IRQ1E, IRQ2E, and IRQ6E to 0 to disable new interrupt requests.
- 3. Clear the corresponding bits from IRQ0SC, IRQ1SC, IRQ2SC, and IRQ6SC to 0, then set them to 1 again. Pending IRQ $_n$ interrupt requests are cleared when I = 1 in the CCR, IRQnSC = 0, and IRQnE = 0.

(4) Keyboard Matrix Interrupt Mask Register (KMIMR)

KMIMR is an 8-bit readable/writable register used in keyboard matrix scanning and sensing. To enable key-sense input interrupts from two or more pins during keyboard scanning and sensing, clear the corresponding mask bits to 0.

Bits 7 to 0—Keyboard Matrix Interrupt Mask (KMIMR7 to KMIMR0): These bits control key-sense input interrupt requests KEYIN₇ to KEYIN₀.

Bits 7 to 0 KMIMR7 to KMIMR0 Description

0	Key-sense input interrupt request is enabled.	
1	Key-sense input interrupt request is disabled.	(Initial value)

Figure 4-3 shows the relationship between the IRQ₆ interrupt and KMIMR.

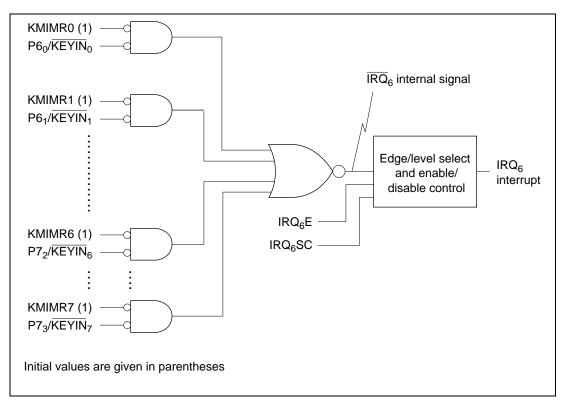


Figure 4-3 KMIMR and IRQ6 Interrupt

4.3.3 External Interrupts

There are five external interrupts: NMI, IRQ_0 to IRQ_2 , and IRQ_6 . These can be used to return from software standby mode.

- (1) NMI: NMI is the highest-priority interrupt, and is always accepted regardless of the value of the I bit in CCR. Interrupts from the $\overline{\text{NMI}}$ pin are edge-sensed: rising edge or falling edge can be specified by the NMIEG bit in SYSCR. The NMI exception handling vector number is 3. NMI exception handling sets the I bit in CCR to 1.
- (2) IRQ_0 to IRQ_2 and IRQ_6 : Interrupts IRQ_0 to IRQ_2 are requested by input signals on pins $\overline{IRQ_0}$ to $\overline{IRQ_2}$. The IRQ_6 interrupt is requested by input signals on pins $\overline{KEYIN_0}$ to $\overline{KEYIN_7}$. Interrupts IRQ_0 to IRQ_2 and IRQ_6 can be specified as falling-edge-sensed or level-sensed by bits IRQOSC to IRQ2SC and IRQOSC in ISCR. Interrupt requests are enabled by set bits IRQOE to IRQ2E and IRQOE to 1 in IER. Interrupts are masked by setting the I bit to 1 in IER.

The \overline{IRQ}_6 input signal is generated as the logical OR of the key-sense inputs. When pins \overline{KEYIN}_0 to \overline{KEYIN}_7 (P6₀ to P6₃ and P7₀ to P7₃) are used as key-sense inputs, the corresponding KMIMR bits should be cleared to 0 to enable the corresponding key-sense interrupts. KMIMR bits corresponding to unused key-sense inputs should be set to 1 to disable those interrupts. All eight key-sense input interrupts are combined into a single IRQ₆ interrupt.

When one of these interrupts is accepted, the I bit is set to 1. IRQ_0 to IRQ_2 and IRQ_6 have interrupt vector numbers 4 to 6 and 10. They are prioritized in order from IRQ_6 (low) to IRQ_0 (high). For details, see table 4-2.

Interrupts IRQ₀ to IRQ₂ and IRQ₆ do not depend on whether pins $\overline{\text{IRQ}}_0$ to $\overline{\text{IRQ}}_2$ and $\overline{\text{KEYIN}}_0$ to $\overline{\text{KEYIN}}_7$ are used as input pins or output pins. When interrupts IRQ₀ to IRQ₂ and IRQ₆ are requested by an external signal, clear the corresponding DDR bits to 0 and use the pins as input/output pins.

4.3.4 Internal Interrupts

Twenty-six internal interrupts can be requested by the on-chip supporting modules. All of them are masked when the I bit in the CCR is set. In addition, they can all be enabled or disabled by bits in the control registers of the on-chip supporting modules. When one of these interrupts is accepted, the I bit is set to 1 to mask further interrupts (except NMI).

The vector numbers of these interrupts are 17 to 36 and 44 to 49.

For the priority order of these interrupts, see table 4-2.

4.3.5 Interrupt Handling

Interrupts are controlled by an interrupt controller that arbitrates between simultaneous interrupt requests, commands the CPU to start the hardware interrupt exception-handling sequence, and furnishes the necessary vector number. Figure 4-4 shows a block diagram of the interrupt controller.

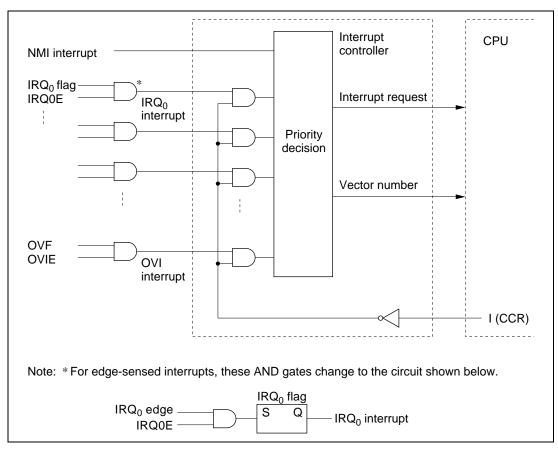


Figure 4-4 Block Diagram of Interrupt Controller

The IRQ interrupts and interrupts from the on-chip supporting modules (except for reset selected for a watchdog timer overflow) all have corresponding enable bits. When the enable bit is cleared to 0, the interrupt signal is not sent to the interrupt controller, so the interrupt is ignored. These interrupts can also all be masked by setting the CPU's interrupt mask bit (I) to 1. Accordingly, these interrupts are accepted only when their enable bit is set to 1 and the I bit is cleared to 0.

The nonmaskable interrupt (NMI) is always accepted, except in the reset state and hardware standby mode.

When an NMI or another enabled interrupt is requested, the interrupt controller transfers the interrupt request to the CPU and indicates the corresponding vector number. (When two or more interrupts are requested, the interrupt controller selects the vector number of the interrupt with the highest priority.) When notified of an interrupt request, at the end of the current instruction or current hardware exception-handling sequence, the CPU starts the hardware exception-handling sequence for the interrupt and latches the vector number.

Figure 4-5 is a flowchart of the interrupt (and reset) operations. Figure 4-7 shows the interrupt timing sequence for the case in which the software interrupt-handling routine is in on-chip ROM and the stack is in on-chip RAM.

- (1) An interrupt request is sent to the interrupt controller when an NMI interrupt occurs, and when an interrupt occurs on an IRQ input line or in an on-chip supporting module provided the enable bit of that interrupt is set to 1.
- (2) The interrupt controller checks the I bit in CCR and accepts the interrupt request if the I bit is cleared to 0. If the I bit is set to 1 only NMI requests are accepted; other interrupt requests remain pending.
- (3) Among all accepted interrupt requests, the interrupt controller selects the request with the highest priority and passes it to the CPU. Other interrupt requests remain pending.
- (4) When it receives the interrupt request, the CPU waits until completion of the current instruction or hardware exception-handling sequence, then starts the hardware exception-handling sequence for the interrupt and latches the interrupt vector number.
- (5) In the hardware exception-handling sequence, the CPU first pushes the PC and CCR onto the stack. See figure 4-6. The stacked PC indicates the address of the first instruction that will be executed on return from the software interrupt-handling routine.
- (6) Next the I bit in CCR is set to 1, masking all further interrupts except NMI.
- (7) The vector address corresponding to the vector number is generated, the vector table entry at this vector address is loaded into the program counter, and execution branches to the software interrupt-handling routine at the address indicated by that entry.

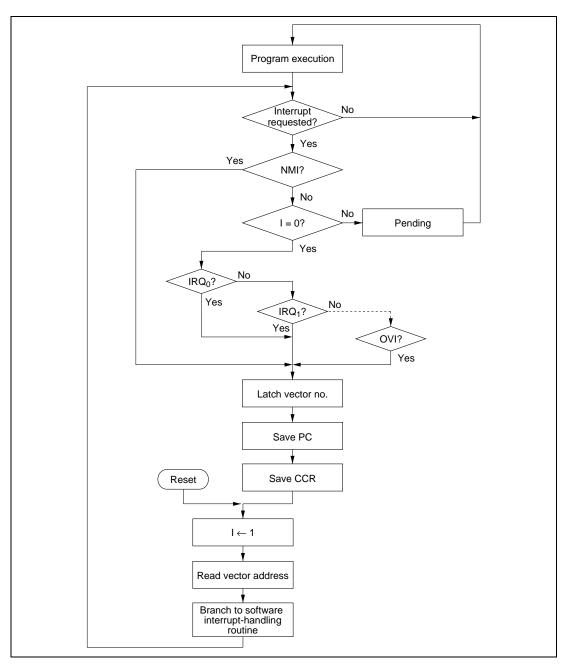


Figure 4-5 Hardware Interrupt-Handling Sequence

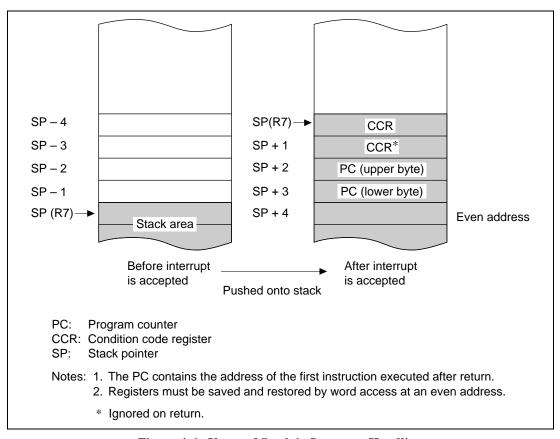


Figure 4-6 Usage of Stack in Interrupt Handling

Although the CCR consists of only one byte, it is treated as word data when pushed on the stack. In the hardware interrupt exception-handling sequence, two identical CCR bytes are pushed onto the stack to make a complete word. When popped from the stack by an RTE instruction, the CCR is loaded from the byte stored at the even address. The byte stored at the odd address is ignored.

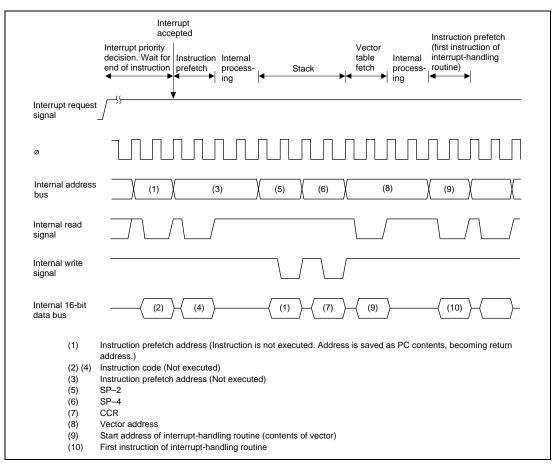


Figure 4-7 Timing of Interrupt Sequence

4.3.6 Interrupt Response Time

Table 4-4 indicates the time that elapses from an interrupt request signal until the first instruction of the software interrupt-handling routine is executed. Since the H8/3217 Series accesses its on-chip memory 16 bits at a time, very fast interrupt service can be obtained by placing interrupt-handling routines in on-chip ROM and the stack in on-chip RAM.

Table 4-4 Number of States before Interrupt Service

No.		Number of States			
	Reason for wait	On-Chip Memory	External Memory		
1	Interrupt priority decision	2* ³	2* ³		
2	Wait for completion of current instruction*1	1 to 13	5 to 17*2		
3	Save PC and CCR	4	12 ^{*2}		
4	Fetch vector	2	6 ^{*2}		
5	Fetch instruction	4	12 ^{*2}		
6	Internal processing	4	4		
	Total	17 to 29	41 to 53*2		

Notes: 1. These values do not apply if the current instruction is an EEPMOV instruction.

- 2. If wait states are inserted in external memory access, these values may be longer.
- 3. 1 for internal interrupts.

4.3.7 Precaution

Note that the following type of contention can occur in interrupt handling.

When software clears the enable bit of an interrupt to 0 to disable the interrupt, the interrupt becomes disabled after execution of the clearing instruction. If an enable bit is cleared by a BCLR or MOV instruction, for example, and the interrupt is requested during execution of that instruction, at the instant when the instruction ends the interrupt is still enabled, so after execution of the instruction, the hardware exception-handling sequence is executed for the interrupt. If a higher-priority interrupt is requested at the same time, however, the hardware exception-handling sequence is executed for the higher-priority interrupt and the interrupt that was disabled is ignored.

Similar considerations apply when an interrupt request flag is cleared to 0.

Figure 4-8 shows an example in which the OCIAE bit is cleared to 0.

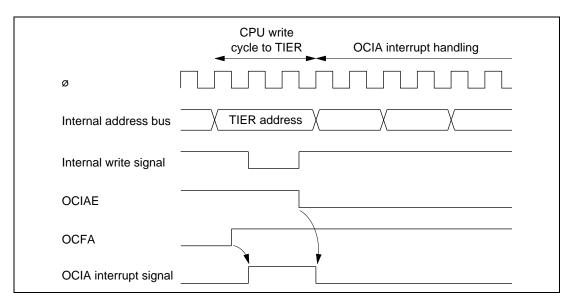


Figure 4-8 Contention between Interrupt and Disabling Instruction

The above contention does not occur if the enable bit or flag is cleared to 0 while the interrupt mask bit (I) is set to 1.

4.4 Note on Stack Handling

In word access, the least significant bit of the address is always assumed to be 0. The stack is always accessed by word access. Care should be taken to keep an even value in the stack pointer (general register R7). Use the PUSH and POP (or MOV.W Rn, @-SP and MOV.W @SP+, Rn) instructions to push and pop registers on the stack.

Setting the stack pointer to an odd value can cause programs to crash. Figure 4-9 shows an example of damage caused when the stack pointer contains an odd address.

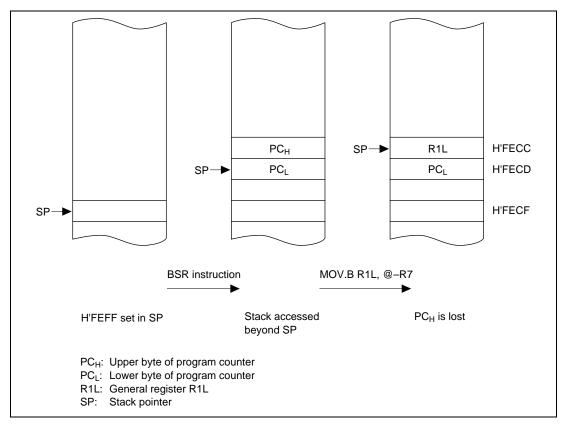


Figure 4-9 Example of Damage Caused by Setting an Odd Address in R7

4.5 Notes on the Use of Key-Sense Interrupts

The H8/3217 Series incorporates a key-sense interrupt function which can be used in any operating mode. When used in a mode other than slave mode (when the host interface is disabled), the following points must be noted.

In order to use the key-sense interrupt function, it is necessary to write to KMIMR to unmask the relevant $\overline{\text{KEYIN}}$ pins. If MOS pull-up transistors are provided on pins P7₃ to P7₀ and P6₃ to P6₀, KMPCR must also be written to.

KMIMR and KMPCR can only be accessed when the HIE bit in SYSCR is set to 1. Consequently, the chip is in slave mode during this period. In slave mode, pin states may vary.

(1) When KMIMR and KMPCR are set in the initialization routine directly after a reset

External circuitry must be used such that no problem will be caused irrespective of whether the host interface output and I/O pins retain the high-impedance state or are set to the output state. There are four host interface output pins— GA_{20} , $HIRQ_{12}$, $HIRQ_1$, and $HIRQ_{11}$ —all of which are set to the port function (input state) initially. There are eight host interface I/O pins, HDB_7 to HDB_0 ; in single-chip mode, these are outputs when the $P7_6/\overline{IOR}$ pin is low and either one, or both, of the $P7_5/\overline{CS}_1$ and $P4_5/\overline{CS}_2$ pins is low. In expanded mode, these pins function as data bus pins $(D_7$ to D_0), and therefore the pin states do not vary.

(2) When KMIMR and KMPCR are set other than in the initialization routine The states of the host interface input and I/O pins, and the pins with which they are multiplexed, may vary as a result of setting the HIE bit. $P7_7/HA_0$, $P7_6/\overline{IOR}$, $P7_5/\overline{IOW}$, $P7_5/\overline{IOW}$, $P7_5/\overline{IOW}$, $P7_5/\overline{IOW}$, $P7_5/\overline{IOW}$, $P7_5/\overline{IOW}$, and $P3_7/HDB_7$ to $P3_0/HDB_0$ automatically become input pins and I/O pins. When a particular pin is used, it is designated as a port input pin or expanded bus control pin, and in single-chip mode, it is necessary to prevent the occurrence of a low level of the $P7_6/\overline{IOR}$ pin together with a low level of the $P7_5/\overline{CS}_1$ pin or the $P4_6/\overline{CS}_2$ pin, or both. In expanded mode, if external space is accessed when the HIE bit is set to 1, both the $P7_6/\overline{IOR}/\overline{RD}$ pin and the $P7_5/\overline{CS}_1/\overline{AS}$ pin are driven low automatically. Note that the output values of $P4_4/HIRQ_{12}$, $P4_3/HIRQ_1$, and $P4_2/HIRQ_{11}$ may vary as a result.

Section 5 Wait-State Controller

5.1 Overview

The H8/3217 Series has an on-chip wait-state controller that enables insertion of wait states into bus cycles for interfacing to low-speed external devices.

5.1.1 Features

Features of the wait-state controller are listed below.

- Three selectable wait modes: programmable wait mode, pin auto-wait mode, and pin wait mode
- Automatic insertion of zero to three wait states

5.1.2 Block Diagram

Figure 5-1 shows a block diagram of the wait-state controller.

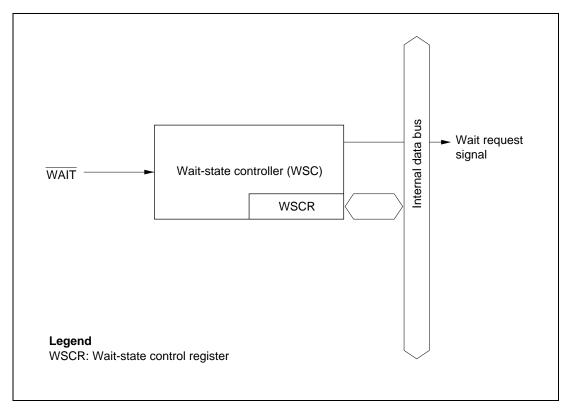


Figure 5-1 Block Diagram of Wait-State Controller

5.1.3 Input/Output Pins

Table 5-1 summarizes the wait-state controller's input pin.

Table 5-1 Wait-State Controller Pins

Name	Abbreviation	I/O	Function
Wait	WAIT	Input	Wait request signal for access to external addresses

98

5.1.4 Register Configuration

Table 5-2 summarizes the wait-state controller's register.

Table 5-2 Register Configuration

Name	Abbreviation	R/W	Initial Value	Address
Wait-state control register	WSCR	R/W	H'C8	H'FFC2

5.2 Register Description

5.2.1 Wait-State Control Register (WSCR)

WSCR is an 8-bit readable/writable register that selects the wait mode for the wait-state controller (WSC) and specifies the number of wait states. It also controls frequency division of the clock signals supplied to the supporting modules.

Bit	7	6	5	4	3	2	1	0
	_	_	CKDBL	_	WMS1	WMS0	WC1	WC0
Initial value	1	1	0	0	1	0	0	0
Read/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W

WSCR is initialized to H'C8 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 and 6—Reserved: These bits cannot be modified and are always read as 1.

Bit 5—Clock Double (CKDBL): Controls frequency division of clock signals supplied to supporting modules. For details, see section 6, Clock Pulse Generator.

Bit 4—Reserved: This bit is reserved, but it can be written and read. Its initial value is 0.

Bits 3 and 2—Wait Mode Select 1 and 0 (WMS1 and WMS0): These bits select the wait mode.

Bit 3 WMS1	Bit 2 WMS0	Description	
0	0	Programmable wait mode	
	1	No wait states inserted by wait-state controller	
1	0	Pin wait mode	(Initial value)
	1	Pin auto-wait mode	

Bits 1 and 0—Wait Count 1 and 0 (WC1 and WC0): These bits select the number of wait states inserted in access to external address areas.

Bit 1	Bit 0		
WC1	WC0	Description	
0	0	No wait states inserted by wait-state controller	(Initial value)
	1	1 state inserted	
1	0	2 states inserted	
	1	3 states inserted	

5.3 Wait Modes

Programmable Wait Mode: The number of wait states (T_W) selected by bits WC1 and WC0 are inserted in all accesses to external addresses. Figure 5-2 shows the timing when the wait count is 1 (WC1 = 0, WC0 = 1).

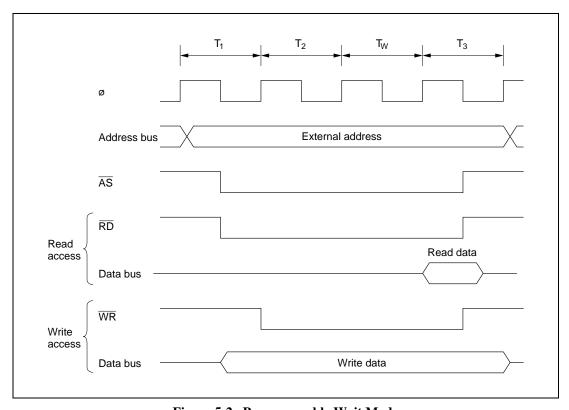


Figure 5-2 Programmable Wait Mode

Pin Wait Mode: In all accesses to external addresses, the number of wait states (T_W) selected by bits WC1 and WC0 are inserted. If the \overline{WAIT} pin is low at the fall of the system clock (ϕ) in the last of these wait states, an additional wait state is inserted. If the \overline{WAIT} pin remains low, wait states continue to be inserted until the \overline{WAIT} signal goes high.

Pin wait mode is useful for inserting four or more wait states, or for inserting different numbers of wait states for different external devices.

Figure 5-3 shows the timing when the wait count is 1 (WC1 = 0, WC0 = 1) and one additional wait state is inserted by \overline{WAIT} input.



Figure 5-3 Pin Wait Mode

Pin Auto-Wait Mode: If the \overline{WAIT} pin is low, the number of wait states (T_W) selected by bits WC1 and WC0 are inserted.

In pin auto-wait mode, if the \overline{WAIT} pin is low at the fall of the system clock (ϕ) in the T_2 state, the number of wait states (T_W) selected by bits WC1 and WC0 are inserted. No additional wait states are inserted even if the \overline{WAIT} pin remains low. Pin auto-wait mode can be used for an easy interface to low-speed memory, simply by routing the chip select signal to the \overline{WAIT} pin.

Figure 5-4 shows the timing when the wait count is 1.

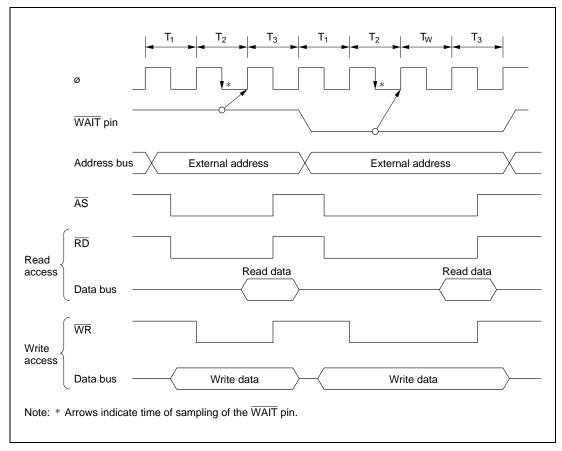


Figure 5-4 Pin Auto-Wait Mode

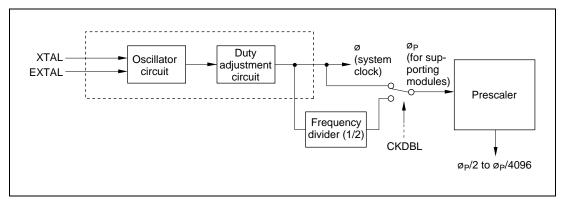
Section 6 Clock Pulse Generator

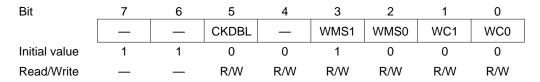
6.1 Overview

The H8/3217 Series has a built-in clock pulse generator (CPG) consisting of an oscillator circuit, a duty adjustment circuit, and a prescaler that generates clock signals for the on-chip supporting modules.

6.1.1 Block Diagram

Figure 6-1 shows a block diagram of the clock pulse generator.




Figure 6-1 Block Diagram of Clock Pulse Generator

Input an external clock signal to the EXTAL pin, or connect a crystal resonator to the XTAL and EXTAL pins. The system clock frequency (ϕ) will be the same as the input frequency. This same system clock frequency (ϕ_P) can be supplied to timers and other supporting modules, or it can be divided by two. The selection is made by software, by controlling the CKDBL bit.

6.1.2 Wait-State Control Register (WSCR)

WSCR is an 8-bit readable/writable register that controls frequency division of the clock signals supplied to the supporting modules. It also controls wait-state insertion.

WSCR is initialized to H'C8 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 and 6—Reserved: These bits cannot be modified and are always read as 1.

Bit 5—Clock Double (CKDBL): Controls the frequency division of clock signals supplied to supporting modules.

CKDBL Bit 5 Description 0 The undivided system clock (φ) is supplied as the clock (φ_P) for supporting modules (Initial value) 1 The system clock (φ) is divided by two and supplied as the clock (φ_P) for supporting modules

Bit 4—Reserved: This bit is reserved, but it can be written and read. Its initial value is 0.

Bits 3 and 2—Wait Mode Select 1 and 0 (WMS1 and WMS0)

Bits 1 and 0—Wait Count 1 and 0 (WC1 and WC0)

These bits control wait-state insertion. For details, see section 5, Wait-State Controller.

6.2 Oscillator Circuit

If an external crystal is connected across the EXTAL and XTAL pins, the on-chip oscillator circuit generates a system clock signal. Alternatively, an external clock signal can be applied to the EXTAL pin.

(1) Connecting an External Crystal

Circuit Configuration: An external crystal can be connected as shown in the example in figure 6-2. Table 6-1 indicates the appropriate damping resistance Rd. An AT-cut parallel resonance crystal should be used.

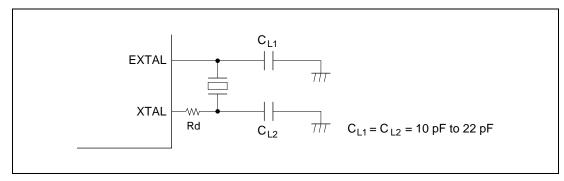


Figure 6-2 Connection of Crystal Oscillator (Example)

Table 6-1 Damping Resistance

Frequency (MHz)	2	4	8	10	12	16	
Rd max (Ω)	1 k	500	200	0	0	0	

Crystal Oscillator: Figure 6-3 shows an equivalent circuit of the crystal resonator. The crystal resonator should have the characteristics listed in table 6-2.

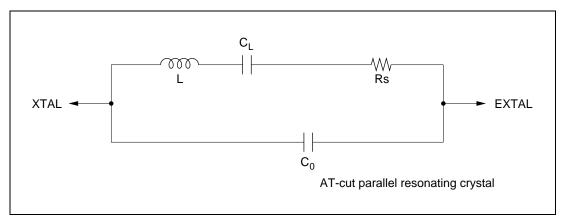


Figure 6-3 Equivalent Circuit of External Crystal

Table 6-2 External Crystal Parameters

Frequency (MHz)	2	4	8	10	12	16	
Rs max (Ω)	500	120	80	70	60	50	
C ₀ (pF) 7 pF max							

Use a crystal with the same frequency as the desired system clock frequency (ϕ) .

Note on Board Design: When an external crystal is connected, other signal lines should be kept away from the crystal circuit to prevent induction from interfering with correct oscillation. See figure 6-4. The crystal and its load capacitors should be placed as close as possible to the XTAL and EXTAL pins.

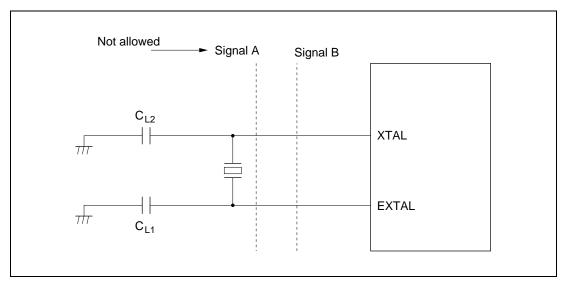


Figure 6-4 Notes on Board Design around External Crystal

107

(2) Input of External Clock Signal

Circuit Configuration: An external clock signal can be input as shown in the examples in figure 6-5. In example (b) in figure 6-5, the external clock signal should be kept high during standby.

If the XTAL pin is left open, make sure the stray capacitance does not exceed 10 pF.

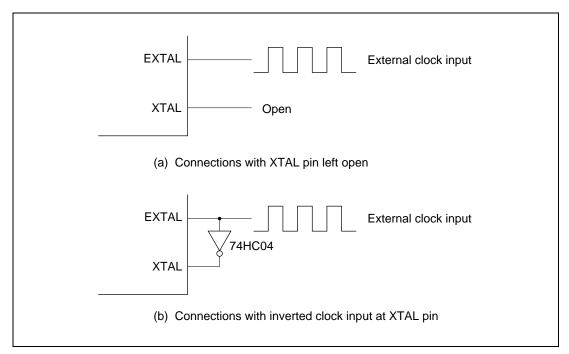


Figure 6-5 External Clock Input (Example)

External Clock Input: The external clock signal should have the same frequency as the desired system clock (φ). Clock timing parameters are given in table 6-3 and figure 6-6.

Table 6-3 Clock Timing

		V _{CC} = to 5.		V _{CC} = to 5.5		V _{CC} = 5.0 V ±10%				
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Cond	itions
Low pulse width of external clock input	tEXL	40	_	30	_	20	_	ns	Figure 6-6	
High pulse width of external clock input	^t EXH	40	_	30	_	20	_	ns	_	
External clock rise time	t _{EXr}	_	10		10		5	ns	_	
External clock fall time	t _{EXf}	_	10		10		5	ns	_	
Clock pulse	t _{CL}	0.3	0.7	0.3	0.7	0.3	0.7	t _{cyc}	$\phi \ge 5 \text{ MHz}$	Figure 19-4
width low		0.4	0.6	0.4	0.6	0.4	0.6	t _{cyc}	φ < 5 MHz	_
Clock pulse	tCH	0.3	0.7	0.3	0.7	0.3	0.7	t _{cyc}	$\phi \ge 5 \text{ MHz}$	-
width high		0.4	0.6	0.4	0.6	0.4	0.6	t _{cyc}	φ < 5 MHz	_

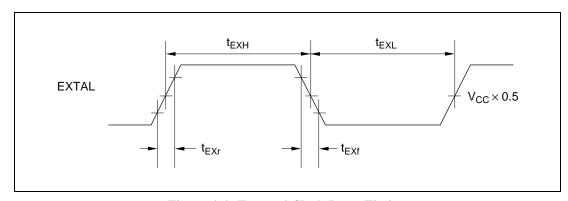


Figure 6-6 External Clock Input Timing

Table 6-4 shows the external clock output settling delay time, and figure 6-7 shows the external clock output settling delay timing. The oscillator circuit and duty adjustment circuit have a function for adjusting the waveform of the external clock input at the EXTAL pin. When the specified clock signal is input at the EXTAL pin, internal clock signal output is fixed after the elapse of the external clock output settling delay time (t_{DEXT}). As the clock signal output is not fixed during the t_{DEXT} period, the reset signal should be driven low to maintain the reset state during this time.

Table 6-4 External Clock Output Settling Delay Time

(Conditions: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Item	Symbol	Min	Max	Unit	Notes
External clock output settling delay time	t _{DEXT} *	500	_	μs	Figure 6-7

Note: * t_{DEXT} includes an RES pulse width (t_{RESW}) of 10 t_{cyc}.

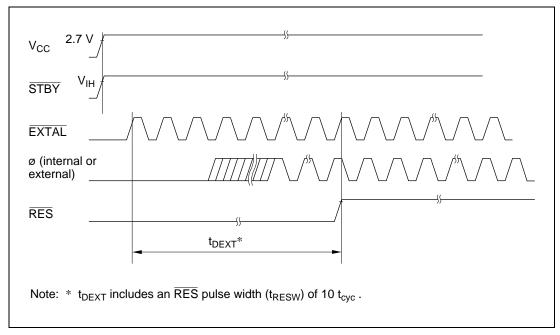


Figure 6-7 External Clock Output Settling Delay Time Timing

6.3 Duty Adjustment Circuit

When the clock frequency is 5 MHz or above, the duty adjustment circuit adjusts the duty cycle of the signal from the oscillator circuit to generate the system clock (ϕ) .

6.4 Prescaler

The 1/2 frequency divider generates an on-chip supporting module clock (ϕ_P) from the system clock (ϕ) according to the setting of the CKDBL bit. The prescaler divides the frequency of ϕ_P to generate internal clock signals with frequencies from $\phi_P/2$ to $\phi_P/4096$.

112

Section 7 I/O Ports

7.1 Overview

The H8/3217 Series has five 8-bit input/output ports, one 7-bit input/output port, and one 6-bit input/output port.

Table 7-1 lists the functions of each port in each operating mode. As table 7-1 indicates, the port pins are multiplexed, and the pin functions differ depending on the operating mode.

Each port has a data direction register (DDR) that selects input or output, and a data register (DR) that stores output data. If bit manipulation instructions will be executed on the port data direction registers, see "Notes on Bit Manipulation Instructions" in section 2.5.5, Bit Manipulations.

Ports 1, 2, 3, 6, and 7 can drive one TTL load and a 90-pF capacitive load. Port 4 (excluding pin P4₆) and port 5 can drive one TTL load and a 30-pF capacitive load. Ports 1, 2, and 3 can drive LEDs (with 10-mA current sink). Ports 1 to 7 can drive a Darlington transistor. Ports 1 to 3 and pins P6₀ to P6₃ and P7₀ to P7₃ have built-in MOS pull-ups.

Pins P7₀ to P7₃ (including SCL and SDA) of port 7 can drive a bus buffer. See section 14, I²C Bus Interface, for details of bus buffer driving.

Note that the H8/3212 and H8/3202 have a subset specification that does not include certain of the on-chip supporting modules. See tables 1-2 to 1-4, Pin Assignments in Each Operating Mode, and table 7-1, Port Functions, for differences in the pin functions.

For block diagrams of the ports, see appendix C, I/O Port Block Diagrams.

Table 7-1 (a) H8/3217, H8/3216, and H8/3214 Port Functions

			Expand	led Modes	Single-Chip Mode
Port	Description	Pins	Mode 1	Mode 2	Mode 3
Port 1	8-bit I/O port Can drive LEDs Built-in input pull-ups	P1 ₇ to P1 ₀ / A ₇ to A ₀ / PW ₇ to PW ₀	Lower address output (A ₇ to A ₀)	Lower address output (A ₇ to A ₀), general input, or PWM timer output (PW ₇ to PW ₀)	PWM timer output (PW ₇ to PW ₀) or general input/output
Port 2	8-bit I/O port Can drive LEDs Built-in input pull-ups	P2 ₇ to P2 ₀ / A ₁₅ to A ₈ / PW ₁₅ to PW ₈	Upper address output (A ₁₅ to A ₈)	Upper address output (A _{15 to} A ₈), general input, or PWM timer output (PW ₁₅ to PW ₈)	PWM timer output (PW ₁₅ to PW ₈) or general input/output
Port 3	8-bit I/O portCan drive LEDsBuilt-in input pull-ups	$P3_7$ to $P3_0$ / D_7 to D_0 / HDB_7 to HDB_0	Data bus (D ₇ to	Host interface data bus (HDB ₇ to HDB ₀) or general input/ output	
Port 4	8-bit I/O port	P4 ₇ /TMO _x / CLAMPO/ GA ₂₀		ontrol output (GA ₂₀), general input/output ut (CLAMPO)	
		P4 ₆ /ф/ FBACKI/CS ₂	φ output		Host interface control input (\overline{CS}_2) , general input, timer connection input $(FBACKI)$, or ϕ output
		P4 ₅ /TMRI ₁ / CSYNCI/ HIRQ ₁₂ P4 ₄ /TMO ₁ / HSYNCO/ HIRQ ₁ P4 ₃ /TMCI ₁ / HSYNCI/ HIRQ ₁₁ P4 ₂ /TMRI ₀ P4 ₁ /TMO ₀ P4 ₀ /TMCI ₀	Host interface host CPU interrupt request ou (HIRQ ₁₂ , HIRQ ₁ , HIRQ ₁₁), 8-bit timer 0 and input/output (TMCI ₀ , TMO ₀ , TMRI ₀ , TMCI ₁ , TMRI ₁), timer connection input/output (CSYN HSYNCO, HSYNCI), and general input/output		er 0 and 1 TMCI ₁ , TMO ₁ , ut (CSYNCI,

Table 7-1 (a) H8/3217, H8/3216, and H8/3214 Port Functions (cont)

			Exp	anded Modes	Single-Chip Mode
Port	Description	Pins	Mode 1	Mode 2	Mode 3
Port 5	6-bit I/O port	P5 ₅ /SCK ₁ P5 ₄ /RxD ₁ P5 ₃ /TxD ₁ P5 ₂ /SCK ₀ P5 ₁ /RxD ₀ P5 ₀ /TxD ₀		unication interface 0 a , SCK ₀ , TxD ₁ , RxD ₁ , S t/output	
Port 6	 7-bit I/O port Built-in input pull-ups (P6₃ to P6₀) 	P6 ₆ /IRQ ₂ P6 ₅ /IRQ ₁ P6 ₄ /IRQ ₀	ĪRQ₂ to ĪRQ	₀ or general input/outp	ut
		P6 ₃ /FTI/ VSYNCI/ KEYIN ₃ P6 ₂ /FTOB/ VSYNCO/ KEYIN ₂ P6 ₁ /FTOA/ KEYIN ₁ P6 ₀ /FTCI/ KEYIN ₀	FTOB, FTI), VSYNCO), o	unning timer input/outp timer connection input or general input/output a used as key-scanning (EYIN ₀))	/output (VSYNCI,
Port 7	 8-bit I/O port Bus buffer drive capability (P7₃ to P7₀) Built-in input pull-ups (P7₃ to P7₀) 	P7 ₇ /WAIT/ HA ₀ P7 ₆ /RD/IOR P7 ₅ /WR/IOW P7 ₄ /AS/CS ₁		ata bus control input/ Γ, RD, WR, AS)	Host interface control input/ output (HA ₀ , IOR, IOW, CS ₁) or general input/ output
		P7 ₃ /SDA ₁ / KEYIN ₇ P7 ₂ /SCL ₁ / KEYIN ₆ P7 ₁ /SDA ₀ / KEYIN ₅ P7 ₀ /SCL ₀ / KEYIN ₄	SDA ₁ , SCL ₁	face 0 and 1 input/outp) or general input/outpu e used as key-scanning (EYIN ₄))	ut , s, s,

Table 7-1 (b) H8/3212 Port Functions

			Expand	ed Modes	Single-Chip Mode
Port	Description	Pins	Mode 1	Mode 2	Mode 3
Port 1	8-bit I/O port Can drive LEDs Built-in input pull-ups	P1 ₇ to P1 ₀ / A ₇ to A ₀ / PW ₇ to PW ₀	Lower address output (A ₇ to A ₀)	Lower address output (A ₇ to A ₀), general input, or PWM timer output (PW ₇ to PW ₀)	PWM timer output (PW ₇ to PW ₀) or general input/output
Port 2	 8-bit I/O port Can drive LEDs Built-in input pull-ups 	P2 ₇ to P2 ₀ / A ₁₅ to A ₈ / PW ₁₅ to PW ₈	Upper address output (A ₁₅ to A ₈)	Upper address output (A ₁₅ to A ₈), general input, or PWM timer output (PW ₁₅ to PW ₈)	PWM timer output (PW ₁₅ to PW ₈) or general input/output
Port 3	8-bit I/O port Can drive LEDs Built-in input pull-ups	P3 ₇ to P3 ₀ / D ₇ to D ₀	Data bus (D ₇ to I	General input/ output	
Port 4	8-bit I/O port	P4 ₇ /TMO _X / CLAMPO		out (TMO _X), genera output (CLAMPO)	Il input/output, or
		P4 ₆ /ф/ FBACKI	φoutput		General input, timer connection input (FBACKI), or ϕ output
		P4 ₅ /TMRI ₁ / CSYNCI P4 ₄ /TMO ₁ / HSYNCO P4 ₃ /TMCI ₁ / HSYNCI P4 ₂ /TMRI ₀ P4 ₁ /TMO ₀ P4 ₀ /TMCI ₀		CI ₀ , TMO ₀ , TMRI ₀ , ction input/output general input/	

Table 7-1 (b) H8/3212 Port Functions (cont)

			Expanded Modes		Single-Chip Mode		
Port	Description	Pins	Mode 1	Mode 2	Mode 3		
Port 5	6-bit I/O port	P5 ₅ P5 ₄ P5 ₃ P5 ₂ /SCK ₀ P5 ₁ /RxD ₀ P5 ₀ /TxD ₀		unication interface 0 in or 6-bit general input/			
Port 6	• 7-bit I/O port	P6 ₆ /IRQ ₂ P6 ₅ /IRQ ₁ P6 ₄ /IRQ ₀)				
		P6 ₃ /FTI/ VSYNCI P6 ₂ /FTOB/ VSYNCO P6 ₁ /FTOA P6 ₀ /FTCI	,, ,				
Port 7	 8-bit I/O port Bus buffer drive capability (P7₃ to P7₀) 	P7 ₇ /WAIT P7 ₆ /RD P7 ₅ /WR P7 ₄ /AS		ata bus control (WAIT, RD, WR, AS)	General input/ output		
		P7 ₃ /SDA ₁ P7 ₂ /SCL ₁ P7 ₁ /SDA ₀ P7 ₀ /SCL ₀		face 0 and 1 input/outp or general input/outpu			

Table 7-1 (c) H8/3202 Port Functions

			Expand	ed Modes	Single-Chip Mode
Port	Description	Pins	Mode 1	Mode 2	Mode 3
Port 1	8-bit I/O port Can drive LEDs Built-in input pull-ups	P1 ₇ to P1 ₀ / A ₇ to A ₀	Lower address output (A ₇ to A ₀)	Lower address output (A ₇ to A ₀) or general input	General input/ output
Port 2	8-bit I/O portCan drive LEDsBuilt-in input pull-ups	P2 ₇ to P2 ₀ / A ₁₅ to A ₈	Upper address output (A ₁₅ to A ₈)	Upper address output (A ₁₅ to A ₈) or general input	General input/ output
Port 3	8-bit I/O port Can drive LEDs Built-in input pull-ups	P3 ₇ to P3 ₀ / D ₇ to D ₀ / HDB ₇ to HDB ₀	Data bus (D ₇ to	Host interface data bus (HDB ₇ to HDB ₀) or general input/ output	
Port 4	8-bit I/O port	P4 ₇ /GA ₂₀	Host interface co	ontrol output (GA ₂₀)	or general input/
		P4 ₆ /ф/CS ₂	φ output		Host interface control input (\overline{CS}_2) , general input, or ϕ output
		P4 ₅ /TMRI ₁ / HIRQ ₁₂ P4 ₄ /TMO ₁ / HIRQ ₁ P4 ₃ /TMCI ₁ / HIRQ ₁₁ P4 ₂ /TMRI ₀ P4 ₁ /TMO ₀ P4 ₀ /TMCI ₀	(HIRQ ₁₂ , HIRQ ₁	ost CPU interrupt re, HIRQ ₁₁), 8-bit time TMO ₀ , TMRI ₀ , TMC it/output	er 0 and 1 input/

Table 7-1 (c) H8/3202 Port Functions (cont)

			Expanded Modes		Single-Chip Mode		
Port	Description	Pins	Mode 1	Mode 2	Mode 3		
Port 5	6-bit I/O port	P5 ₅ /SCK ₁ P5 ₄ /RxD ₁ P5 ₃ /TxD ₁ P5 ₂ /SCK ₀ P5 ₁ /RxD ₀ P5 ₀ /TxD ₀		unication interface 0 ar SCK _{0,} TxD ₁ , RxD ₁ , S0 /output			
Port 6	 7-bit I/O port Built-in input pull-ups (P6₃ to P6₀) 	P6 ₆ /IRQ ₂ P6 ₅ /IRQ ₁ P6 ₄ /IRQ ₀	ĪRQ₂ to ĪRQ ₀	or general input/outpu	ıt		
		P6 ₃ /FTI/ KEYIN ₃ P6 ₂ /FTOB/ KEYIN ₂ P6 ₁ /FTOA/ KEYIN ₁ P6 ₀ /FTCI/ KEYIN ₀	16-bit free-running timer input/output (FTCI, FTOA, FTOB, FTI) or general input/output (Can also be used as key-scanning key-sense input (KEYIN $_3$ to KEYIN $_0$))				
Port 7	 8-bit I/O port Bus buffer drive capability (P7₃ to P7₀) Built-in input pull-ups (P7₃ to P7₀) 	P7 ₇ /WAIT/ HA ₀ P7 ₆ /RD/IOR P7 ₅ /WR/IOW P7 ₄ /AS/CS ₁		ata bus control input/ , RD, WR, AS)	Host interface control input (HA ₀ , IOR, IOW, CS ₁) or general input/output		
		P7 ₃ /KEYIN ₇ P7 ₂ /KEYIN ₆ P7 ₁ /SDA ₀ / KEYIN ₅ P7 ₀ /SCL ₀ / KEYIN ₄					

7.2 Port 1

7.2.1 Overview

Port 1 is an 8-bit input/output port with the pin configuration shown in figure 7-1. The pin functions differ depending on the operating mode.

Port 1 has built-in programmable MOS input pull-ups that can be used in modes 2 and 3.

Pins in port 1 can drive one TTL load and a 90-pF capacitive load. They can also drive LEDs and Darlington transistors.

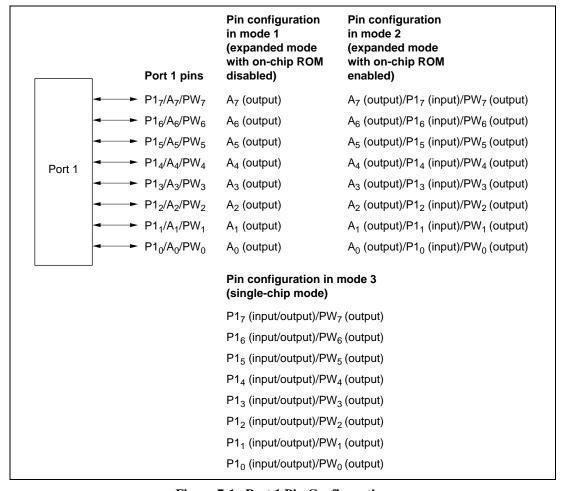


Figure 7-1 Port 1 Pin Configuration

7.2.2 Register Configuration and Descriptions

Table 7-2 summarizes the port 1 registers.

Table 7-2 Port 1 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 1 data direction register	P1DDR	W	H'FF (mode 1) H'00 (modes 2 and 3)	H'FFB0
Port 1 data register	P1DR	R/W	H'00	H'FFB2
Port 1 input pull-up control register	P1PCR	R/W	H'00	H'FFAC

Port 1 Data Direction Register (P1DDR)

Bit	7	6	5	4	3	2	1	0
	P1 ₇ DDR	P1 ₆ DDR	P1 ₅ DDR	P1 ₄ DDR	P1 ₃ DDR	P1 ₂ DDR	P1 ₁ DDR	P1 ₀ DDR
Mode 1								
Initial value	1	1	1	1	1	1	1	1
Read/Write	_	_	_	_	_	_	_	_
Modes 2 and 3	3							
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P1DDR controls the input/output direction of each pin in port 1.

Mode 1: The P1DDR values are fixed at 1. Port 1 consists of lower address output pins. P1DDR values cannot be modified and are always read as 1.

In hardware standby mode, the address bus is in the high-impedance state.

Mode 2: A pin in port 1 is used for address output or PWM output if the corresponding P1DDR bit is set to 1, and for general input if this bit is cleared to 0.

Mode 3: A pin in port 1 is used for general output or PWM output if the corresponding P1DDR bit is set to 1, and for general input if this bit is cleared to 0.

In modes 2 and 3, P1DDR is a write-only register. Read data is invalid. If read, all bits always read 1. P1DDR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values, so if a transition to software standby mode occurs while a P1DDR bit is set to 1, the corresponding pin remains in the output state.

Port 1 Data Register (P1DR)

Bit	7	6	5	4	3	2	1	0
	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P1DR is an 8-bit register that stores data for pins P1₇ to P1₀. When a P1DDR bit is set to 1, if port 1 is read, the value in P1DR is obtained directly, regardless of the actual pin state. When a P1DDR bit is cleared to 0, if port 1 is read the pin state is obtained.

P1DR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

Port 1 Input Pull-Up Control Register (P1PCR)

Bit	7	6	5	4	3	2	1	0
	P1 ₇ PCR	P1 ₆ PCR	P1 ₅ PCR	P1 ₄ PCR	P1 ₃ PCR	P1 ₂ PCR	P1 ₁ PCR	P1 ₀ PCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P1PCR is an 8-bit readable/writable register that controls the MOS input pull-ups in port 1. If a P1DDR bit is cleared to 0 (designating input) and the corresponding P1PCR bit is set to 1, the MOS input pull-up is turned on.

P1PCR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

7.2.3 Pin Functions in Each Mode

Port 1 has different pin functions in different modes. A separate description for each mode is given below.

Pin Functions in Mode 1: In mode 1 (expanded mode with on-chip ROM disabled), port 1 is automatically used for lower address output $(A_7 \text{ to } A_0)$. Figure 7-2 shows the pin functions in mode 1.

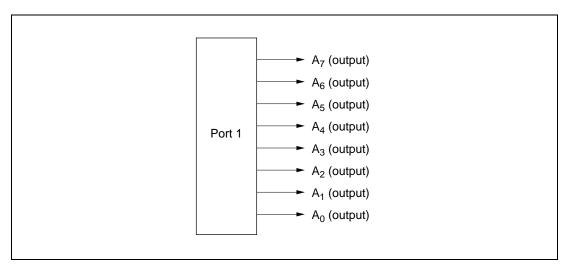


Figure 7-2 Pin Functions in Mode 1 (Port 1)

Mode 2: In mode 2 (expanded mode with on-chip ROM enabled), port 1 can provide lower address output pins, PWM output pins, and general input pins. Each pin becomes a lower address output pin or PWM output pin if its P1DDR bit is set to 1, and a general input pin if this bit is cleared to 0. Following a reset, all pins are input pins. To be used for address output or PWM output, their P1DDR bits must be set to 1. Figure 7-3 shows the pin functions in mode 2.

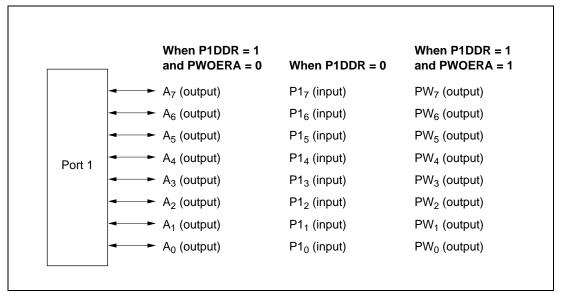


Figure 7-3 Pin Functions in Mode 2 (Port 1)

Mode 3: In mode 3 (single-chip mode), port 1 can provide PWM output pins and general input/output pins. When used for general input/output, the input or output direction of each pin can be selected individually. A pin becomes a general input pin when its P1DDR bit is cleared to 0. When this bit is cleared to 0, the corresponding pin becomes a general output pin if the PWOERA bit is cleared to 0, and a PWM output pin if the PWOERA bit is set to 1. Figure 7-4 shows the pin functions in mode 3.

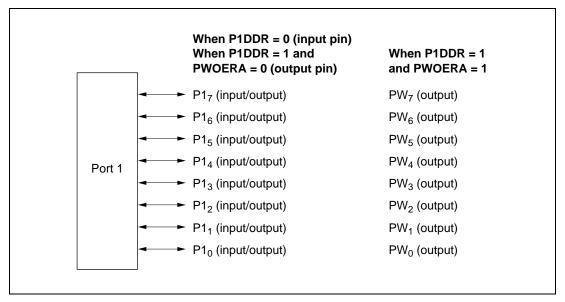


Figure 7-4 Pin Functions in Mode 3 (Port 1)

7.2.4 MOS Input Pull-Ups

Port 1 has built-in programmable MOS input pull-ups that are available in modes 2 and 3. The pull-up for each bit can be turned on and off individually. To turn on an input pull-up in mode 2 or 3, set the corresponding P1PCR bit to 1 and clear the corresponding P1DDR bit to 0. P1PCR is cleared to H'00 by a reset and in hardware standby mode, turning all input pull-ups off. In software standby mode, the previous state is maintained.

Table 7-3 indicates the states of the MOS input pull-ups in each operating mode.

Table 7-3 States of MOS Input Pull-Ups (Port 1)

Mode	Reset	Hardware Standby	Software Standby	Other Operating Modes
1	Off	Off	Off	Off
2	Off	Off	On/off	On/off
3	Off	Off	On/off	On/off

Notes: Off: The MOS input pull-up is always off.

On/off: The MOS input pull-up is on if P1PCR = 1 and P1DDR = 0, but off otherwise.

7.3 Port 2

7.3.1 Overview

Port 2 is an 8-bit input/output port with the pin configuration shown in figure 7-5. The pin functions differ depending on the operating mode.

Port 2 has built-in, software-controllable MOS input pull-ups that can be used in modes 2 and 3.

Pins in port 2 can drive one TTL load and a 90-pF capacitive load. They can also drive LEDs and Darlington transistors.

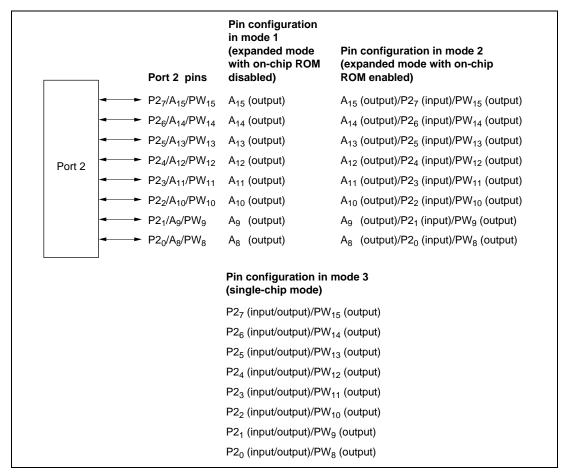


Figure 7-5 Port 2 Pin Configuration

7.3.2 Register Configuration and Descriptions

Table 7-4 summarizes the port 2 registers.

Table 7-4 Port 2 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 2 data direction register	P2DDR	W	H'FF (mode 1) H'00 (modes 2 and 3)	H'FFB1
Port 2 data register	P2DR	R/W	H'00	H'FFB3
Port 2 input pull-up control register	P2PCR	R/W	H'00	H'FFAD

Port 2 Data Direction Register (P2DDR)

Bit	7	6	5	4	3	2	1	0
	P2 ₇ DDR	P2 ₆ DDR	P2 ₅ DDR	P2 ₄ DDR	P2 ₃ DDR	P2 ₂ DDR	P2 ₁ DDR	P2 ₀ DDR
Mode 1								
Initial value	1	1	1	1	1	1	1	1
Read/Write	_	_	_	_	_	_	_	_
Modes 2 and 3	}							
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P2DDR controls the input/output direction of each pin in port 2.

Mode 1: The P2DDR values are fixed at 1. Port 2 consists of upper address output pins. P2DDR values cannot be modified and are always read as 1.

In hardware standby mode, the address bus is in the high-impedance state.

Mode 2: A pin in port 2 is used for address output or PWM output if the corresponding P2DDR bit is set to 1, and for general input if this bit is cleared to 0.

Mode 3: A pin in port 2 is used for general output or PWM output if the corresponding P2DDR bit is set to 1, and for general input if this bit is cleared to 0.

In modes 2 and 3, P2DDR is a write-only register. Read data is invalid. If read, all bits always read 1. P2DDR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values, so if a transition to software standby mode occurs while a P2DDR bit is set to 1, the corresponding pin remains in the output state.

Port 2 Data Register (P2DR)

Bit	7	6	5	4	3	2	1	0
	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P2DR is an 8-bit register that stores data for pins P2₇ to P2₀. When a P2DDR bit is set to 1, if port 2 is read, the value in P2DR is obtained directly, regardless of the actual pin state. When a P2DDR bit is cleared to 0, if port 2 is read the pin state is obtained.

P2DR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

Port 2 Input Pull-Up Control Register (P2PCR)

Bit	7	6	5	4	3	2	1	0
	P2 ₇ PCR	P2 ₆ PCR	P2 ₅ PCR	P2 ₄ PCR	P2 ₃ PCR	P2 ₂ PCR	P2 ₁ PCR	P2 ₀ PCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P2PCR is an 8-bit readable/writable register that controls the MOS input pull-ups in port 2. If a P2DDR bit is cleared to 0 (designating input) and the corresponding P2PCR bit is set to 1, the MOS input pull-up is turned on.

P2PCR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

7.3.3 Pin Functions in Each Mode

Port 2 has different pin functions in different modes. A separate description for each mode is given below.

Pin Functions in Mode 1: In mode 1 (expanded mode with on-chip ROM disabled), port 2 is automatically used for upper address output $(A_{15} \text{ to } A_8)$. Figure 7-6 shows the pin functions in mode 1.

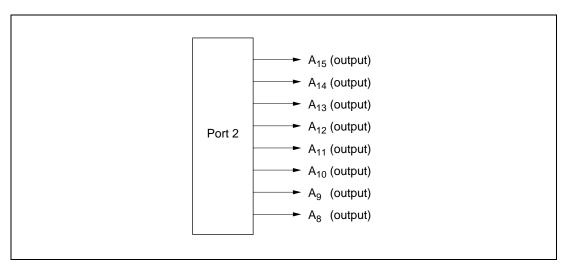


Figure 7-6 Pin Functions in Mode 1 (Port 2)

Mode 2: In mode 2 (expanded mode with on-chip ROM enabled), port 2 can provide upper address output pins, PWM output pins, and general input pins. Each pin becomes an upper address output pin or PWM output pin if its P2DDR bit is set to 1, and a general input pin if this bit is cleared to 0. Following a reset, all pins are input pins. To be used for address output or PWM output, their P2DDR bits must be set to 1. Figure 7-7 shows the pin functions in mode 2.

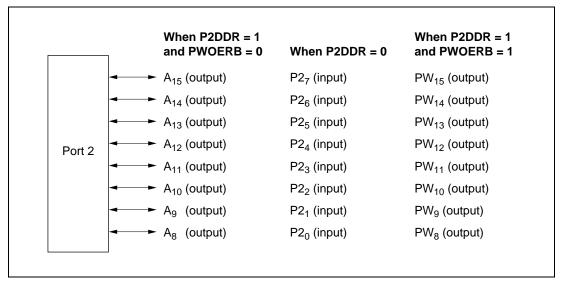


Figure 7-7 Pin Functions in Mode 2 (Port 2)

Mode 3: In mode 3 (single-chip mode) port 2 can provide PWM output pins and general input/output pins. When used for general input/output, the input or output direction of each pin can be selected individually. A pin becomes a general input pin when its P2DDR bit is cleared to 0. When this bit is cleared to 0, the corresponding pin becomes a general output pin if the PWOERB bit is cleared to 0, and a PWM output pin if the PWOERB bit is set to 1. Figure 7-8 shows the pin functions in mode 3.

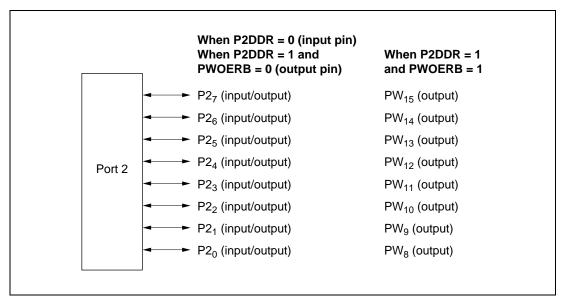


Figure 7-8 Pin Functions in Mode 3 (Port 2)

132

7.3.4 MOS Input Pull-Ups

Port 2 has built-in programmable MOS input pull-ups that are available in modes 2 and 3. The pull-up for each bit can be turned on and off individually. To turn on an input pull-up in mode 2 or 3, set the corresponding P2PCR bit to 1 and clear the corresponding P2DDR bit to 0. P2PCR is cleared to H'00 by a reset and in hardware standby mode, turning all input pull-ups off. In software standby mode, the previous state is maintained.

Table 7-5 indicates the states of the input pull-up transistors in each operating mode.

Table 7-5 States of MOS Input Pull-Ups (Port 2)

Mode	Reset	Hardware Standby	Software Standby	Other Operating Modes
1	Off	Off	Off	Off
2	Off	Off	On/off	On/off
3	Off	Off	On/off	On/off

Notes: Off: The MOS input pull-up is always off.

On/off: The MOS input pull-up is on if P2PCR = 1 and P2DDR = 0, but off otherwise.

7.4 Port 3

7.4.1 Overview

Port 3 is an 8-bit input/output port that is multiplexed with the data bus and host interface data bus. Its pin configuration is shown in figure 7-9. The pin functions differ depending on the operating mode.

Port 3 has built-in programmable MOS input pull-ups that can be used in mode 3.

Pins in port 3 can drive one TTL load and a 90-pF capacitive load. They can also drive a LED and a Darlington transistor.

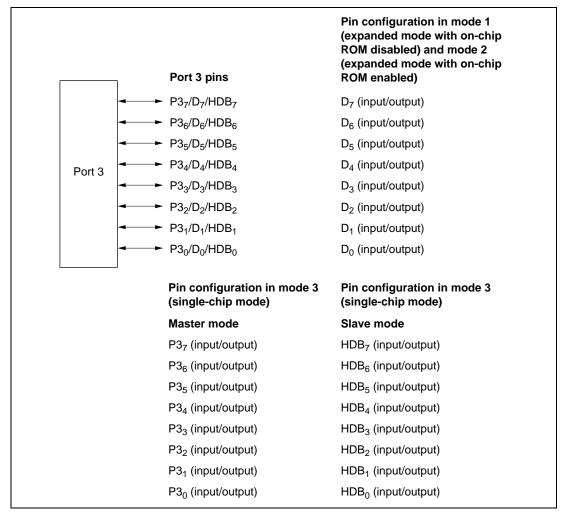


Figure 7-9 Port 3 Pin Configuration

7.4.2 Register Configuration and Descriptions

Table 7-6 summarizes the port 3 registers.

Table 7-6 Port 3 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 3 data direction register	P3DDR	W	H'00	H'FFB4
Port 3 data register	P3DR	R/W	H'00	H'FFB6
Port 3 input pull-up control register	P3PCR	R/W	H'00	H'FFAE

Port 3 Data Direction Register (P3DDR)

Bit	7	6	5	4	3	2	1	0
	P3 ₇ DDR	P3 ₆ DDR	P3 ₅ DDR	P3 ₄ DDR	P3 ₃ DDR	P3 ₂ DDR	P3 ₁ DDR	P3 ₀ DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P3DDR is an 8-bit readable/writable register that controls the input/output direction of each pin in port 3. P3DDR is a write-only register. Read data is invalid. If read, all bits always read 1.

Modes 1 and 2: In mode 1 (expanded mode with on-chip ROM disabled) and mode 2 (expanded mode with on-chip ROM enabled), the input/output directions designated by P3DDR are ignored. Port 3 automatically consists of the input/output pins of the 8-bit data bus (D_7 to D_0).

The data bus is in the high-impedance state during reset, and during hardware and software standby.

Mode 3: A pin in port 3 is used for general output if the corresponding P3DDR bit is set to 1, and for general input if this bit is cleared to 0. P3DDR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values, so if a transition to software standby mode occurs while a P3DDR bit is set to 1, the corresponding pin remains in the output state.

Port 3 Data Register (P3DR)

Bit	7	6	5	4	3	2	1	0
	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P3DR is an 8-bit register that stores data for pins P3₇ to P3₀. When a P3DDR bit is set to 1, if port 3 is read, the value in P3DR is obtained directly, regardless of the actual pin state. When a P3DDR bit is cleared to 0, if port 3 is read the pin state is obtained.

P3DR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

Port 3 Input Pull-Up Control Register (P3PCR)

Bit	7	6	5	4	3	2	1	0
	P3 ₇ PCR	P3 ₆ PCR	P3 ₅ PCR	P3 ₄ PCR	P3 ₃ PCR	P3 ₂ PCR	P3 ₁ PCR	P3 ₀ PCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P3PCR is an 8-bit readable/writable register that controls the MOS input pull-ups in port 3. If a P3DDR bit is cleared to 0 (designating input) and the corresponding P3PCR bit is set to 1, the MOS input pull-up is turned on.

P3PCR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

The MOS input pull-ups cannot be used in slave mode (when the host interface is enabled).

7.4.3 Pin Functions in Each Mode

Port 3 has different pin functions in different modes. A separate description for each mode is given below.

Pin Functions in Modes 1 and 2: In mode 1 (expanded mode with on-chip ROM disabled) and mode 2 (expanded mode with on-chip ROM enabled), port 3 is automatically used for the input/output pins of the data bus (D_7 to D_0). Figure 7-10 shows the pin functions in modes 1 and 2.

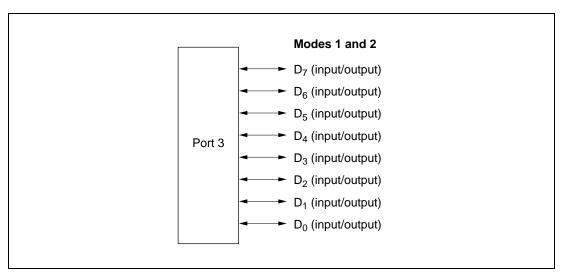


Figure 7-10 Pin Functions in Modes 1 and 2 (Port 3)

Mode 3: In mode 3 (single-chip mode), port 3 is an input/output port when the host interface enable bit (HIE) in the system control register (SYSCR) is cleared to 0.

If the HIE bit is set to 1 and a transition is made to slave mode, port 3 becomes the host interface data bus (HDB₇ to HDB₀). In slave mode, P3DR and P3DDR should be cleared to H'00.

Figure 7-11 shows the pin functions in mode 3.

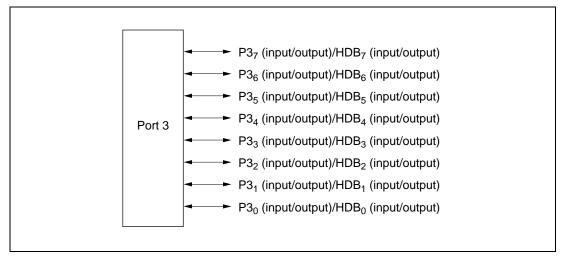


Figure 7-11 Pin Functions in Mode 3 (Port 3)

7.4.4 Input Pull-Up Transistors

Port 3 has built-in programmable MOS input pull-ups that are available in mode 3. The pull-up for each bit can be turned on and off individually. To turn on an input pull-up in mode 3, set the corresponding P3PCR bit to 1 and clear the corresponding P3DDR bit to 0. P3PCR is cleared to H'00 by a reset and in hardware standby mode, turning all input pull-ups off. In software standby mode, the previous state is maintained.

Table 7-7 indicates the states of the input MOS pull-ups in each operating mode.

Table 7-7 States of MOS Input Pull-Ups (Port 3)

Mode	Reset	Hardware Standby	Software Standby	Other Operating Modes
1	Off	Off	Off	Off
2	Off	Off	On/off	On/off
3	Off	Off	On/off	On/off

Notes: Off: The MOS input pull-up is always off.

On/off: The MOS input pull-up is on if P3PCR = 1 and P3DDR = 0, but off otherwise.

7.5 Port 4

7.5.1 Overview

Port 4 is an 8-bit input/output port that is multiplexed with the host interface (HIF) input/output pins (GA_{20} , \overline{CS}_2), host interrupt request output pins ($HIRQ_{12}$, $HIRQ_1$, $HIRQ_{11}$), 8-bit timer 0, 1, and X, and timer connection input/output pins ($TMRI_0$, $TMRI_1$, $TMCI_0$, $TMCI_1$, TMO_0 , TMO_1 , TMO_X , HSYNCI, HSYNCO, CSYNCI, FBACKI, CLAMPO), and the ϕ clock output pin. Pins $P4_7$ and $P4_5$ to $P4_0$ have the same functions in all operating modes, but the slave mode function which enables the host interface is only valid in single-chip mode. The function of pin $P4_6$ differs depending on the operating mode.

Figure 7-12 shows the pin configuration of port 4.

Pins in port 4 (except $P4_6$) can drive one TTL load and a 30-pF capacitive load. The ϕ clock output pin can drive one TTL load and a 90-pF capacitive load. Port 4 pins can also drive a Darlington transistor.

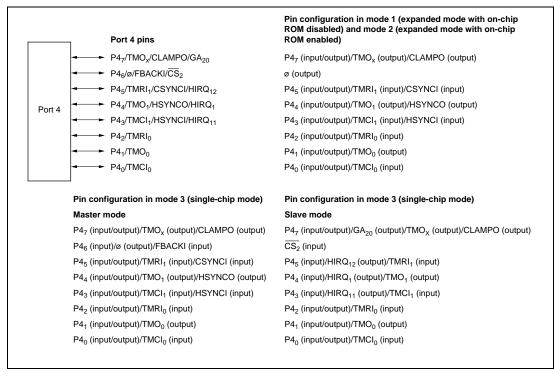


Figure 7-12 Port 4 Pin Configuration

7.5.2 Register Configuration and Descriptions

Table 7-8 summarizes the port 4 registers.

Table 7-8 Port 4 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 4 data direction register	P4DDR	W	H'40 (mode 1 and 2) H'00 (mode 3)	H'FFB5
Port 4 data register	P4DR	R/W*1	Undetermined*2	H'FFB7

Notes: 1. Bit 6 is read-only.

2. Bit 6 only is undetermined; the other bits are 0.

Port 4 Data Direction Register (P4DDR)

Bit	7	6	5	4	3	2	1	0
	P4 ₇ DDR	P4 ₆ DDR	P4 ₅ DDR	P4 ₄ DDR	P4 ₃ DDR	P4 ₂ DDR	P4 ₁ DDR	P4 ₀ DDR
Mode 1 and 2								
Initial value	0	1	0	0	0	0	0	0
Read/Write	W	_	W	W	W	W	W	W
Mode 3								
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P4DDR is an 8-bit register that controls the input/output direction of each pin in port 4. A pin functions as an output pin if the corresponding P4DDR bit is set to 1, and as an input pin if this bit is cleared to 0. However, in modes 1 and 2, P46DDR is fixed at 1 and cannot be modified.

P4DDR is a write-only register. Read data is invalid. If read, all bits always read 1.

P4DDR is initialized—to H'40 in modes 1 and 2, and to H'00 in mode 3—by a reset and in hardware standby mode. In software standby mode it retains its existing values, so if a transition to software standby mode occurs while a P4DDR bit is set to 1, the corresponding pin remains in the output state.

If a transition to software standby mode occurs while port 4 is being used by an on-chip supporting module (for example, for 8-bit timer output), the on-chip supporting module will be initialized, so the pin will revert to general-purpose input/output, controlled by P4DDR and P4DR.

Port 4 Data Register (P4DR)

Bit	7	6	5	4	3	2	1	0
	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀
Initial value	0	*	0	0	0	0	0	0
Read/Write	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Depends on the state of the P4₆ pin.

P4DR is an 8-bit register that stores data for port 4 pins P4₇ to P4₀. With the exception of P4₆, when a P4DDR bit is set to 1, if port 4 is read, the value in P4DR is obtained directly, regardless of the actual pin state. When a P4DDR bit is cleared to 0, if port 4 is read the pin state is obtained. When P4₆ is read, the pin state is always obtained. This also applies to the clock output pin and pins used by the on-chip supporting modules.

P4DR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

7.5.3 Pin Functions

Port 4 pins are used for 8-bit timer and timer connection input/output and φclock output. Table 7-9 indicates the pin functions of port 4.

Table 7-9 Port 4 Pin Functions

Pin	Pin Functions an	d Selection Me	thod			
P4 ₇ /TMO _x / CLAMPO/GA ₂₀	Bit FGA20E in HIG STCR, bit P4 ₇ DDI					
	SYNCE		0			1
	OS3 to OS0		All 0		Not all 0) —
	P4 ₇ DDR	0	1			_
	FGA20E	— 0	,	1		_
	Operating mode		Other than slave mode	Slave mode		_
	Pin function	P4 ₇ input	P4 ₇ output	GA ₂₀ output	TMO _x output	CLAMPO output
P4 ₆ /φ/FBACKI/ CS ₂	Bit P4 ₆ DDR and the	he operating mo	de select the	pin functi	on as foll	ows
	Operating mode	Modes 1 and 2		Mo	de 3	
		_	Other th	an slave r	node	Slave mode
	P4 ₆ DDR	_	0		1	_
	Pin function	φ clock output	P4 ₆ input FBACKI inp		clock itput	$\overline{\text{CS}}_2$ input
P4 ₅ /TMRI ₁ /	P4 ₅ DDR	0			1	
CSYNCI/HIRQ ₁₂	Operating mode	_		r than slav mode	e S	lave mode
	Pin function	P4 ₅ input	P4	l ₅ output	HII	RQ ₁₂ output
			TMRI ₁ inpu	ut, CSYNC	I input	
	TMRI ₁ input is usa 8-bit timer 1	able when bits C	CLR1 and C	CLR0 are	both set	to 1 in TCR of

Table 7-9 Port 4 Pin Functions (cont)

Pin	Pin Functions an	d Selectior	Method			
P4 ₄ /TMO ₁ / HSYNCO/HIRQ ₁	Bits OS3 to OS0 ir the operating mod				STCR, bit F	P4 ₄ DDR, and
	SYNCE	0				1
	OS3 to OS0	All 0			Not all 0	_
	P4 ₄ DDR	0	0 1			_
	Operating mode	_	Other than Slave mode — slave mode		_	
	Pin function	P4 ₄ input	P4 ₄ output	HIRQ ₁ output	TMO ₁ output	HSYNCO output
P4 ₃ /TMCI ₁ / HSYNCI/HIRQ ₁₁	P4 ₃ DDR	0			1	
	Operating mode	_	0	other than slave mode	e Sla	ve mode
	Pin function	P4 ₃ input		P4 ₃ output	HIR	Q ₁₁ output
	-		TMCI ₁	input, HSYNC	I input	
	TMCI ₁ input is usa external clock sou		its CKS2 to C	CKS0 in TCR o	f 8-bit time	r 1 select an
P4 ₂ /TMRI ₀	P4 ₂ DDR		0		1	
	Pin function	F	P4 ₂ input		P4 ₂ out	out
	·			TMRI ₀ input		
	TMRI ₀ input is usable when bits CCLR1 and CCLR0 are both set to 1 in TCR of 8-bit timer 0					

Table 7-9 Port 4 Pin Functions (cont)

Pin	Pin Functions an	Pin Functions and Selection Method						
P4 ₁ /TMO ₀	Bits OS3 to OS0 in as follows	Bits OS3 to OS0 in TCSR of 8-bit timer 0 and bit P4 ₁ DDR select the pin function as follows						
	OS3 to OS0	All 0		Not all 0				
	P4 ₁ DDR	0	1	_				
	Pin function	P4 ₁ input	P4 ₁ output	TMO ₀ output				
P4 ₀ /TMCI ₀	P4 ₀ DDR		0	1				
	Pin function	P4 ₀	input	P4 ₀ output				
		TMCI ₀ input						
	v .	TMCI ₀ input is usable when bits CKS2 to CKS0 in TCR of 8-bit timer 0 select an external clock source						

7.6 Port 5

7.6.1 Overview

Port 5 is a 6-bit input/output port that is multiplexed with input/output pins (TxD_0 , RxD_0 , SCK_0 , TxD_1 , RxD_1 , SCK_1) of serial communication interfaces 0 and 1. The port 5 pin functions are the same in all operating modes. Figure 7-13 shows the pin configuration of port 5.

Pins in port 5 can drive one TTL load and a 30-pF capacitive load. They can also drive a Darlington transistor.

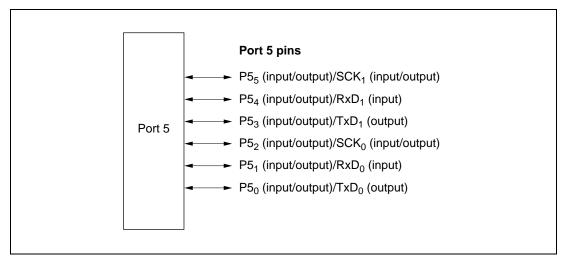


Figure 7-13 Port 5 Pin Configuration

7.6.2 Register Configuration and Descriptions

Table 7-10 summarizes the port 5 registers.

Table 7-10 Port 5 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 5 data direction register	P5DDR	W	H'C0	H'FFB8
Port 5 data register	P5DR	R/W	H'C0	H'FFBA

Port 5 Data Direction Register (P5DDR)

	7	6	5	4	3	2	1	0
Bit	_	_	P5 ₅ DDR	P5 ₄ DDR	P5 ₃ DDR	P5 ₂ DDR	P5 ₁ DDR	P5 ₀ DDR
Initial value	1	1	0	0	0	0	0	0
Read/Write	_	_	W	W	W	W	W	W

P5DDR is an 8-bit register that controls the input/output direction of each pin in port 5. A pin functions as an output pin if the corresponding P5DDR bit is set to 1, and as an input pin if this bit is cleared to 0.

P5DDR is a write-only register. Read data is invalid. Bits 7 and 6 are reserved. If read, all bits always read 1.

P5DDR is initialized to H'C0 by a reset and in hardware standby mode. In software standby mode it retains its existing values, so if a transition to software standby mode occurs while a P5DDR bit is set to 1, the corresponding pin remains in the output state.

If a transition to software standby mode occurs while port 5 is being used by the SCI, the SCI will be initialized, so the pin will revert to general-purpose input/output, controlled by P5DDR and P5DR.

Port 5 Data Register (P5DR)

Bit	7	6	5	4	3	2	1	0
	_	_	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Initial value	1	1	0	0	0	0	0	0
Read/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W

P5DR is an 8-bit register that stores data for pins P5₅ to P5₀. Bits 7 and 6 are reserved. They cannot be modified, and are always read as 1.

When a P5DDR bit is set to 1, if port 5 is read, the value in P5DR is obtained directly, regardless of the actual pin state. When a P5DDR bit is cleared to 0, if port 5 is read the pin state is obtained. This also applies to pins used as SCI pins.

P5DR is initialized to H'C0 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

7.6.3 Pin Functions

Port 5 has the same pin functions in each operating mode. Individual pins can also be used as SCI0 or SCI1 input/output pins. Table 7-11 indicates the pin functions of port 5.

Table 7-11 Port 5 Pin Functions

Pin	Pin Functions ar	Pin Functions and Selection Method							
P5 ₅ /SCK ₁	Bit C/ $\overline{\rm A}$ in SMR of SCI1, bits CKE0 and CKE1 in SCR of SCI1, and bit P55DDR select the pin function as follows								
	CKE1	CKE1 0				1			
	C/A		0		1	_			
	CKE0	0		1	_	_			
	P5 ₅ DDR	0	1	_	_	_			
	Pin function	P5 ₅ input	P5 ₅ output	SCK ₁ output	SCK ₁ output	SCK inpu			
P5 ₄ /RxD ₁	Bit RE in SCR of SCI1 and bit P5 ₄ DDR select the pin function as follows:								
	RE		0			1			
	RE P5 ₄ DDR	0	0	1		1			
		0 P5 ₄ inp		1 P5 ₄ output	Rx[1 — D ₁ input			
P5 ₃ /TxD ₁	P5 ₄ DDR	P5 ₄ inp	ut			— D ₁ input			
P5 ₃ /TxD ₁	P5 ₄ DDR Pin function	P5 ₄ inp	ut			— D ₁ input			
P5 ₃ /TxD ₁	P5 ₄ DDR Pin function Bit TE in SCR of S	P5 ₄ inp	ut P5 ₃ DDR se			— D ₁ input			

Table 7-11 Port 5 Pin Functions (cont)

Pin	Pin Functions ar	Pin Functions and Selection Method								
P5 ₂ /SCK ₀		Bit C/ $\overline{\rm A}$ in SMR of SCI0, bits CKE0 and CKE1 in SCR of SCI0 and bit P52DDR select the pin function as follows								
	CKE1	CKE1 0				1				
	C/A		0		1	_				
	CKE0	0		1	_	_				
	P5 ₂ DDR	0	1	_	_	_				
	Pin function	P5 ₂ input	P5 ₂ output	SCK ₀ output	SCK ₀ output	SCK ₀ input				
P5 ₁ /RxD ₀	Bit RE in SCR of	SCI0 and bi	ows							
	RE		0		1					
	P5 ₁ DDR	0		1		_				
	Pin function	P5 ₁ in	put	P5 ₁ output	Rxl	O ₀ input				
P5 ₀ /TxD ₀	Bit TE in SCR of S	SCI0 and bit	P5 ₀ DDR se	elect the pin fu	nction as foll	ows				
	TE		0			1				
	P5 ₀ DDR	0		1		_				
	Pin function	P5 ₀ in	put	P5 ₀ output		output				

7.7 Port 6

7.7.1 Overview

Port 6 is a 7-bit input/output port that is multiplexed with 16-bit free-running timer (FRT) and timer connection input/output pins (FTCI, FTOA, FTOB, FTI, VSYNCI, VSYNCO), key-sense input pins and with \overline{IRQ}_0 to \overline{IRQ}_2 input pins. The port 6 pin functions are the same in all operating modes. Pins P6₀ to P6₃ in port 6 have program-controllable built-in MOS pull-ups. Figure 7-14 shows the pin configuration of port 6.

Pins in port 6 can drive one TTL load and a 90-pF capacitive load. They can also drive a Darlington transistor.

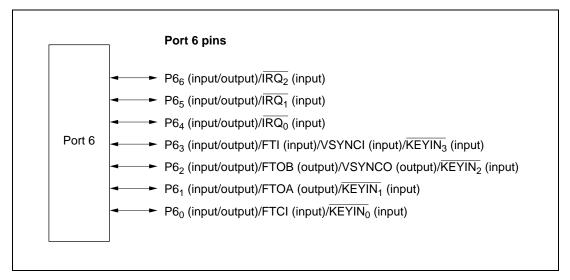


Figure 7-14 Port 6 Pin Configuration

7.7.2 Register Configuration and Descriptions

Table 7-12 summarizes the port 6 registers.

Table 7-12 Port 6 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 6 data direction register	P6DDR	W	H'80	H'FFB9
Port 6 data register	P6DR	R/W	H'80	H'FFBB
Key-sense MOS pull-up control register	KMPCR	R/W	H'00	H'FFF2

Port 6 Data Direction Register (P6DDR)

Bit	7	6	5	4	3	2	1	0
	_	P6 ₆ DDR	P6 ₅ DDR	P6 ₄ DDR	P6 ₃ DDR	P6 ₂ DDR	P6 ₁ DDR	P6 ₀ DDR
Initial value	1	0	0	0	0	0	0	0
Read/Write	_	W	W	W	W	W	W	W

P6DDR is an 8-bit register that controls the input/output direction of each pin in port 6. A pin functions as an output pin if the corresponding P6DDR bit is set to 1, and as an input pin if this bit is cleared to 0.

P6DDR is a write-only register. Read data is invalid. Bit 7 is reserved. If read, all bits always read 1.

P6DDR is initialized to H'80 by a reset and in hardware standby mode. In software standby mode it retains its existing values, so if a transition to software standby mode occurs while a P6DDR bit is set to 1, the corresponding pin remains in the output state.

If a transition to software standby mode occurs while port 6 is being used by an on-chip supporting module (for example, the free-running timer), the on-chip supporting module will be initialized, so the pin will revert to general-purpose input/output, controlled by P6DDR and P6DR.

Port 6 Data Register (P6DR)

Bit	7	6	5	4	3	2	1	0
	_	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 ₀
Initial value	1	0	0	0	0	0	0	0
Read/Write	_	R/W						

P6DR is an 8-bit register that stores data for pins P6₆ to P6₀. Bit 7 is reserved; it cannot be modified and is always read as 1. When a P6DDR bit is set to 1, if port 6 is read, the value in P6DR is obtained directly, regardless of the actual pin state. When a P6DDR bit is cleared to 0, if port 6 is read the pin state is obtained. This also applies to pins used by the on-chip supporting modules.

P6DR is initialized to H'80 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

When a port P6DDR bit is cleared to 0, if port 6 is read, the pin state is obtained; this pin can be selected according to the contents of KMIMR7 to KMIMR4. When KMIMR is set to 1 (initial value), empty bit 7, pins P6₆, P6₅, and P6₄ are selected. When KMIMR is cleared to 0, pins P7₃, P7₂, P7₁, and P7₀ are selected, respectively, corresponding to KMIMR7, KMIMR6, KMIMR5, and KMIMR4.

Key-Sense MOS Pull-Up Control Register (KMPCR)

Bit	7	6	5	4	3	2	1	0
	KM ₇ PCR	KM ₆ PCR	KM ₅ PCR	KM₄PCR	KM ₃ PCR	KM ₂ PCR	KM₁PCR	KM ₀ PCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

KMPCR is an 8-bit readable/writable register that controls the port 6 and port 7 built-in MOS pull-ups on a bit-by-bit basis.

When a P6DDR or P7DDR bit is cleared to 0 (input port state), if the corresponding KMPCR bit is set to 1 the MOS pull-up is turned on.

 KM_7PCR to KM_4PCR correspond to $P7_3DDR$ to $P7_0DDR$ and pins $P7_3$ to $P7_0$, while KM_3PCR to KM_0PCR correspond to $P6_3DDR$ to $P6_0DDR$ and pins $P6_3$ to $P6_0$.

KMPCR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

7.7.3 Pin Functions

Port 6 has the same pin functions in all operating modes. The pins are multiplexed with FRT and timer connection input/output, key-sense input, and \overline{IRQ}_0 to \overline{IRQ}_2 input. Table 7-13 indicates the pin functions of port 6.

Table 7-13 Port 6 Pin Functions

Pin	Pin Functions an	Pin Functions and Selection Method							
(P6 ₇)	KMIMR7	0		1					
	Pin function	P7 ₃ pin input function in a P6 ₇ DR read		1 input in a P6 ₇ DR read					
P6 ₆ /IRQ ₂	P6 ₆ DDR	0		1					
	KMIMR6	0	1	_					
	Pin function	P7 ₂ pin input function in a P6 ₆ DR read	P6 ₆ input	P6 ₆ output					
			ĪRQ ₂ input						
	ĪRQ ₂ input is usab	le when bit IRQ2E is	set to 1 in IER						
P6 ₅ /IRQ ₁	P6 ₅ DDR	0		1					
	KMIMR5	0	1	_					
	Pin function	P7 ₁ pin input function in a P6 ₅ DR read	P6 ₅ input	P6 ₅ output					
			ĪRQ₁ input						
	IRQ ₁ input is usab	IRQ ₁ input is usable when bit IRQ1E is set to 1 in IER							
P6 ₄ /IRQ ₀	P6 ₄ DDR	0		1					
	KMIMR4	0	1	_					
	Pin function	P7 ₀ pin input function in a P6 ₄ DR read	P6 ₄ input	P6 ₄ output					
			ĪRQ ₀ input						
	IRQ ₀ input is usab	le when bit IRQ0E is	set to 1 in IER						

Table 7-13 Port 6 Pin Functions (cont)

Pin	Pin Functions ar	Pin Functions and Selection Method						
P6 ₃ /FTI/VSYNCI/ KEYIN ₃	P6 ₃ DDR	0		1				
	Pin function	P6 ₃	input	P6 ₃ o	utput			
		FTI i	nput, VSYNCI i	nput, or KEYIN ₃ i	nput			
P6 ₂ /FTOB/ VSYNCO/ KEYIN ₂	Bit OEB in TCR o the pin function as	of the FRT, the SYNCE bit in STCR, and the $P6_2$ DDR bit sas follows						
	SYNCE		0		1			
	OEB	0		1	_			
	P6 ₂ DDR	0 1		_	_			
	Pin function	P6 ₂ input	P6 ₂ output	FTOB output	VSYNCO output			
			KEYIN	\overline{N}_2 input				
P6 ₁ /FTOA/ KEYIN ₁	Bit OEA in TCR of the FRT and bit P6 ₁ DDR select the pin function as follows							
	OEA		0	1				
	P6₁DDR	0	1	_	=			
	Pin function	P6 ₁ input	P6 ₁ output	FTOA (output			
			KEYI	\overline{N}_1 input				
P6 ₀ /FTCI/ KEYIN ₀	P6 ₀ DDR		0	1				
	Pin function	P6 ₀	input	P6 ₀ o	utput			
			FTCI input or	r KEYIN ₀ input				
	FTCI input is usable when bits CKS1 and CKS0 in TCR of the FRT select an external clock source							

7.8 Port 7

7.8.1 Overview

Port 7 is an 8-bit input/output port that also provides the bus control signal input/output pins $(\overline{RD},\overline{WR},\overline{AS},\overline{WAIT})$, host interface (HIF) input pins $(HA_0,\overline{IOR},\overline{IOW},\overline{CS}_1)$, key-sense input pins, and I^2C bus interface (IIC0 and IIC1) input/output pins $(SCL_0,SDA_0,SCL_1,SDA_1)$. The functions of pins $P7_7$ to $P7_4$ differ depending on the operating mode. Pins $P7_0$ to $P7_3$ have program-controllable built-in MOS pull-ups. Figure 7-15 shows the pin configuration of port 7. Pins in port 7 can drive one TTL load and a 90-pF capacitive load. They can also drive a Darlington transistor.

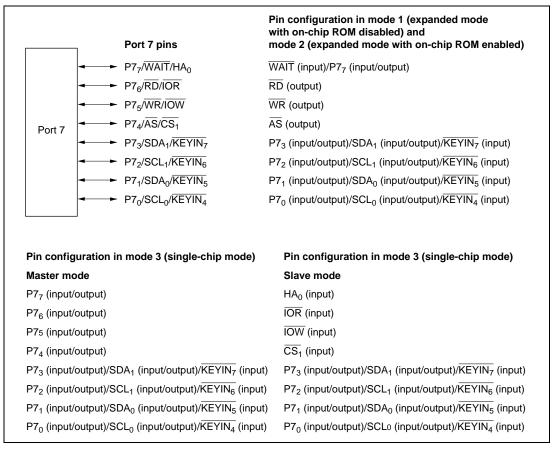


Figure 7-15 Port 7 Pin Configuration

7.8.2 Register Configuration and Descriptions

Table 7-15 summarizes the port 7 registers.

Table 7-15 Port 7 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 7 data direction register	P7DDR	W	H'00	H'FFBC
Port 7 data register	P7DR	R/W	H'00	H'FFBE
Key-sense MOS pull-up control register	KMPCR	R/W	H'00	H'FFF2

Port 7 Data Direction Register (P7DDR)

	7	6	5	4	3	2	1	0
Bit	P7 ₇ DDR	P7 ₆ DDR	P7 ₅ DDR	P7 ₄ DDR	P7 ₃ DDR	P7 ₂ DDR	P7 ₁ DDR	P7 ₀ DDR
Initial value	0	0	0	0	0	0	0	1
Read/Write	W	W	W	W	W	W	W	W

P7DDR is an 8-bit register that controls the input/output direction of each pin in port 7. A pin functions as an output pin if the corresponding P7DDR bit is set to 1, and as an input pin if this bit is cleared to 0. P7DDR is a write-only register. Read data is invalid. If read, all bits always read 1.

P7DDR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode P7DDR retains its existing values, so if a transition to software standby mode occurs while a P7DDR bit is set to 1, the corresponding pin remains in the output state.

Port 7 Data Register (P7DR)

Bit	7	6	5	4	3	2	1	0
	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P7DR is an 8-bit register that stores data for pins P7₇ to P7₀.

When a P7DDR bit is set to 1, if port 7 is read, the value in P7DR is obtained directly, regardless of the actual pin state. When a P7DDR bit is cleared to 0, if port 7 is read the pin state is obtained.

P7DR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

When a port P6DDR bit is cleared to 0, if port 6 is read, the pin state is obtained; this pin can be selected according to the contents of KMIMR7 to KMIMR4. When KMIMR is set to 1 (initial value), bit 7 is an empty bit, and pins P6₆, P6₅, and P6₄ are selected. When KMIMR is cleared to 0, pins P7₃, P7₂, P7₁, and P7₀ are selected, respectively, corresponding to KMIMR7, KMIMR6, KMIMR5, and KMIMR4.

Key-Sense MOS Pull-Up Control Register (KMPCR)

Bit	7	6	5	4	3	2	1	0
	KM ₇ PCR	KM ₆ PCR	KM ₅ PCR	KM₄PCR	KM ₃ PCR	KM ₂ PCR	KM ₁ PCR	KM ₀ PCR
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

KMPCR is an 8-bit readable/writable register that controls the port 6 and port 7 built-in MOS pull-ups on a bit-by-bit basis.

When a P6DDR or P7DDR bit is cleared to 0 (input port state), if the corresponding KMPCR bit is set to 1 the MOS pull-up is turned on.

 KM_7PCR to KM_4PCR correspond to $P7_3DDR$ to $P7_0DDR$ and pins $P7_3$ to $P7_0$, while KM_3PCR to KM_0PCR correspond to $P6_3DDR$ to $P6_0DDR$ and pins $P6_3$ to $P6_0$.

KMPCR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its existing values.

7.8.3 Pin Functions

The pins of port 7 have different functions in modes 1 and 2 and in mode 3. Individual pins are used as bus control signal input/output pins (\overline{RD} , \overline{WR} , \overline{AS} , \overline{WAIT}), host interface (HIF) input pins (HA₀, \overline{IOR} , \overline{IOW} , \overline{CS}_1), key-sense input pins, and I²C bus interface (IIC0 and IIC1) input/output pins (SCL₀, SDA₀, SCL₁, SDA₁). Table 7-19 indicates the pin functions of port 7.

Table 7-16 Port 7 Pin Functions

Pin	Pin Functions an	d Selectio	n Meth	od						
P7 ₇ /WAIT/HA ₀	Bit $7_7 \mathrm{DDR}$, the wait mode determined by WSCR, and the operating mode select the pin function as follows									
	Operating mode	Мс	des 1 a	and 2		Mode 3				
	-		Other th	Slave mode						
	Wait mode	WAIT WAIT not used used				_				
	P7 ₇ DDR	_	0	1	0	1	_			
	Pin function	WAIT input	P7 ₇ input	P7 ₇ output	P7 ₇ input	P7 ₇ output	HA ₀ input			
P7 ₆ /RD/IOR	Bit 7 ₆ DDR and the operating mode select the pin function as follows									
	Operating mode	Operating mode Modes 1 and 2					Mode 3			
	-	_		Other than slave mode			ave mode			
	P7 ₆ DDR	_		0 1			_			
	Pin function	RD outp	ut	P7 ₆ input	P7 ₆ out	put 10	OR input			
P7 ₅ /WR/IOW	Bit 7 ₅ DDR and the	operating	mode s	select the pin	function a	s follows				
	Operating mode	Modes 1 a	nd 2		Mode	3				
	•	_		Other than	slave mod	e Sla	ave mode			
	P7 ₅ DDR	_		0	1					
	Pin function	WR outp	ut	P7 ₅ input	P7 ₅ out	put IC	DW input			

Table 7-16 Port 7 Pin Functions (cont)

Pin	Pin Functions ar	nd Selection Met	hod					
P7 ₄ /AS/CS ₁	Bit 7 ₄ DDR and the	e operating mode	select the pin	function as follo	ows			
	Operating mode	ating mode Modes 1 and 2		Mode 3				
		_	Other than	slave mode	Slave mode			
	P7 ₄ DDR	_	0	1	_			
	Pin function	AS output	P7 ₄ input	P7 ₄ output	CS₁ input			
P7 ₃ /SDA ₁ / KEYIN ₇	Bit ICE in ICCR of	f IIC1 and bit P7 ₃ I	DDR select the	pin function as	s follows			
	ICE		0		1			
	P7 ₃ DDR	0	1		_			
	Pin function	P7 ₃ input	P7 ₃ o	utput SD	A ₁ input/output			
			KEYIN	7 input				
P7 ₂ /SCL ₁ / KEYIN ₆	Bit ICE in ICCR of IIC1 and bit P7 ₂ DDR select the pin function as follows							
	ICE		0		1			
	P7 ₂ DDR	0	1		_			
	Pin function	P7 ₂ input	P7 ₂ o	utput SC	L ₁ input/output			
			KEYIN	6 input				
P7 ₁ /SDA ₀	Bit ICE in ICCR of	f IIC0 and bit P7 ₁ I	DDR select the	pin function a	s follows			
	ICE		0		1			
	P7 ₁ DDR	0	1		_			
	Pin function	P7 ₁ input	P7 ₁ o	utput SD	A ₀ input/output			
			KEYIN	KEYIN ₅ input				

Table 7-16 Port 7 Pin Functions (cont)

Pin	Pin Functions and Selection Method							
P7 ₀ /SCL ₀	Bit ICE in ICCR of IIC0 and bit P7 ₀ DDR select the pin function as follows							
	ICE		1					
	P7 ₀ DDR	0	1	_				
	Pin function	unction P7 ₀ input		SCL ₀ input/output				
			KEYIN ₄ input					

160

Section 8 PWM Timers

[Incorporated in all models except the H8/3202]

8.1 Overview

The H8/3217 Series has an on-chip pulse width modulation (PWM) timer module with sixteen outputs. Sixteen output waveforms are generated from a common time base, enabling PWM output with a high carrier frequency to be produced using pulse division. The PWM timer module has sixteen 8-bit PWM data registers (PWDRs), and an output pulse with a duty cycle of 0 to 100% can be obtained as specified by PWDR and the port data register (P1DR or P2DR).

8.1.1 Features

The PWM timer module has the following features.

- Operable at a maximum carrier frequency of 1 MHz using pulse division (at 16 MHz operation)
- Duty cycles from 0 to 100% with 1/256 resolution (100% duty realized by port output)
- Direct or inverted PWM output, and software enable/disable control

8.1.2 Block Diagram

Figure 8-1 shows a block diagram of the PWM timer module.

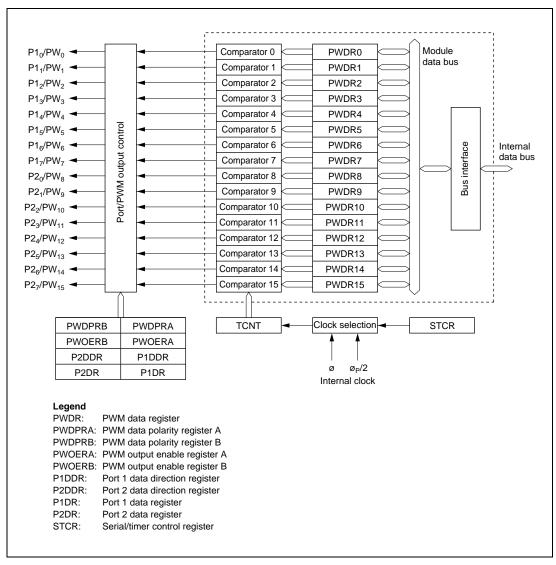


Figure 8-1 Block Diagram of PWM Timer Module

162

8.1.3 Input and Output Pins

Table 8-1 lists the output pins of the PWM timer. There are no input pins.

Table 8-1 PWM Timer Module Output Pins

Name	Abbr.	I/O	Function
PWM output pin 0	PW ₀	Output	PWM timer pulse output 0
PWM output pin 1	PW ₁	Output	PWM timer pulse output 1
PWM output pin 2	PW ₂	Output	PWM timer pulse output 2
PWM output pin 3	PW ₃	Output	PWM timer pulse output 3
PWM output pin 4	PW ₄	Output	PWM timer pulse output 4
PWM output pin 5	PW ₅	Output	PWM timer pulse output 5
PWM output pin 6	PW ₆	Output	PWM timer pulse output 6
PWM output pin 7	PW ₇	Output	PWM timer pulse output 7
PWM output pin 8	PW ₈	Output	PWM timer pulse output 8
PWM output pin 9	PW ₉	Output	PWM timer pulse output 9
PWM output pin 10	PW ₁₀	Output	PWM timer pulse output 10
PWM output pin 11	PW ₁₁	Output	PWM timer pulse output 11
PWM output pin 12	PW ₁₂	Output	PWM timer pulse output 12
PWM output pin 13	PW ₁₃	Output	PWM timer pulse output 13
PWM output pin 14	PW ₁₄	Output	PWM timer pulse output 14
PWM output pin 15	PW ₁₅	Output	PWM timer pulse output 15

8.1.4 Register Configuration

Table 8-2 lists the registers of the PWM timer module.

Table 8-2 PWM Timer Module Registers

Name	Abbreviation	R/W*	Initial Value	Address
PWM data register 0	PWDR0	R/W	H'00	H'FFF0
PWM data register 1	PWDR1	R/W	H'00	H'FFF1
PWM data register 2	PWDR2	R/W	H'00	H'FFF2
PWM data register 3	PWDR3	R/W	H'00	H'FFF3
PWM data register 4	PWDR4	R/W	H'00	H'FFF4
PWM data register 5	PWDR5	R/W	H'00	H'FFF5
PWM data register 6	PWDR6	R/W	H'00	H'FFF6
PWM data register 7	PWDR7	R/W	H'00	H'FFF7
PWM data register 8	PWDR8	R/W	H'00	H'FFF8
PWM data register 9	PWDR9	R/W	H'00	H'FFF9
PWM data register 10	PWDR10	R/W	H'00	H'FFFA
PWM data register 11	PWDR11	R/W	H'00	H'FFFB
PWM data register 12	PWDR12	R/W	H'00	H'FFFC
PWM data register 13	PWDR13	R/W	H'00	H'FFFD
PWM data register 14	PWDR14	R/W	H'00	H'FFFE
PWM data register 15	PWDR15	R/W	H'00	H'FFFF
PWM data polarity register A	PWDPRA	R/W	H'00	H'FFCF
PWM data polarity register B	PWDPRB	R/W	H'00	H'FFCE
PWM output enable register A	PWOERA	R/W	H'00	H'FFD5
PWM output enable register B	PWOERB	R/W	H'00	H'FFCD
Port 1 data direction register	P1DDR	W	H'00	H'FFB0
Port 2 data direction register	P2DDR	W	H'00	H'FFB1
Port 1 data register	P1DR	R/W	H'00	H'FFB2
Port 2 data register	P2DR	R/W	H'00	H'FFB3
Serial/timer control register	STCR	R/W	H'00	H'FFC3

Note: * Registers at addresses H'FFF0 to H'FFFF can only be read or written to when the HIE bit in the system control register (SYSCR) is 0.

8.2 Register Descriptions

8.2.1 PWM Data Registers (PWDR0 to PWDR15)

Bit	7	6	5	4	3	2	1	0
Initial value	0	0	0	1	0	0	0	0
Read/Write	R/W							

Each PWDR is an 8-bit readable/writable register that specifies the duty cycle of the basic pulse to be output, and the number of additional pulses. The value set in PWDR corresponds to a 0 or 1 ratio in the conversion period. The upper 4 bits specify the duty cycle of the basic pulse as 0 to 15/16 with a resolution of 1/16. The lower 4 bits specify how many extra pulses are to be added within the conversion period comprising 16 basic pulses. Thus, a specification of 0 to 255/256 is possible for 0/1 ratios within the conversion period. For 256/256 (100%) output, port output should be used.

PWDR is initialized to H'00 by a reset and in the standby modes.

8.2.2 PWM Data Polarity Registers A and B (PWDPRA and PWDPRB)

PWDPRA								
Bit	7	6	5	4	3	2	1	0
	OS7	OS6	OS5	OS4	OS3	OS2	OS1	OS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PWDPRB								
Bit	7	6	5	4	3	2	1	0
	OS15	OS14	OS13	OS12	OS11	OS10	OS9	OS8
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Each PWDPR is an 8-bit readable/writable register that controls the polarity of the PWM output. Bits OS0 to OS15 correspond to outputs PW0 to PW15.

PWDPR is initialized to H'00 by a reset and in the hardware standby modes.

os	Description
0	PWM direct output (PWDR value corresponds to high width of output) (Initial value)
1	PWM inverted output (PWDR value corresponds to low width of output)

8.2.3 PWM Output Enable Registers A and B (PWOERA and PWOERB)

PWOERA								
Bit	7	6	5	4	3	2	1	0
	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PWOERB								
Bit	7	6	5	4	3	2	1	0
	OE15	OE14	OE13	OE12	OE11	OE10	OE9	OE8
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Each PWOER is an 8-bit readable/writable register that switches between PWM output and port output. Bits OE0 to OE15 correspond to outputs PW0 to PW15. To set a pin in the output state, a setting in the port direction register is also necessary. Bits P1DDR0 to P1DDR7 correspond to outputs PW0 to PW7, and bits P2DDR0 to P2DDR7 correspond to outputs PW8 to PW15.

PWOER is initialized to H'00 by a reset and in the hardware standby modes.

DDR	OE	Description	
0	0	Port input	(Initial value)
0	1	Port input	
1	0	Port output or PWM 256/256 output	
1	1	PWM output (0 to 255/256 output)	

8.2.4 Port 1 Data Direction Register (P1DDR)

Bit	7	6	5	4	3	2	1	0
	P1 ₇ DDR	P1 ₆ DDR	P1 ₅ DDR	P1 ₄ DDR	P1 ₃ DDR	P1 ₂ DDR	P1 ₁ DDR	P1 ₀ DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P1DDR is an 8-bit write-only register that specifies the input/output direction and PWM output for each pin of port 1 in bit units.

Port 1 pins are multiplexed with pins PW0 to PW7. The bit corresponding to a pin to be used for PWM output should be set to 1.

For details on P1DDR, see section 7.2, Port 1.

8.2.5 Port 2 Data Direction Register (P2DDR)

Bit	7	6	5	4	3	2	1	0
	P2 ₇ DDR	P2 ₆ DDR	P2 ₅ DDR	P2 ₄ DDR	P2 ₃ DDR	P2 ₂ DDR	P2 ₁ DDR	P2 ₀ DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P2DDR is an 8-bit write-only register that specifies the input/output direction and PWM output for each pin of port 2 in bit units.

Port 2 pins are multiplexed with pins PW8 to PW15. The bit corresponding to a pin to be used for PWM output should be set to 1.

For details on P2DDR, see section 7.3, Port 2.

8.2.6 Port 1 Data Register (P1DR)

Bit	7	6	5	4	3	2	1	0
	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P1DR is an 8-bit readable/writable register used to fix PWM output at 1 (when OS = 0) or 0 (when OS = 1).

For details on P1DR, see section 7.2, Port 1.

8.2.7 Port 2 Data Register (P2DR)

Bit	7	6	5	4	3	2	1	0
	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P2DR is an 8-bit readable/writable register used to fix PWM output at 1 (when OS = 0) or 0 (when OS = 1).

For details on P2DR, see section 7.3, Port 2.

8.2.8 Serial/Timer Control Register (STCR)

Bit	7	6	5	4	3	2	1	0
	IICS	IICX1	IICX0	SYNCE	PWCKE	PWCKS	ICKS1	ICKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

STCR is an 8-bit readable/writable register that controls the I²C bus interface operating mode and the TCNT clock source in the PWM timer module and the 8-bit timers.

STCR is initialized to H'00 by a reset.

Bits 7 to 5—I²C Control (IICS, IICX1, IICX0): These bits control the operation of the I²C bus interface. For details, see section 14, I²C Bus Interface.

Bit 4—Timer Connection Output Enable (SYNCE): This bit controls the outputs (VSYNCO, HSYNCO, CLAMPO) when the timers are interconnected. For details, see section 11, Timer Connection.

Bits 3 and 2—PWM Clock Enable, PWM Clock Select (PWCKE, PWCKS): These bits select the internal clock to be input to the timer counter (TCNT) in the PWM timer module.

PWCKE	PWCKS	Description	
0	_	Clock input is disabled	(Initial value)
1	0	φ (system clock) is selected	
1	1	$\phi_{p}/2$ (supporting-module clock divided by two) is selected	ed

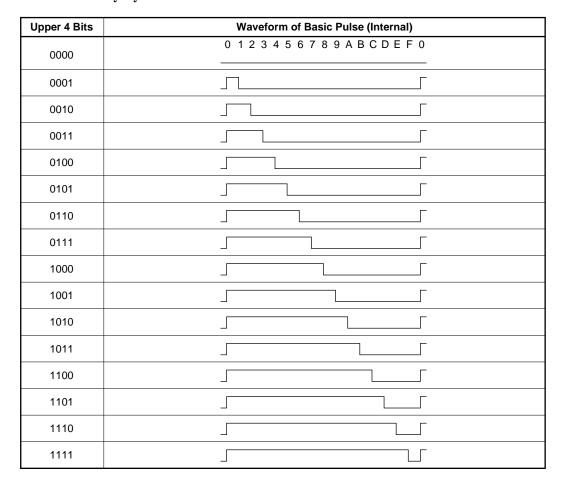
From the frequency of the selected internal clock, the PWM resolution, PWM conversion period, and carrier frequency can be calculated as follows.

Resolution (minimum pulse width)= 1/internal clock frequency PWM conversion period = resolution \times 256 Carrier frequency = 16/PWM conversion period

If the frequency of the system clock (ϕ) and supporting-module clock (ϕ_p) is 10 MHz, then the resolution, PWM conversion period, and carrier frequency are as shown in table 8-3.

Table 8-3 Resolution, PWM Conversion Period, and Carrier Frequency when $\varphi=\varphi_p=10~MHz$

Internal Clock Frequency	Resolution (Minimum Pulse Width)	PWM Conversion Period	Carrier Frequency
ф	100 ns	25 μs	640 kHz
φ _P /2	200 ns	50 µs	320 kHz


Bits 1 and 0—Internal Clock Select 1 and 0 (ICKS1 and ICKS0): These bits, together with bits CKS2 to CKS0 in TCR of the 8-bit timers, select the internal clock to be input to the timer counters (TCNT) in the 8-bit timers. For details, see section 10.2.3, Timer Control Register.

8.3 Operation

8.3.1 Correspondence between PWM Data Register Contents and Output Waveform

The upper 4 bits of PWDR specify the duty cycle of the basic pulse as 0 to 15/16 with a resolution of 1/16, as shown in table 8-4.

Table 8-4 Duty Cycle of Basic Pulse

The lower 4 bits of PWDR specify the position of pulses added to the 16 basic pulses, as shown in table 8-5. An additional pulse consists of a high period with a width equal to the resolution, added before the rising edge of a basic pulse. When the upper 4 bits of PWDR are 0000, there is no rising edge of the basic pulse, but the timing for adding pulses is the same.

Table 8-5 Position of Pulses Added to Basic Pulses

							Ва	asic F	Pulse	No.						
Lower 4 Bits	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0000																
0001																Yes
0010								Yes								Yes
0011								Yes				Yes				Yes
0100				Yes				Yes				Yes				Yes
0101				Yes				Yes				Yes		Yes		Yes
0110				Yes		Yes		Yes				Yes		Yes		Yes
0111				Yes		Yes		Yes		Yes		Yes		Yes		Yes
1000		Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes
1001		Yes		Yes		Yes		Yes		Yes		Yes		Yes	Yes	Yes
1010		Yes		Yes		Yes	Yes	Yes		Yes		Yes		Yes	Yes	Yes
1011		Yes		Yes		Yes	Yes	Yes		Yes	Yes	Yes		Yes	Yes	Yes
1100		Yes	Yes	Yes		Yes	Yes	Yes		Yes	Yes	Yes		Yes	Yes	Yes
1101		Yes	Yes	Yes		Yes	Yes	Yes		Yes						
1110		Yes		Yes												
1111		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes						

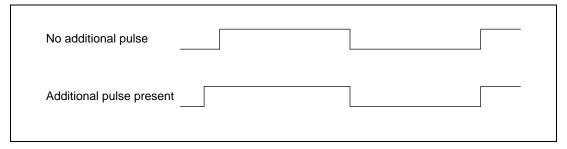


Figure 8-2 Example of Additional Pulse Timing (When Upper 4 Bits of PWDR = 1000)

Section 9 16-Bit Free-Running Timer

9.1 Overview

The H8/3217 Series has an on-chip 16-bit free-running timer (FRT) module that uses a 16-bit free-running counter as a time base. Applications of the FRT module include rectangular-wave output (up to two independent waveforms), input pulse width measurement, and measurement of external clock periods.

9.1.1 Features

The features of the free-running timer module are listed below.

- Selection of four clock sources
 - The free-running counter can be driven by an internal clock source ($\phi_P/2$, $\phi_P/8$, or $\phi_P/32$), or an external clock input (enabling use as an external event counter).
- Two independent comparators
 Each comparator can generate an independent waveform.
- Input capture
 - The current count can be captured on the rising or falling edge (selectable) of an input signal.
- Counter can be cleared under program control
 The free-running counter can be cleared on compare-match A.
- Four interrupt sources
 - Compare-match A and B, input capture, and overflow interrupts are requested independently.

9.1.2 Block Diagram

Figure 9-1 shows a block diagram of the free-running timer.

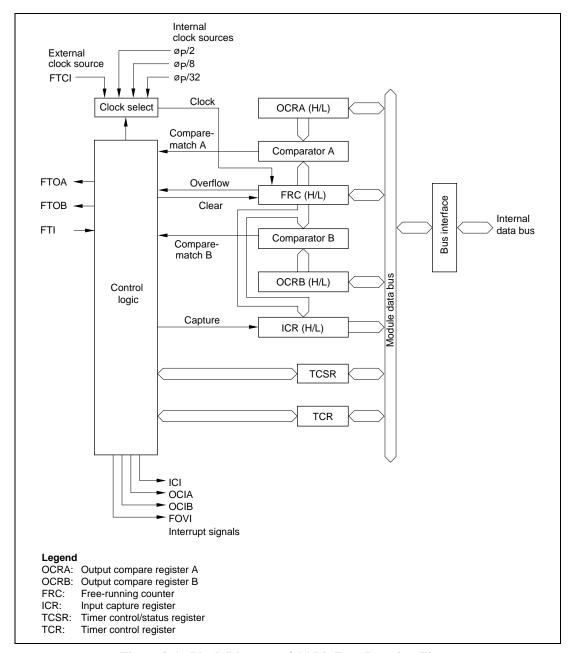


Figure 9-1 Block Diagram of 16-Bit Free-Running Timer

9.1.3 Input and Output Pins

Table 9-1 lists the input and output pins of the free-running timer module.

Table 9-1 Input and Output Pins of Free-Running Timer Module

Name	Abbreviation	I/O	Function
Counter clock input	FTCI	Input	Input of external free-running counter clock signal
Output compare A	FTOA	Output	Output controlled by comparator A
Output compare B	FTOB	Output	Output controlled by comparator B
Input capture	FTI	Input	Input capture trigger

9.1.4 Register Configuration

Table 9-2 lists the registers of the free-running timer module.

Table 9-2 Register Configuration

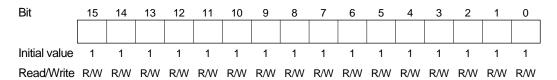
		Initial	
Abbreviation	R/W	Value	Address
TCR	R/W	H'00	H'FF90
TCSR	R/(W)*	H'00	H'FF91
FRC (H)	R/W	H'00	H'FF92
FRC (L)	R/W	H'00	H'FF93
OCRA (H)	R/W	H'FF	H'FF94
OCRA (L)	R/W	H'FF	H'FF95
OCRB (H)	R/W	H'FF	H'FF96
OCRB (L)	R/W	H'FF	H'FF97
ICR (H)	R	H'00	H'FF98
ICR (L)	R	H'00	H'FF99
	TCR TCSR FRC (H) FRC (L) OCRA (H) OCRA (L) OCRB (H) OCRB (L) ICR (H)	TCR R/W TCSR R/(W)* FRC (H) R/W FRC (L) R/W OCRA (H) R/W OCRA (L) R/W OCRB (H) R/W OCRB (H) R/W ICR (H) R	Abbreviation R/W Value TCR R/W H'00 TCSR R/(W)* H'00 FRC (H) R/W H'00 FRC (L) R/W H'FF OCRA (H) R/W H'FF OCRA (L) R/W H'FF OCRB (H) R/W H'FF ICR (H) R H'00

Note: * Software can write a 0 to clear bits 7 to 4, but cannot write a 1 in these bits.

9.2 Register Descriptions

9.2.1 Free-Running Counter (FRC)—H'FF92

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Read/Write	RΜ	RΜ	R/M	R/M	RΜ	RΜ	RΜ	R/M	R/M	R/M	RΜ	R/M	R/M	R/M	R/M	RΜ


The FRC is a 16-bit readable/writable up-counter that increments on an internal pulse generated from a clock source. The clock source is selected by the clock select 1 and 0 bits (CKS1 and CKS0) of the timer control register (TCR).

When the FRC overflows from H'FFFF to H'0000, the overflow flag (OVF) in the timer control/status register (TCSR) is set to 1.

Because the FRC is a 16-bit register, a temporary register (TEMP) is used when the FRC is written or read. See section 9.3, CPU Interface, for details.

The FRC is initialized to H'0000 by a reset and in the standby modes.

9.2.2 Output Compare Registers A and B (OCRA and OCRB)—H'FF94 and H'FF96

OCRA and OCRB are 16-bit readable/writable registers, the contents of which are continually compared with the value in the FRC. When a match is detected, the corresponding output compare flag (OCFA or OCFB) is set to 1 in the timer control/status register (TCSR).

In addition, if the output enable bit (OEA or OEB) in the timer output compare control register (TCR) is set to 1, when the output compare register and FRC values match, the logic level selected by the output level bit (OLVLA or OLVLB) in the TCSR is output at the output compare pin (FTOA or FTOB). After a reset, the output of FTOA and FTOB is 0 until the first compare-match event.

Because OCRA and OCRB are 16-bit registers, a temporary register (TEMP) is used for write access, as explained in section 9.3, CPU Interface.

OCRA and OCRB are initialized to H'FFFF by a reset and in the standby modes.

176

HITACHI

9.2.3 Input Capture Register (ICR)—H'FF98

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

The input capture register is a 16-bit read-only register.

When the rising or falling edge of the signal at the input capture pin (FTI) is detected, the current value of the FRC is copied to the input capture register (ICR). At the same time, the input capture flag (ICF) in the timer control/status register (TCSR) is set to 1. The input capture edge is selected by the input edge select bit (IEDG) in the TCSR.

Because the input capture register is a 16-bit register, a temporary register (TEMP) is used when it is read. See Section 9.3, CPU Interface, for details.

To ensure input capture, the width of the input capture pulse (FTI) should be at least 1.5 system clock cycles $(1.5 \, \phi)$.

The input capture register is initialized to H'0000 by a reset and in the standby modes.

Note: When input capture is detected, the FRC value is transferred to the input capture register even if the input capture flag is already set.

9.2.4 Timer Control Register (TCR)—H'FF90

Bit	7	6	5	4	3	2	1	0
	ICIE	OCIEB	OCIEA	OVIE	OEB	OEA	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCR is an 8-bit readable/writable register that enables and disables output signals and interrupts, and selects the timer clock source.

TCR is initialized to H'00 by a reset and in the standby modes.

Bit 7—Input Capture Interrupt Enable (ICIE): Selects whether to request an input capture interrupt (ICI) when the input capture flag (ICF) in the timer status/control register (TCSR) is set to 1.

Bit 7 ICIE	Description	
0	Input capture interrupt request (ICI) is disabled	(Initial value)
1	Input capture interrupt request (ICI) is enabled	

Bit 6—Output Compare Interrupt Enable B (OCIEB): Selects whether to request output compare interrupt B (OCIB) when output compare flag B (OCFB) in the timer status/control register (TCSR) is set to 1.

Bit 6 OCIEB	Description	
0	Output compare interrupt request B (OCIB) is disabled	(Initial value)
1	Output compare interrupt request B (OCIB) is enabled	

Bit 5—Output Compare Interrupt Enable A (OCIEA): Selects whether to request output compare interrupt A (OCIA) when output compare flag A (OCFA) in the timer status/control register (TCSR) is set to 1.

Bit 5 OCIEA	Description	
0	Output compare interrupt request A (OCIA) is disabled	(Initial value)
1	Output compare interrupt request A (OCIA) is enabled	

Bit 4—Timer Overflow Interrupt Enable (OVIE): Selects whether to request a free-running timer overflow interrupt (FOVI) when the timer overflow flag (OVF) in the timer status/control register (TCSR) is set to 1.

Bit 4 OVIE	Description	
0	Timer overflow interrupt request (FOVI) is disabled	(Initial value)
1	Timer overflow interrupt request (FOVI) is enabled	

Bit 3—Output Enable B (OEB): Enables or disables output of the output compare B signal (FTOB). If output compare B is enabled, the FTOB pin is driven to the level selected by OLVLB in the timer status/control register (TCSR) whenever the FRC value matches the value in output compare register B (OCRB).

Bit 3 OEB	Description	
0	Output compare B output is disabled	(Initial value)
1	Output compare B output is enabled	

Bit 2—Output Enable A (OEA): Enables or disables output of the output compare A signal (FTOA). If output compare A is enabled, the FTOA pin is driven to the level selected by OLVLA in the timer status/control register (TCSR) whenever the FRC value matches the value in output compare register A (OCRA).

Bit 2		
OEA	Description	
0	Output compare A output is disabled	(Initial value)
1	Output compare A output is enabled	

Bits 1 and 0—Clock Select (CKS1 and CKS0): These bits select external clock input or one of three internal clock sources for the FRC. External clock pulses are counted on the rising edge at the external clock pin (FTCI).

Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	φ _P /2 internal clock source	(Initial value)
0	1	φ _P /8 internal clock source	
1	0	φ _P /32 internal clock source	
1	1	External clock source (rising edge)	

9.2.5 Timer Control/Status Register (TCSR)—H'FF91

Bit	7	6	5	4	3	2	1	0
	ICF	OCFB	OCFA	OVF	OLVLB	OLVLA	IEDG	CCLRA
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)	R/(W)	R/(W)	R/W

Note: * Software can write a 0 in bits 7 to 4 to clear the flags, but cannot write a 1 in these bits.

TCSR is an 8-bit readable and partially writable register that contains four status flags and selects the output compare levels, input capture edge, and whether to clear the counter on compare-match A.

TCSR is initialized to H'00 by a reset and in the standby modes.

Bit 7—Input Capture Flag (ICF): This status flag is set to 1 to indicate an input capture event, showing that the FRC value has been copied to the ICR.

ICF must be cleared by software. It is set by hardware, however, and cannot be set by software.

Bit 7
ICF Description

O To clear ICF, the CPU must read ICF after it has been set to 1, then write a 0 in this bit

This bit is set to 1 when an FTI input signal causes the FRC value to be copied to the ICR

Bit 6—Output Compare Flag B (OCFB): This status flag is set to 1 when the FRC value matches the OCRB value.

OCFB must be cleared by software. It is set by hardware, however, and cannot be set by software.

Bit 6 OCFB	Description	
0	To clear OCFB, the CPU must read OCFB after it has been set to 1, then write a 0 in this bit	(Initial value)
1	This bit is set to 1 when FRC = OCRB	

Bit 5—Output Compare Flag A (OCFA): This status flag is set to 1 when the FRC value matches the OCRA value.

OCFA must be cleared by software. It is set by hardware, however, and cannot be set by software.

Bit 5 OCFA Description To clear OCFA, the CPU must read OCFA after it has been set to 1, then write a 0 in this bit (Initial value)

Bit 4—Timer Overflow Flag (OVF): This status flag is set to 1 when the FRC overflows (changes from H'FFFF to H'0000).

This bit is set to 1 when FRC = OCRA

OVF must be cleared by software. It is set by hardware, however, and cannot be set by software.

Bit 4
OVF Description

O To clear OVF, the CPU must read OVF after it has been set to 1, then write a 0 in this bit

This bit is set to 1 when FRC changes from H'FFFF to H'0000

Bit 3—Output Level B (OLVLB): Selects the logic level output at the FTOB pin when the FRC and OCRB values match.

Bit 3 OLVLB	Description	
0	A 0 logic level is output for compare-match B	(Initial value)
1	A 1 logic level is output for compare-match B	

Bit 2—Output Level A (OLVLA): Selects the logic level output at the FTOA pin when the FRC and OCRA values match.

Bit 2 OLVLA	Description	
0	A 0 logic level is output for compare-match A	(Initial value)
1	A 1 logic level is output for compare-match A	

Bit 1—Input Edge Select (IEDG): Selects the rising or falling edge of the input capture signal (FTI).

Bit 1 IEDG Description 0 FRC contents are transferred to ICR on the falling edge of FTI (Initial value) 1 FRC contents are transferred to ICR on the rising edge of FTI

Bit 0—Counter Clear A (CCLRA): Selects whether to clear the FRC at compare-match A (when the FRC and OCRA values match).

Bit 0 CCLRA	Description	
0	The FRC is not cleared	(Initial value)
1	The FRC is cleared at compare-match A	

9.3 CPU Interface

The free-running counter (FRC), output compare registers (OCRA and OCRB), and input capture register (ICR) are 16-bit registers, but they are connected to an 8-bit data bus. When the CPU accesses these registers, to ensure that both bytes are written or read simultaneously, the access is performed using an 8-bit temporary register (TEMP).

These registers are written and read as follows:

Register write

When the CPU writes to the upper byte, the byte of write data is placed in TEMP. Next, when the CPU writes to the lower byte, this byte of data is combined with the byte in TEMP and all 16 bits are written in the register simultaneously.

Register read

When the CPU reads the upper byte, the upper byte of data is sent to the CPU and the lower byte is placed in TEMP. When the CPU reads the lower byte, it receives the value in TEMP. (As an exception, when the CPU reads OCRA or OCRB, it reads both the upper and lower bytes directly, without using TEMP.)

Programs that access these registers should normally use word access. Equivalently, they may access first the upper byte, then the lower byte by two consecutive byte accesses. Data will not be transferred correctly if the bytes are accessed in reverse order, if only one byte is accessed, or if the upper and lower bytes are accessed separately and another register is accessed in between, altering the value in TEMP.

Coding Examples

```
To write the contents of general register R0 to OCRA: MOV.W R0, @OCRA To transfer the ICR contents to general register R0: MOV.W @ICR, R0
```

Figure 9-2 shows the data flow when the FRC is accessed. The other registers are accessed in the same way.

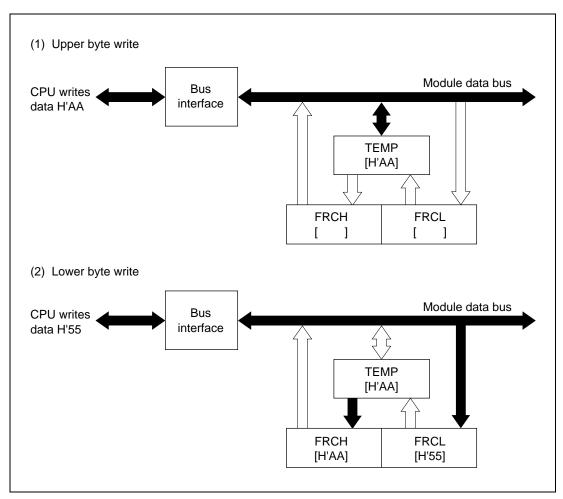


Figure 9-2 (a) Write Access to FRC (When CPU Writes H'AA55)

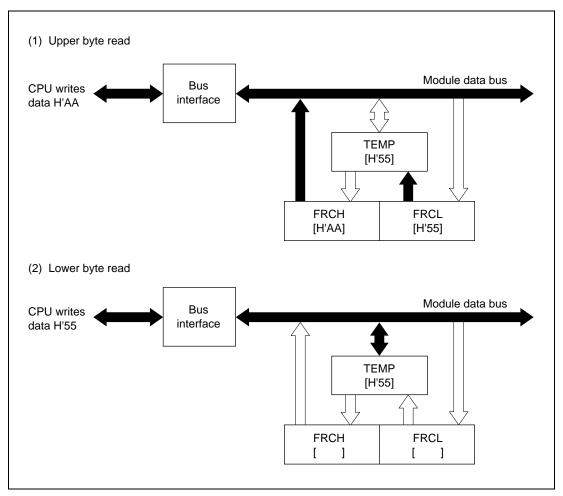


Figure 9-2 (b) Read Access to FRC (When FRC Contains H'AA55)

9.4 Operation

9.4.1 FRC Incrementation Timing

The FRC increments on a pulse generated once for each cycle of the selected (internal or external) clock source.

(1) Internal Clock Sources: Can be selected by the CKS1 and CKS0 bits in TCR. Internal clock sources are created by dividing the system clock (ϕ). Three internal clock sources are available: $\phi_P/2$, $\phi_P/8$, and $\phi_P/32$. Figure 9-3 shows the increment timing.

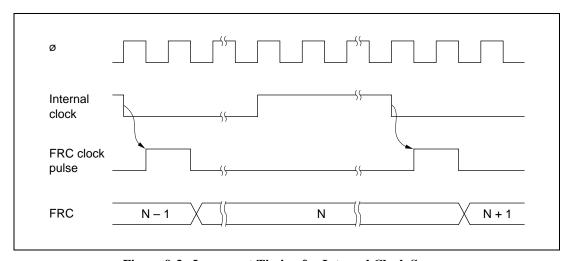


Figure 9-3 Increment Timing for Internal Clock Source

(2) External Clock Input: Can be selected by the CKS1 and CKS0 bits in the TCR. The FRC increments on the rising edge of the FTCI clock signal. The pulse width of the external clock signal must be at least 1.5 system clock (ϕ) cycles. The counter will not increment correctly if the pulse width is shorter than this.

Figure 9-4 shows the increment timing.

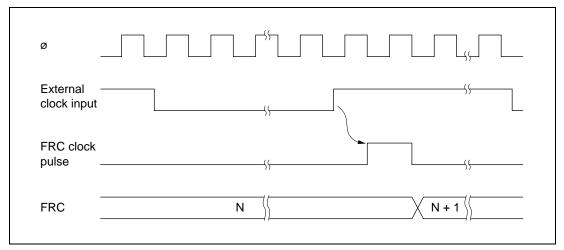


Figure 9-4 Increment Timing for External Clock Source

9.4.2 Output Compare Timing

When a compare-match occurs, the logic level selected by the output level bit (OLVLA or OLVLB) in TCSR is output at the output compare pin (FTOA or FTOB). Figure 9-5 shows the timing of this operation for compare-match A.

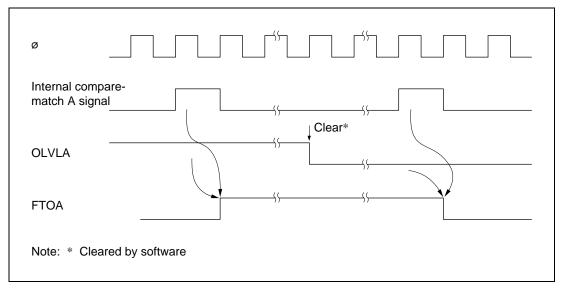


Figure 9-5 Timing of Output Compare A

9.4.3 FRC Clear Timing

If the CCLRA bit in TCSR is set to 1, the FRC is cleared when compare-match A occurs. Figure 9-6 shows the timing of this operation.

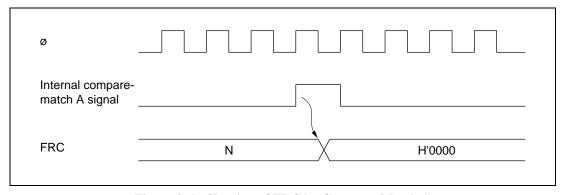


Figure 9-6 Clearing of FRC by Compare-Match A

9.4.4 Input Capture Timing

An internal input capture signal is generated from the rising or falling edge of the FTI input, as selected by the IEDG bit in TCSR. Figure 9-7 shows the usual input capture timing when the rising edge is selected (IEDG = 1).

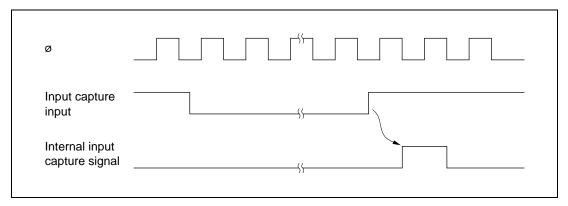


Figure 9-7 Input Capture Timing (Usual Case)

If the upper byte of ICR is being read when the internal input capture signal should be generated, the internal input capture signal is delayed by one state. Figure 9-8 shows the timing for this case.

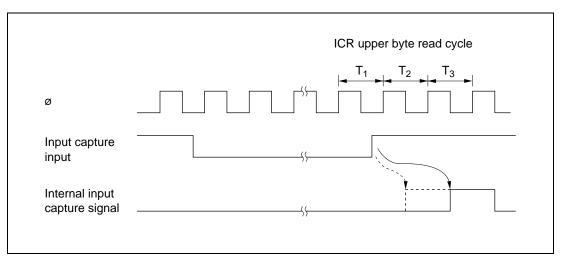


Figure 9-8 Input Capture Timing (1-State Delay Due to ICR Read)

9.4.5 Timing of Input Capture Flag (ICF) Setting

The input capture flag ICF is set to 1 by the internal input capture signal. The FRC contents are transferred to ICR at the same time. Figure 9-9 shows the timing of this operation.

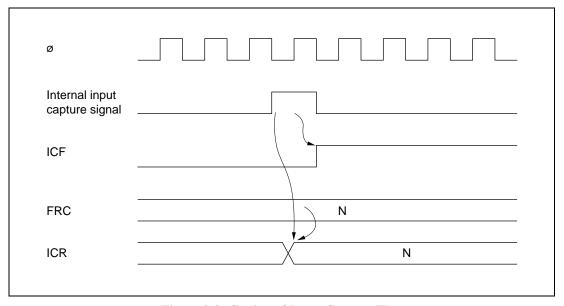


Figure 9-9 Setting of Input Capture Flag

9.4.6 Setting of FRC Overflow Flag (OVF)

The FRC overflow flag (OVF) is set to 1 when the FRC changes from H'FFFF to H'0000. Figure 9-10 shows the timing of this operation.

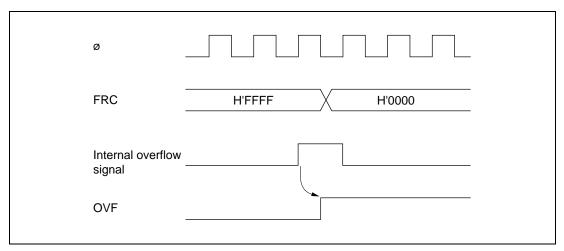


Figure 9-10 Setting of Overflow Flag

9.5 Interrupts

The free-running timer module can request four types of interrupts: input capture (ICI), output compare A and B (OCIA and OCIB), and overflow (FOVI). Each interrupt is requested when the corresponding flag bit is set, provided the corresponding enable bit is also set. Independent signals are sent to the interrupt controller for each type of interrupt. Table 9-3 lists information about these interrupts.

Table 9-3 Free-Running Timer Interrupts

Interrupt	Description	Priority
ICI	Requested when ICF is set	High
OCIA	Requested when OCFA is set	
OCIB	Requested when OCFB is set	
FOVI	Requested when OVF is set	Low

9.6 Sample Application

In the example below, the free-running timer module is used to generate two square-wave outputs with a 50% duty factor and arbitrary phase relationship. The programming is as follows:

- 1. The CCLRA bit in TCSR is set to 1.
- 2. Each time a compare-match interrupt occurs, software inverts the corresponding output level bit in TCSR (OLVLA or OLVLB).

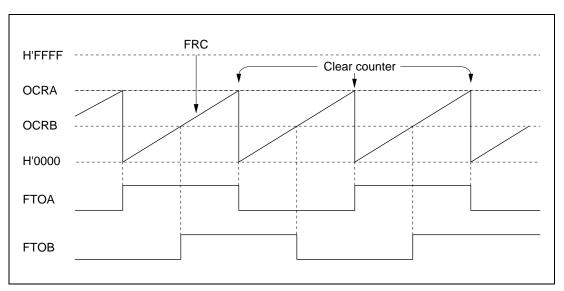


Figure 9-11 Square-Wave Output (Example)

9.7 Application Notes

Application programmers should note that the following types of contention can occur in the free-running timer.

(1) Contention between FRC Write and Clear: If an internal counter clear signal is generated during the T₃ state of a write cycle to the lower byte of the free-running counter, the clear signal takes priority and the write is not performed.

Figure 9-12 shows this type of contention.

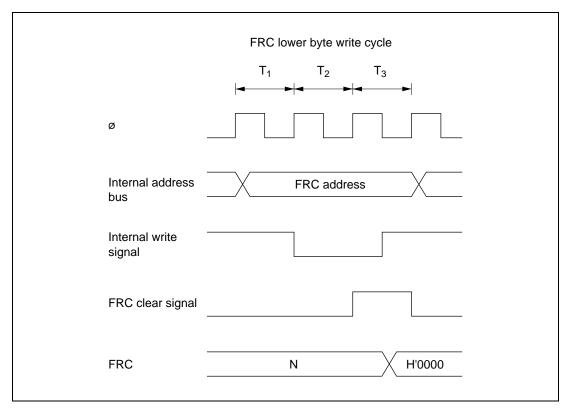


Figure 9-12 FRC Write-Clear Contention

(2) Contention between FRC Write and Increment: If an FRC increment pulse is generated during the T₃ state of a write cycle to the lower byte of the free-running counter, the write takes priority and the FRC is not incremented.

Figure 9-13 shows this type of contention.

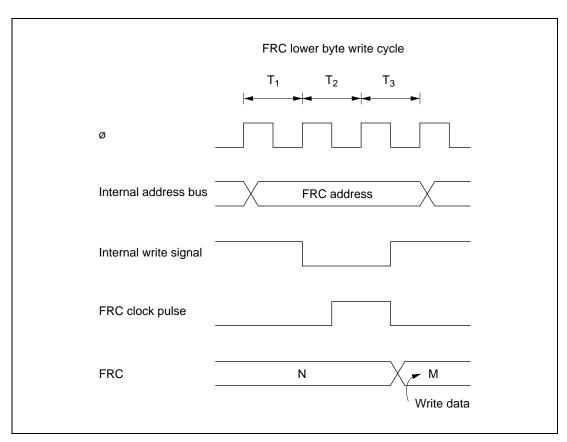


Figure 9-13 FRC Write-Increment Contention

(3) Contention between OCR Write and Compare-Match: If a compare-match occurs during the T₃ state of a write cycle to the lower byte of OCRA or OCRB, the write takes priority and the compare-match signal is inhibited.

Figure 9-14 shows this type of contention.

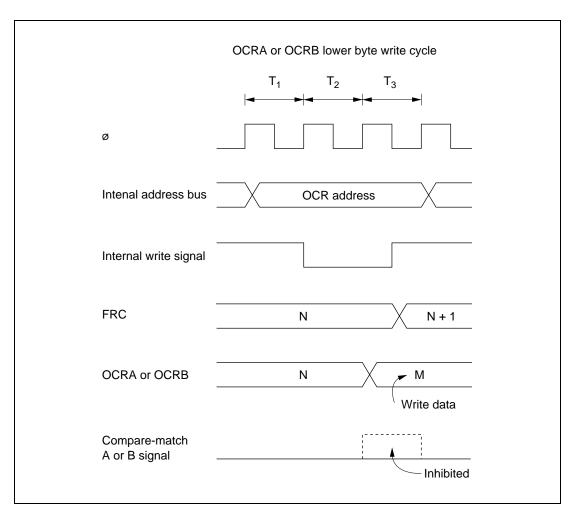


Figure 9-14 Contention between OCR Write and Compare-Match

(4) Increment Caused by Changing of Internal Clock Source: When an internal clock source is changed, the changeover may cause the FRC to increment. This depends on the time at which the clock select bits (CKS1 and CKS0) are rewritten, as shown in table 9-4.

The pulse that increments the FRC is generated at the falling edge of the internal clock source. If clock sources are changed when the old source is high and the new source is low, as in case No. 3 in table 9-4, the changeover generates a falling edge that triggers the FRC increment clock pulse.

Switching between an internal and external clock source can also cause the FRC to increment.

Table 9-4 Effect of Changing Internal Clock Sources

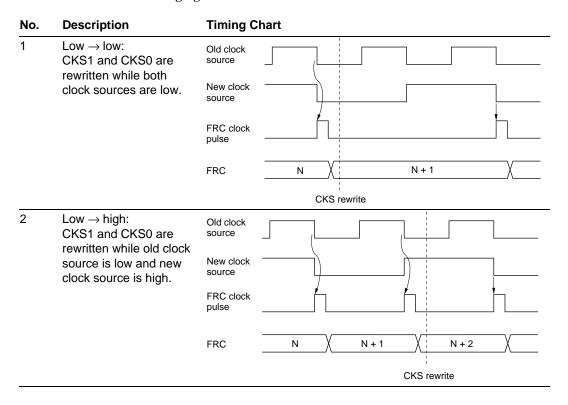
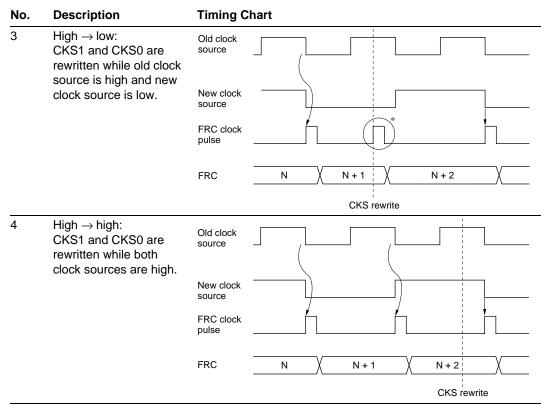



 Table 9-4
 Effect of Changing Internal Clock Sources (cont)

Note: * The switching of clock sources is regarded as a falling edge that increments the FRC.

Section 10 8-Bit Timers

[Two channels incorporated in the H8/3202, and three channels in all other models]

Note that the H8/3202 does not have a channel X (TMRX).

10.1 Overview

The H8/3217 Series has an 8-bit timer module with three channels: timers 0, 1, and X. Each channel has an 8-bit counter (TCNT) and two time constant registers (TCORA and TCORB) that are constantly compared with the TCNT value to detect compare-match events. One application of the 8-bit timer module is to generate a rectangular-wave output with an arbitrary duty factor.

10.1.1 Features

The features of the 8-bit timer module are listed below.

- Selection of seven clock sources for TMR0 and TMR1, and four clock sources for TMRX The counters can be driven by an internal clock signal (selection of six signals for TMR0 and TMR1, and three signals for TMRX) or an external clock input (enabling use as an external event counter).
- Selection of three ways to clear the counters
 The counters can be cleared on compare-match A or B, or by an external reset signal.
- Timer output controlled by two compare-match signals
 The timer output signal in each channel is controlled by two independent compare-match signals, enabling the timer to generate output waveforms with an arbitrary duty factor. PWM mode can be selected, enabling PWM output of 0% to 100%.
- Three independent interrupts
 Compare-match A and B and overflow interrupts can be requested independently.

10.1.2 Block Diagram

Figure 10-1 shows a block diagram of one channel in the 8-bit timer module. The other channels are identical.

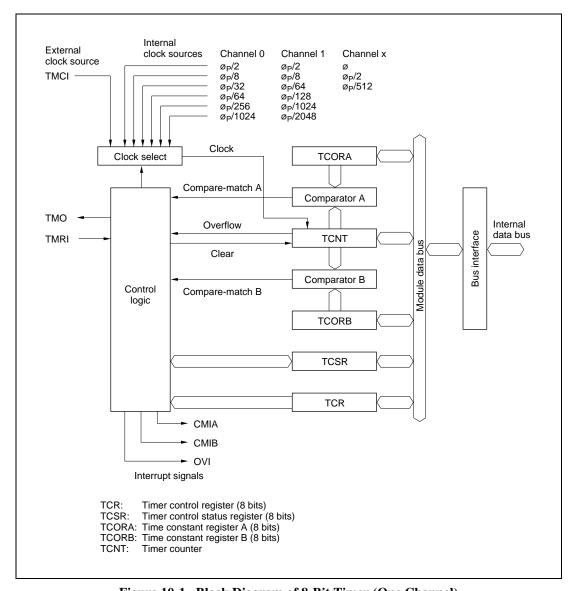


Figure 10-1 Block Diagram of 8-Bit Timer (One Channel)

10.1.3 Input and Output Pins

Table 10-1 lists the input and output pins of the 8-bit timer.

Table 10-1 Input and Output Pins of 8-Bit Timer

Channel	Name	Abbreviation*	I/O	Function
0	Timer output	TMO ₀	Output	Output controlled by compare-match
	Timer clock input	TMCI ₀	Input	External clock source for the counter
	Timer reset input	TMRI ₀	Input	External reset signal for the counter
1	Timer output	TMO ₁	Output	Output controlled by compare-match
	Timer clock input	TMCI ₁	Input	External clock source for the counter
	Timer reset input	TMRI ₁	Input	External reset signal for the counter
X	Timer output	CLAMPO (TMO _x)	Output	Output controlled by compare-match
	Timer clock/reset input	FBACKI (TMCI _x /TMRI _x)	Input	External clock source/reset signal for the counter

Note: * The abbreviations TMO, TMCI, and TMRI are used in the text, omitting the channel number.

Channel X I/O pins have the same internal configuration as channels 0 and 1, and therefore the same abbreviations are used.

10.1.4 Register Configuration

Table 10-2 lists the registers of the 8-bit timer module. Each channel has an independent set of registers.

Table 10-2 8-Bit Timer Registers

			Initial		Address			
Name	Abbreviation	R/W	Value	TMR0	TMR1	TMRX		
Timer control register	TCR	R/W	H'00	H'FFC8	H'FFD0	H'FF9A		
Timer control/status register	TCSR	R/(W)*	H'00	H'FFC9	H'FFD1	H'FF9B		
Timer constant register A	TCORA	R/W	H'FF	H'FFCA	H'FFD2	H'FF9C		
Timer constant register B	TCORB	R/W	H'FF	H'FFCB	H'FFD3	H'FF9D		
Timer counter	TCNT	R/W	H'00	H'FFCC	H'FFD4	H'FF9E		
Serial timer control register	STCR	R/W	H'00	H'FFC3	H'FFC3			

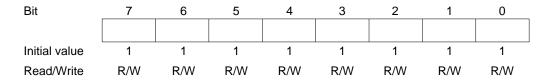
Note: * Software can write a 0 to clear bits 7 to 5, but cannot write a 1 in these bits.

10.2 Register Descriptions

10.2.1 Timer Counter (TCNT)—H'FFCC (TMR0), H'FFD4 (TMR1), H'FF9E (TMRX)

Bit	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

Each timer counter (TCNT) is an 8-bit up-counter that increments on a pulse generated from the selected clock source. The clock source is selected by clock select bits 2 to 0 (CKS2 to CKS0) of the timer control register (TCR). The CPU can always read or write the timer counter.


The timer counter can be cleared by an external reset input or by an internal compare-match signal generated at a compare-match event. Counter clear bits 1 and 0 (CCLR1 and CCLR0) of the timer control register select the method of clearing.

When a timer counter overflows from H'FF to H'00, the overflow flag (OVF) in the timer control/status register (TCSR) is set to 1.

The timer counters are initialized to H'00 by a reset and in the standby modes. 202

HITACHI

10.2.2 Time Constant Registers A and B (TCORA and TCORB)—H'FFCA and H'FFCB (TMR0), H'FFD2 and H'FFD3 (TMR1), H'FF9C and H'FF9D (TMRX)

TCORA and TCORB are 8-bit readable/writable registers. The timer count is continually compared with the constants written in these registers. When a match is detected, the corresponding compare-match flag (CMFA or CMFB) is set in the timer control/status register (TCSR).

The timer output signal is controlled by these compare-match signals as specified by output select bits 3 to 0 (OS3 to OS0) in the timer control/status register (TCSR).

TCORA and TCORB are initialized to H'FF at a reset and in the standby modes.

10.2.3 Timer Control Register (TCR)—H'FFC8 (TMR0), H'FFD0 (TMR1), H'FF9A (TMRX)

Bit	7	6	5	4	3	2	1	0
	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCR is an 8-bit readable/writable register that selects the clock source and the time at which the timer counter is cleared, and enables interrupts.

TCR is initialized to H'00 at a reset and in the standby modes.

For the timing, see section 10.3, Operation.

Bit 7—Compare-Match Interrupt Enable B (CMIEB): This bit selects whether to request compare-match interrupt B (CMIB) when compare-match flag B (CMFB) in the timer control/status register (TCSR) is set to 1.

Bit 7	
CMIEB	Description

0	Compare-match interrupt request B (CMIB) is disabled	(Initial value)
1	Compare-match interrupt request B (CMIB) is enabled	

Bit 6—Compare-Match Interrupt Enable A (CMIEA): This bit selects whether to request compare-match interrupt A (CMIA) when compare-match flag A (CMFA) in the timer control/status register (TCSR) is set to 1.

Bit 6		
CMIEA	Description	
0	Compare-match interrupt request A (CMIA) is disabled	(Initial value)
1	Compare-match interrupt request A (CMIA) is enabled	

Bit 5—Timer Overflow Interrupt Enable (OVIE): This bit selects whether to request a timer overflow interrupt (OVI) when the overflow flag (OVF) in the timer control/status register (TCSR) is set to 1.

Bit 5		
OVIE	Description	
0	The timer overflow interrupt request (OVI) is disabled	(Initial value)
1	The timer overflow interrupt request (OVI) is enabled	

Bits 4 and 3—Counter Clear 1 and 0 (CCLR1 and CCLR0): These bits select how the timer counter is cleared: by compare-match A or B or by an external reset input at the TMRI pin.

Bit 4 CCLR1	Bit 3 CCLR0	Description	
0	0	Not cleared	(Initial value)
0	1	Cleared on compare-match A	
1	0	Cleared on compare-match B	
1	1	Cleared on rising edge of external reset input signal	

Bits 2, 1, and 0—Clock Select (CKS2, CKS1, and CKS0): Together with the ICKS0 and ICKS1 bits in STCR, these bits select the internal or external clock source for the timer counter. For the external clock source they select whether to increment the count on the rising or falling edge of the external clock input (TMCI), or on both edges. For the internal clock sources the count is incremented on the falling edge of the clock input.

		TCR		S	TCR	
Channel	Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Bit 1 ICKS1	Bit 0 ICKS0	Description
0	0	0	0	_	_	No clock source (timer stopped)
	0	0	1	_	0	$\phi_{P}/8$ internal clock source, counted on the falling edge
	0	0	1	_	1	$\phi_{P}/2$ internal clock source, counted on the falling edge
	0	1	0	_	0	φ _P /64 internal clock source, counted on the falling edge
	0	1	0	_	1	φ _P /32 internal clock source, counted on the falling edge
	0	1	1	_	0	φ _P /1024 internal clock source, counted on the falling edge
	0	1	1	_	1	φ _P /256 internal clock source, counted on the falling edge
	1	0	0	_	_	No clock source (timer stopped)
	1	0	1	_	_	External clock source, counted on the rising edge
	1	1	0	_	_	External clock source, counted on the falling edge
	1	1	1	_	_	External clock source, counted on both the rising and falling edges

		TCR		S	TCR	
Channel	Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Bit 1 ICKS1	Bit 0 ICKS0	- Description
1	0	0	0	_	_	No clock source (timer stopped)
	0	0	1	0	_	φ _P /8 internal clock source, counted on the falling edge
	0	0	1	1	_	φ _P /2 internal clock source, counted on the falling edge
	0	1	0	0	_	φ _P /64 internal clock source, counted on the falling edge
	0	1	0	1	_	φ _P /128 internal clock source, counted on the falling edge
	0	1	1	0	_	φ _P /1024 internal clock source, counted on the falling edge
	0	1	1	1	_	φ _P /2048 internal clock source, counted on the falling edge
	1	0	0	_	_	No clock source (timer stopped)
	1	0	1	_	_	External clock source, counted on the rising edge
	1	1	0	_	_	External clock source, counted on the falling edge
	1	1	1	_	_	External clock source, counted on both the rising and falling edges
X	0	0	0	_	_	No clock source (timer stopped)
	0	0	1	_	_	φ internal clock source
	0	1	0	_	_	$\phi_P/2$ internal clock source, counted on the falling edge
	0	1	1	_	_	φ _P /512 internal clock source, counted on the falling edge
	1	0	0	_	_	No clock source (timer stopped)
	1	0	1	_	_	External clock source, counted on the rising edge
	1	1	0	_	_	External clock source, counted on the falling edge
	1	1	1	_	_	External clock source, counted on both the rising and falling edges

10.2.4 Timer Control/Status Register (TCSR)—H'FFC9 (TMR0), H'FFD1 (TMR1), H'FF9B (TMRX)

Bit	7	6	5	4	3	2	1	0
	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/W	R/W	R/W	R/W	R/W

Note: * Software can write a 0 in bits 7 to 5 to clear the flags, but cannot write a 1 in these bits.

TCSR is an 8-bit readable and partially writable register that indicates compare-match and overflow status and selects the effect of compare-match events on the timer output signal.

TCSR is initialized to H'00 at a reset and in the standby modes.

Bit 7—Compare-Match Flag B (CMFB): This status flag is set to 1 when the timer count matches the time constant set in TCORB. CMFB must be cleared by software. It is set by hardware, however, and cannot be set by software.

Bit 7
CMFB Description

J	2-3-3-1-pii-0-1	
0	To clear CMFB, the CPU must read CMFB after it has been set to 1, then write a 0 in this bit	(Initial value)
1	This bit is set to 1 when TCNT = TCORB	

Bit 6—Compare-Match Flag A (CMFA): This status flag is set to 1 when the timer count matches the time constant set in TCORA. CMFA must be cleared by software. It is set by hardware, however, and cannot be set by software.

Bit	6
CM	

CMFA	Description	
0	To clear CMFA, the CPU must read CMFA after it has been set to 1, then write a 0 in this bit	(Initial value)
1	This bit is set to 1 when TCNT = TCORA	

Bit 5—Timer Overflow Flag (OVF): This status flag is set to 1 when the timer count overflows (changes from H'FF to H'00). OVF must be cleared by software. It is set by hardware, however, and cannot be set by software.

В	i	t	5
_			_

OVF	Description	
0	To clear OVF, the CPU must read OVF after it has been set to 1, then write a 0 in this bit	(Initial value)
1	This bit is set to 1 when TCNT changes from H'FF to H'00	

Bit 4—PWM Mode Enable (PWME): This bit sets the timer output to PWM mode.

Bit 4

PWME	Description					
0	Normal timer mode	(Initial value)				
1	PWM mode					

In PWM mode, bits CCLR1 and CCLR0 and bits OS3 to OS0 must be set so that the contents of TCORA determine the timer output period and the contents of TCORB determine the timer output duty cycle. The timer output pulse period, pulse width, and duty cycle are given by the following equations. If TCORA < TCORB, the output is saturated at a100% duty cycle.

(When TCORB \leq TCORA)

Timer output pulse period = Selected internal clock period \times (TCORA + 1) Timer output pulse width = Selected internal clock period \times TCORB Timer output duty cycle = TCORB/(TCORA + 1)

	TCR		TCSR			
PWM Output Mode	CCLR1	CCLR0	OS3	OS2	OS1	OS0
Direct output (when the above timer pulse width is high)	0	1	0	1	1	0
Inverted output (when the above timer pulse width is low)	0	1	1	0	0	1

In PWM mode, a buffer register is inserted between TCORB and the module data bus, and the data written to TCORB is held in the buffer register until a TCORA compare-match occurs. This makes it easy to achieve PWM output with an undisturbed waveform. With the timer output specification made by bits OS3 to OS0, the priority of a change due to compare-match B is higher. Caution is required since the operation differs from that in normal timer mode.

Bits 3 to 0—Output Select 3 to 0 (OS3 to OS0): These bits specify the effect of comparematch events on the timer output signal (TMO). Bits OS3 and OS2 control the effect of compare-match B on the output level. Bits OS1 and OS0 control the effect of compare-match A on the output level.

In normal timer mode, if compare-match A and B occur simultaneously, any conflict is resolved by giving highest priority to toggle, second-highest priority to 1 output, and third-highest priority to 0 output, as explained in item 10.6.4 in section 10.6, Application Notes.

After a reset, the timer output is 0 until the first compare-match event.

When all four output select bits (bits OS3 to OS0) are cleared to 0 the timer output signal is disabled.

Bit 3 OS3	Bit 2 OS2	Description	
0	0	No change when compare-match B occurs	(Initial value)
0	1	Output changes to 0 when compare-match B occurs	
1	0	Output changes to 1 when compare-match B occurs	
1	1	Output inverts (toggles) when compare-match B occur	rs
Bit 1 OS1	Bit 0 OS0	Description	
		Description No change when compare-match A occurs	(Initial value)
	OS0	<u> </u>	(Initial value)
	OS0	No change when compare-match A occurs	(Initial value)

10.2.5 Serial/Timer Control Register (STCR)

Bit	7	6	5	4	3	2	1	0
	IICS	IICX1	IICX0	SYNCE	PWCKE	PWCKS	ICKS1	ICKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

STCR is an 8-bit readable/writable register that controls the I²C bus interface operating mode and the TCNT clock source in the PWM timer module and the 8-bit timers.

STCR is initialized to H'00 by a reset.

Bits 7 to 5—I²C Control (IICS, IICX1, IICX0): These bits control the operation of the I²C bus interface. For details, see section 14, I²C Bus Interface.

Bit 4—Timer Connection Output Enable (SYNCE): This bit controls the outputs (VSYNCO, HSYNCO, CLAMPO) when the timers are interconnected. For details, see section 11, Timer Connection.

Bits 3 and 2—PWM Timer Control (PWCKE, PWCKS): These bits control the internal clock to be input to the timer counter (TCNT) in the PWM timer module. For details, see section 8, PWM Timers.

Bits 1 and 0—Internal Clock Select 1 and 0 (ICKS1 and ICKS0): These bits, together with bits CKS2 to CKS0 in TCR of the 8-bit timers, select the internal clock to be input to the timer counters (TCNT) in the 8-bit timers. For details, see section 10.2.3, Timer Control Register.

10.3 Operation

10.3.1 TCNT Incrementation Timing

The timer counter increments on a pulse generated once for each period of the clock source selected by bits CKS2 to CKS0 of the TCR.

Internal Clock: Internal clock sources are created from the system clock by a prescaler. The counter increments on an internal TCNT clock pulse generated from the falling edge of the prescaler output, as shown in figure 10-2. Bits CKS2 to CKS0 of the TCR can select one of six, or one of three, internal clocks.

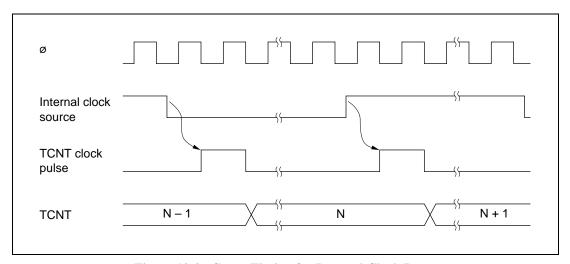


Figure 10-2 Count Timing for Internal Clock Input

External Clock: If external clock input (TMCI) is selected, the timer counter can increment on the rising edge, the falling edge, or both edges of the external clock signal. Figure 10-3 shows incrementation on both edges of the external clock signal.

The external clock pulse width must be at least 1.5 system clock periods for incrementation on a single edge, and at least 2.5 system clock periods for incrementation on both edges.

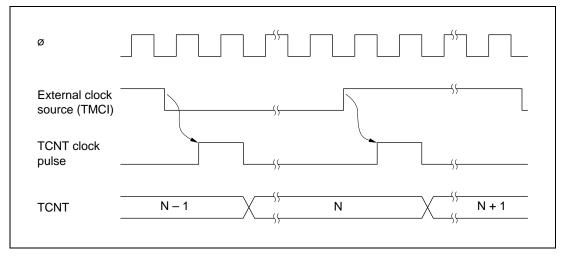


Figure 10-3 Count Timing for External Clock Input

10.3.2 Compare Match Timing

(1) Setting of Compare-Match Flags A and B (CMFA and CMFB): The compare-match flags are set to 1 by an internal compare-match signal generated when the timer count matches the time constant in TCNT or TCOR. The compare-match signal is generated at the last state in which the match is true, just before the timer counter increments to a new value.

Accordingly, when the timer count matches one of the time constants, the compare-match signal is not generated until the next period of the clock source. Figure 10-4 shows the timing of the setting of the compare-match flags.

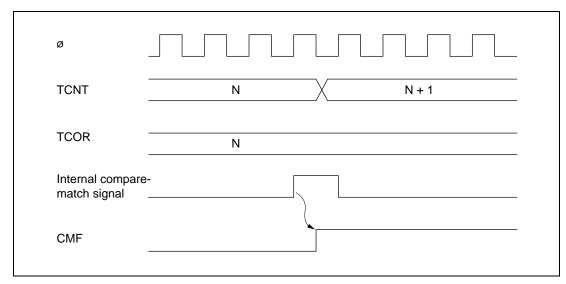


Figure 10-4 Setting of Compare-Match Flags

(2) Output Timing (Normal Timer Mode): When a compare-match event occurs, the timer output (TMO0 or TMO1) changes as specified by the output select bits (OS3 to OS0) in the TCSR. Depending on these bits, the output can remain the same, change to 0, change to 1, or toggle. If compare-match A and B occur simultaneously, the higher priority compare-match determines the output level. See item 10.6.4 in section 10.6, Application Notes, for details. Figure 10-5 shows the timing when the output is set to toggle on compare-match A.

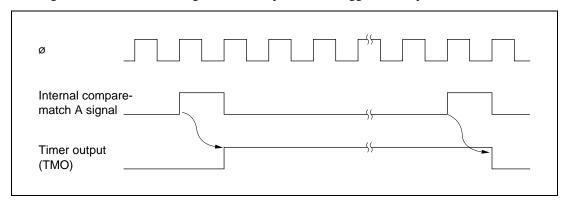


Figure 10-5 Timing of Timer Output

(3) Timing of Compare-Match Clear: Depending on the CCLR1 and CCLR0 bits in the TCR, the timer counter can be cleared when compare-match A or B occurs. Figure 10-6 shows the timing of this operation.

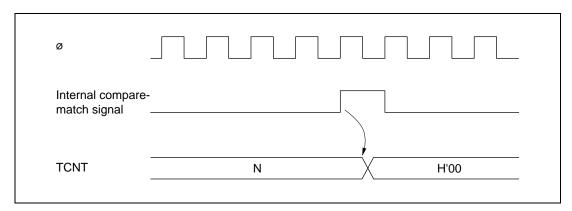


Figure 10-6 Timing of Compare-Match Clear

10.3.3 External Reset of TCNT

When the CCLR1 and CCLR0 bits in the TCR are both set to 1, the timer counter is cleared on the rising edge of an external reset input. Figure 10-7 shows the timing of this operation. The timer reset pulse width must be at least 1.5 system clock periods.

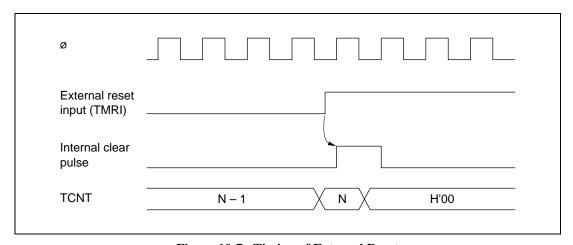


Figure 10-7 Timing of External Reset

10.3.4 Setting of TCSR Overflow Flag

(1) Setting of TCSR Overflow Flag (OVF): The overflow flag (OVF) is set to 1 when the timer count overflows (changes from H'FF to H'00). Figure 10-8 shows the timing of this operation.

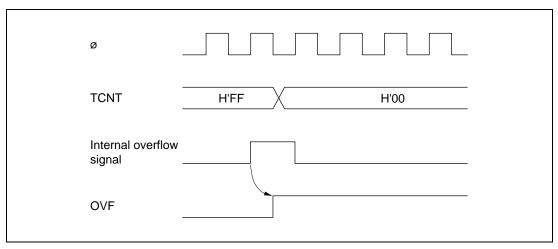


Figure 10-8 Setting of Overflow Flag

10.4 Interrupts

Each channel in the 8-bit timer can generate three types of interrupts: compare-match A and B (CMIA and CMIB), and overflow (OVI). Each interrupt is requested when the corresponding enable bits are set in the TCR and TCSR. Independent signals are sent to the interrupt controller for each interrupt. Table 10-3 lists information about these interrupts.

Table 10-3 8-Bit Timer Interrupts

Interrupt	Description	Priority
CMIA	Requested when CMFA and CMIEA are set	High
CMIB	Requested when CMFB and CMIEB are set	 ‡
OVI	Requested when OVF and OVIE are set	Low

10.5 Sample Application

In the example below, the 8-bit timer is used to generate a pulse output with a selected duty factor. The control bits are set as follows:

- 1. In the TCR, CCLR1 is cleared to 0 and CCLR0 is set to 1 so that the timer counter is cleared when its value matches the constant in TCORA.
- 2. In the TCSR, bits OS3 to OS0 are set to 0110, causing the output to change to 1 on comparematch A and to 0 on compare-match B.

With these settings, the 8-bit timer provides output of pulses at a rate determined by TCORA with a pulse width determined by TCORB. No software intervention is required.

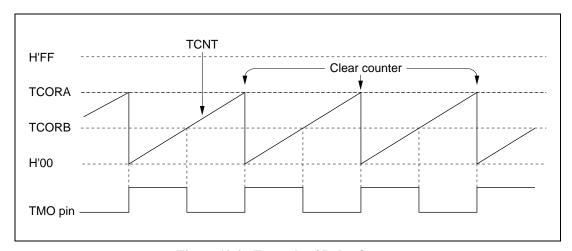


Figure 10-9 Example of Pulse Output

10.6 Application Notes

Application programmers should note that the following types of contention can occur in the 8-bit timer.

10.6.1 Contention between TCNT Write and Clear

If an internal counter clear signal is generated during the T_3 state of a write cycle to the timer counter, the clear signal takes priority and the write is not performed.

Figure 10-10 shows this type of contention.

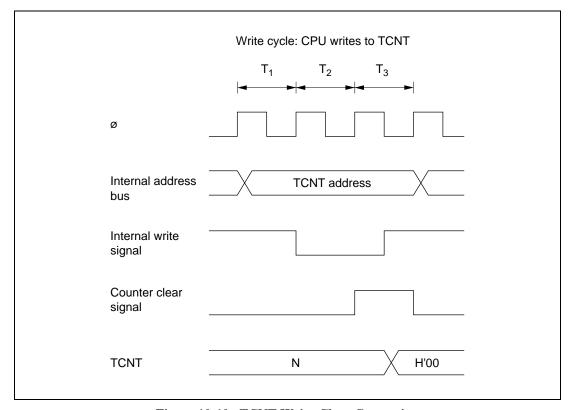


Figure 10-10 TCNT Write-Clear Contention

10.6.2 Contention between TCNT Write and Increment

If a timer counter increment pulse is generated during the T_3 state of a write cycle to the timer counter, the write takes priority and the timer counter is not incremented.

Figure 10-11 shows this type of contention.

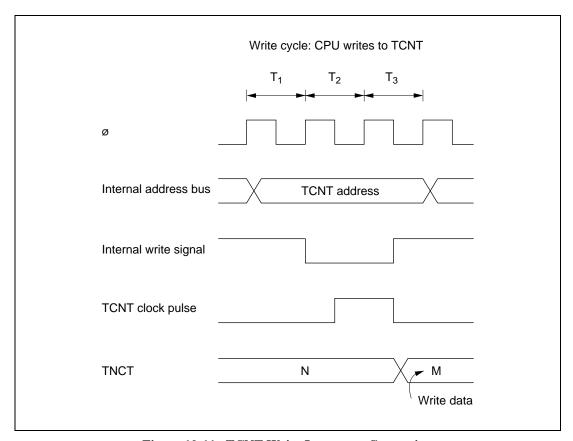


Figure 10-11 TCNT Write-Increment Contention

218

10.6.3 Contention between TCOR Write and Compare-Match

If a compare-match occurs during the T₃ state of a write cycle to TCOR, the write takes precedence and the compare-match signal is inhibited.

Figure 10-12 shows this type of contention (in normal timer mode).

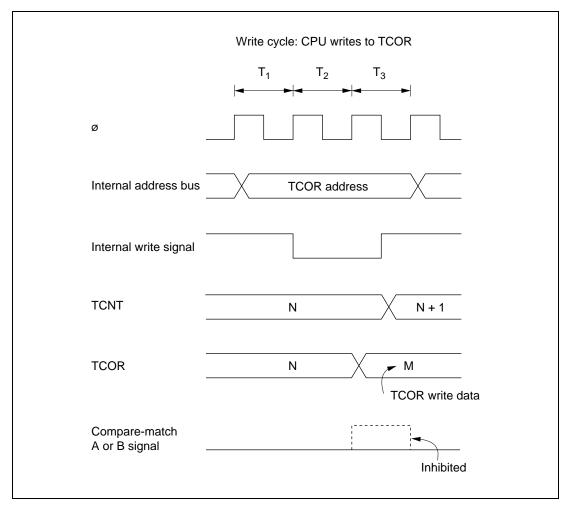


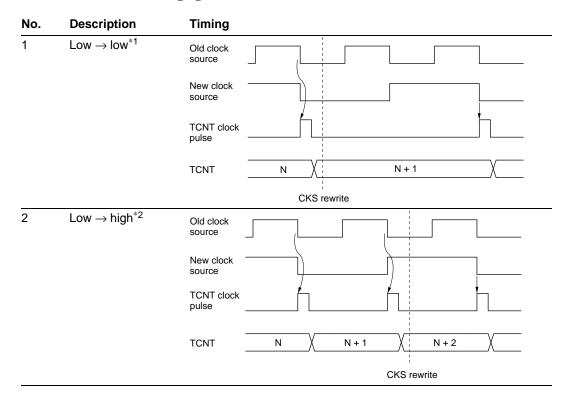
Figure 10-12 Contention between TCOR Write and Compare-Match

10.6.4 Contention between Compare-Match A and Compare-Match B

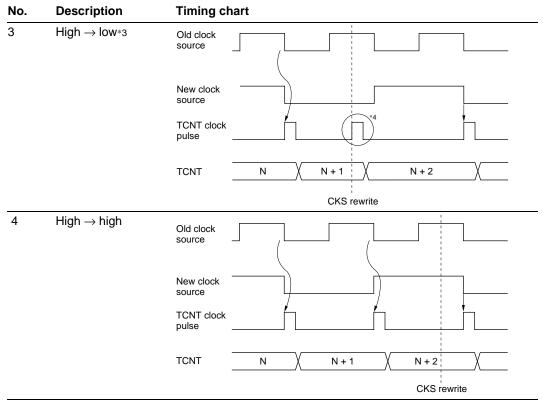
If identical time constants are written in TCORA and TCORB, causing compare-match A and B to occur simultaneously, any conflict between the output selections for compare-match A and B is resolved by following the priority order in table 10-4 (this applies to normal timer mode).

Table 10-4 Priority of Timer Output

Output Selection	Priority
Toggle	High
1 output	_ ↑
0 output	_
No change	Low


10.6.5 Incrementation Caused by Changing of Internal Clock Source

When an internal clock source is changed, the changeover may cause the timer counter to increment. This depends on the time at which the clock select bits (CKS1, CKS0) are rewritten, as shown in table 10-5.


The pulse that increments the timer counter is generated at the falling edge of the internal clock source signal. If clock sources are changed when the old source is high and the new source is low, as in case no. 3 in table 10-5, the changeover generates a falling edge that triggers the TCNT clock pulse and increments the timer counter.

Switching between an internal and external clock source can also cause the timer counter to increment.

Table 10-5 Effect of Changing Internal Clock Sources

Table 10-5 Effect of Changing Internal Clock Sources (cont)

Notes: 1. Including a transition from low to the stopped state (CKS1 = 0, CKS0 = 0), or a transition from the stopped state to low.

- 2. Including a transition from the stopped state to high.
- 3. Including a transition from high to the stopped state.
- 4. The switching of clock sources is regarded as a falling edge that increments TCNT.

Section 11 Timer Connection

[Incorporated in all models except the H8/3202]

11.1 Overview

The H8/3217 Series allows interconnection between the input/output of the single free-running timer (FRT) channel and two 8-bit timer channels (TMR1 and TMRX). This capability can be used to implement complex functions such as PWM decoding and clamp waveform output. All the timers are initially set for independent operation.

11.1.1 Features

The features of the timer connection facility are as follows.

- Four input pins and three output pins, of which three input pins and two output pins can be designated for phase inversion
- An edge-detection circuit is connected to the input pins, simplifying signal input detection.
- TMRX can be used for PWM input signal decoding and clamp waveform generation.
- An input signal can be converted to phase-inverted waveform, PWM decode waveform, or clamp waveform output.
- An external clock signal divided by TMR1 can be used as the FRT capture input signal.

11.1.2 Block Diagram

Figure 11-1 shows a block diagram of the timer connection facility.

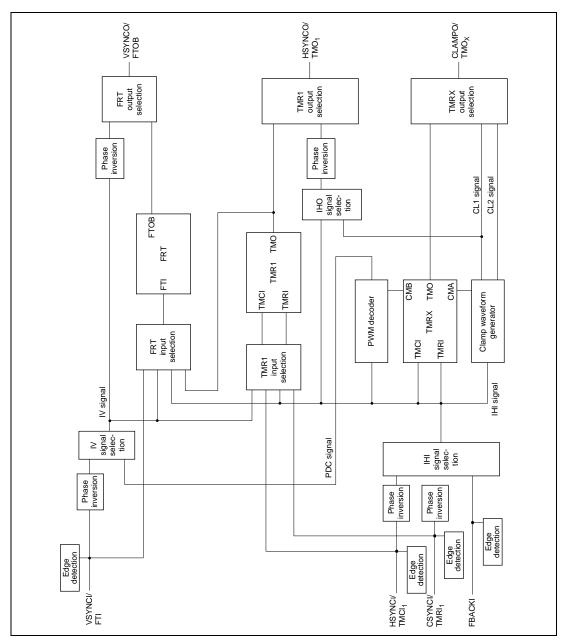


Figure 11-1 Block Diagram of Timer Connection

224

11.1.3 Input and Output Pins

Table 11-1 lists the timer connection input and output pins.

Table 11-1 Timer Connection Input and Output Pins

Name	Abbreviation	Input/ Output	Function
Vertical synchronization signal input pin	VSYNCI	Input	Vertical synchronization signal input pin or FTI input pin or TMRI1 pin
Horizontal synchronization signal input pin	HSYNCI	Input	Horizontal synchronization signal input pin or TMCI1 input pin or TMCIx/TMRIx input pin
Composite synchronization signal input pin	CSYNCI	Input	Composite synchronization signal input pin or TMCI1 input pin or TMCIx/TMRIx input pin
Spare synchronization signal input pin	FBACKI	Input	Spare synchronization signal input pin or TMCIx/TMRIx input pin
Vertical synchronization signal output pin	VSYNCO	Output	Vertical synchronization signal output pin or FTOB output pin
Horizontal synchronization signal output pin	HSYNCO	Output	Horizontal synchronization signal output pin or TMO1 output pin
Clamp waveform output pin	CLAMPO	Output	Clamp waveform output pin or TMOx output pin

11.1.4 Register Configuration

Table 11-2 lists the timer connection registers.

Table 11-2 Register Configuration

Name	Abbreviation	R/W	Initial Value	Address
Timer connection register	TCONR	R/W	H'00	H'FF9F
Serial/timer control register	STCR	R/W	H'00	H'FFC3
Edge sense register	SEDGR	R/(W)*	H'0F	H'FFA8

Note: * Software can write a 0 to clear the flag bits, but cannot write 1.

11.2 Register Descriptions

11.2.1 Timer Connection Register (TCONR)

Bit	7	6	5	4	3	2	1	0
	SMOD1	SMOD0	CLMOD	INVV	SCON1	SCON0	INVI	INVO
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCONR is an 8-bit readable/writable register that controls connection between timers and phase inversion of I/O signals.

TCONR is initialized to H'00 by a reset and in the standby modes.

Bits 7 and 6—Synchronization Mode Select 1 and 0 (SMOD1 and SMOD0): These bits select the signal source of the IHI, IHO, and IV signals.

Bit 7	Bit 6	Description				
SMOD1	SMOD0	Mode	IHI Signal	IHO Signal	IV Signal	
0	0	No signal (normal connection) (Initial value)	FBACKI input	IHI signal	VSYNCI input	
0	1	S-on-G mode	CSYNCI input	CL1 signal	PDC signal	
1	0	Composite mode	HSYNCI input	CL1 signal	PDC signal	
1	1	Separate mode	HSYNCI input	IHI signal	VSYNCI input	

Together with the SYNCE bit in STCR and bits OS3 to OS0 in TMR1, these bits also select the function of the $P4_4/TMO_1/HSYNCO$ pin. For details, see section 11.2.2, Serial/Timer Control Register.

Bit 5—Clamp Waveform Mode Select (CLMOD): Together with the SYNCE bit in STCR and bits OS3 to OS0 in TMR1, this bit selects the function of the P4₇/TMOx/CLAMPO pin. For details, see section 11.2.2, Serial/Timer Control Register.

Bits 3 and 2—Synchronization Signal Connection 1 and 0 (SCON1 and SCON0): These bits select the signal source of the FTI input for FRT and the TMCI₁/TMRI₁ input for TMR1.

		Description				
Bit 3 SCON1	Bit 2 SCON0	Mode	FTI	TMCI1	TMRI1	
0	0	Normal connection (Initial value)	FTI input	TMCI ₁ input	TMRI ₁ input	
0	1	Vertical synchronization period measurement mode	IV signal	IHI signal	IV signal	
1	0	Horizontal synchronization period measurement mode	IHI signal	IHI signal	IV signal	
1	1	TMR1 frequency division measurement mode	TMO ₁ signal	IHI signal	IV signal	

Bits 4, 1 and 0—Input Synchronization Signal Inversion, Output Synchronization Signal Inversion (INVV, INVI, INVO): These bits select input/output phase inversion for the input synchronization signals (VSYNCI, HSYNCI, CSYNCI) and the output synchronization signals (VSYNCO, HSYNCO).

Bit 4 INVV	Description	
0	The VSYNCI pin state is used directly as VSYNCI input.	(Initial value)
1	The VSYNCI pin state is inverted to create VSYNCI input.	
Bit 1 INVI	Description	
0	HSYNCI and CSYNCI pin states are used directly as HSYNCI and CSYNCI inputs.	(Initial value)
1	HSYNCI and CSYNCI pin states are inverted to create HSYNCI a	nd CSYNCI inputs.

Bit 0 INVO	Description	
0	IV and IHO signals are used directly as VSYNCO and HSYNCO outputs.	(Initial value)
1	IV and IHO signals are inverted to create VSYNCO and HSYI	NCO outputs.

11.2.2 Serial/Timer Control Register (STCR)

Bit	7	6	5	4	3	2	1	0
	IICS	IICX1	IICX0	SYNCE	PWCKE	PWCKS	ICKS1	ICKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

STCR is an 8-bit readable/writable register that controls the I²C bus interface operating mode and the TCNT clock source in the PWM timers and the 8-bit timers.

STCR is initialized to H'00 by a reset.

Bits 7 to 5—I²C Control (IICS, IICX1, IICX0): These bits control the operation of the I²C bus interface. For details, see section 14, I²C Bus Interface.

Bit 4—Timer Connection Output Enable (SYNCE): This bit controls timer connection output.

Bit 4 SYNCE	Description
0	Timer connection output is not performed. The relevant pins have port input/output and timer output functions. (Initial value)
1	Timer connection output is performed. The relevant pins function as VSYNCO, HSYNCO, and CLAMPO output pins.

Control of the function of each pin is related to bits SMOD1 and SMOD0 and bit CLMOD in TCONR, the OEB bit in TCR for the free-running timer (FRT), and bits OS3 to OS0 in TCR for TMR1 and TMRX.

STCR	TCR		
Bit 4 SYNCE	Bit 3 OEB	Function of VSYNCO Pin	
0	0	P6 ₂ port input/output	(Initial value)
0	1	FTOB output	
1	_	IV signal output	

STCR	TO	CONR	TCR		
Bit 4 SYNCE	Bit 7 SMOD1	Bit 6 SMOD0	Bits 3 to 0 OS3 to OS0	Function of HSYNCO Pin	
0	_	_	All 0	P4 ₄ port input/output	(Initial value)
0	_	_	Not all 0	TMO ₁ output	
1	0	0	_	IHI signal output	_
	1	1			
1	0	1		CL1 signal output	
	1	0	_		

STCR	TCONR	TCR		
Bit 4 SYNCE	Bit 5 CLMOD	Bits 3 to 0 OS3 to OS0	Function of CLAMPO Pin	
0	_	All 0	P4 ₇ port input/output	(Initial value)
0	_	Not all 0	TMOx output	
1	0	_	CL1 signal output	
1	1		CL2 signal output	

Bits 3 and 2—PWM Clock Enable, PWM Clock Select (PWCKE, PWCKS): These bits select the internal clock to be input to the timer counter (TCNT) in the PWM timer module. For details, see section 8, PWM Timers.

Bits 1 and 0—Internal Clock Select 1 and 0 (ICKS1 and ICKS0): These bits, together with bits CKS2 to CKS0 in TCR of the 8-bit timers, select the internal clock to be input to the timer counters (TCNT) in the 8-bit timers. For details, see section 10.2.3, Timer Control Register.

11.2.3 Edge Sense Register (SEDGR)

Bit	7	6	5	4	3	2	1	0
	VEDG	HEDG	CEDG	FEDG	_	_	_	_
Initial value	0	0	0	0	1	1	1	1
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	_	_	_	_

Note: * Software can write a 0 to bits 7 to 4 to clear the flags, but cannot write 1.

SEDGR is an 8-bit register used to detect a rising edge on the timer connection input pins.

SEDGR is initialized to H'0F by a reset and in the standby modes.

Bit 7—VSYNCI Edge (VEDG): This bit detects a rising edge on the P6₃/FTI/VSYNCI pin.

Bit 7 VEDG	Description	
0	To clear VEDG, the CPU must read VEDG after it has been set to 1, then write a 0 in this bit.	(Initial value)
1	Set to 1 when a rising edge is detected on the P6 ₃ /FTI/VSYNCI pin.	

Bit 6—HSYNCI Edge (HEDG): This bit detects a rising edge on the P4₃/TMCI₁/HSYNCI pin.

Bit 6 HEDG	Description	
0	To clear HEDG, the CPU must read HEDG after it has been set to 1, then write a 0 in this bit.	(Initial value)
1	Set to 1 when a rising edge is detected on the P4 ₃ /TMCI ₁ /HSYNCI	pin.

Bit 5—CSYNCI Edge (CEDG): This bit detects a rising edge on the P4₅/TMRI₁/CSYNCI pin.

Bit 5 CEDG	Description	
0	To clear CEDG, the CPU must read CEDG after it has been set to 1, then write a 0 in this bit.	(Initial value)
1	Set to 1 when a rising edge is detected on the P4 ₅ /TMRI ₁ /CSYN0	CI pin.

Bit 4—FBACKI Edge (FEDG): This bit detects a rising edge on the P4₆/FBACKI pin.

Bit 4 FEDG	Description	
0	To clear FEDG, the CPU must read FEDG after it has been set to 1, then write a 0 in this bit.	(Initial value)
1	Set to 1 when a rising edge is detected on the P4 ₆ /FBACKI pin.	

11.3 Operation

11.3.1 PWM Decoding

Timer connection TMRX can be used to decode a PWM signal in which 0 and 1 are represented by the pulse width. To do this, a signal in which a rising edge is generated at regular intervals must be selected as the IHI signal.

The timer counter (TCNT) in TMRX is set to count the internal clock pulses and to be cleared on the rising edge of the external reset signal (IHI signal). The value to be used as the threshold for deciding the pulse width is written in TCORB. The PWM decoder contains a delay latch which uses the IHI signal as data and compare-match signal B (CMB) as a clock, and the result of the pulse width decision at the compare-match signal B timing after the rise of the IHI signal is output as the PDC signal. Examples of TCR and TCORB settings are shown in tables 11-3 and 11-4, and the timing chart is shown in figure 11-2.

Table 11-3 Examples of TCR Settings

Bit(s)	Abbreviation	Contents	Description
7	CMIEB	0	Interrupts due to compare-match and overflow are disabled
6	CMIEA	0	_
5	OVIE	0	_
4 to 3	CCLR1 to CCLR0	11	TCNT is cleared by the rising edge of the external reset signal (IHI signal)
2 to 0	CKS2 to CKS0	001	Incremented on internal clock: φ

Table 11-4 Examples of TCORB (Pulse Width Threshold) Settings

	φ:10 MHz	φ: 12 MHz	φ: 16 MHz	
H'07	0.8 µs	0.67 μs	0.5 µs	
H'0F	1.6 µs	1.33 µs	1 µs	
H'1F	3.2 µs	2.67 μs	2 µs	
H'3F	6.4 µs	5.33 µs	4 µs	
H'7F	12.8 µs	10.67 µs	8 µs	

Figure 11-2 Timing Chart for PWM Decoding

11.3.2 Clamp Waveform Generation

Timer connection TMRX can be used to generate signals with different duty cycles and rising/falling edges (clamp waveforms) in synchronization with the input signal (IHI signal) waveform. Two clamp waveforms can be generated, the CL1 signal and the CL2 signal. The rise of the CL1 signal can be specified as simultaneous with the rise of the IHI signal, and the rise of the CL2 signal as simultaneous with the fall of the IHI signal, while the fall of both can be specified by TCORA.

TCNT in TMRX is set to count the internal clock pulses and to be cleared on the rising edge of the external reset signal (IHI signal). The value to be used for the timing of the fall of the clamp waveform is written in TCORA. Examples of TCR and TCORA settings are the same as those in tables 11-3 and 11-4. The clamp waveform timing chart is shown in figure 11-3.

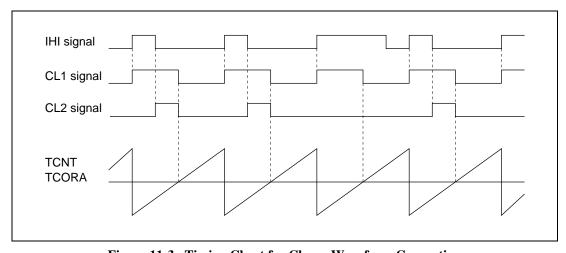


Figure 11-3 Timing Chart for Clamp Waveform Generation

232

11.3.3 Measurement of 8-Bit Timer Divided Waveform Period

Timer connection TMR1 and the free-running timer (FRT) can be used to switch and measure the period of input signals (the IV signal and IHI signal) and an IHI signal divided waveform. Since TMR1 can be cleared by a rising edge of the IV signal, the rise and fall of the IHI signal divided waveform can be virtually synchronized with the IV signal. This enables period measurement to be carried out efficiently.

To measure the period of an IHI signal divided waveform, TCNT in TMR1 is set to count the external clock (IHI signal) pulses and to be cleared on the rising edge of the external reset signal (IV signal). The value to be used as the division factor is written in TCOR, and the TMO output method is specified by the OS bits in TCSR. Examples of TCR and TCORA settings are shown in table 11-5, and the timing chart for measurement of the IV signal and IHI signal divided waveform periods is shown in figure 11-4. The period of the IV signal is given by (ICR(4) – ICR(1)) × the resolution, and the period of the IHI signal divided waveform by (ICR(3) – ICR(2)) × the resolution.

Table 11-5 Examples of TCR and TCSR Settings

Register	Bit(s)	Abbreviation	Contents	Description
TCR in TMR1	7	CMIEB	0	Interrupts due to compare-match and overflow are disabled
	6	CMIEA	0	-
	5	OVIE	0	-
	4 to 3	CCLR1 to CCLR0	11	TCNT is cleared by the rising edge of the external reset signal (IV signal)
	2 to 0	CKS2 to CKS0	101	TCNT is incremented on the rising edge of the external clock (IHI signal)
TCSR in TMR1	4	PWME	0	Normal timer mode
	3 to 0	OS3 to OS0	0011	Not changed by compare-match B; output inverted by compare-match A (toggle output)
TCR in FRT	1 to 0	CKS1 to CKS0	00	Incremented on internal clock: φp/2
TCSR in FRT	1	IEDG	1	FRC value is transferred to ICR on rising edge of capture input (IHI divided signal waveform, IV signal)
	0	CCLR	0	FRC clearing is disabled

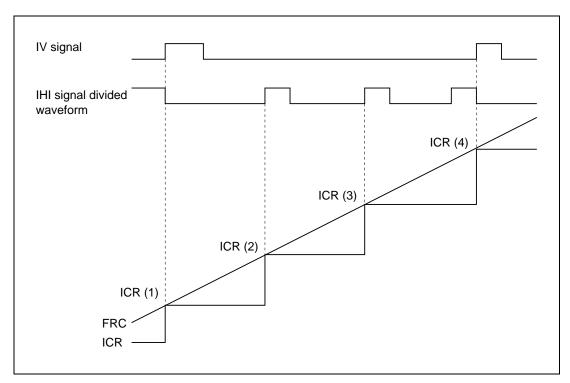


Figure 11-4 Timing Chart for measurement of IV Signal and IHI Signal Divided Waveform Periods

234

Section 12 Watchdog Timer

12.1 Overview

The H8/3217 Series has an on-chip watchdog timer (WDT) that can monitor system operation by resetting the CPU or generating a nonmaskable interrupt if a system crash allows the timer count to overflow.

When this watchdog function is not needed, the watchdog timer module can be used as an interval timer. In interval timer mode, it requests an OVF interrupt at each counter overflow.

12.1.1 Features

- Selection of eight clock sources
- Selection of two modes:
 - Watchdog timer mode
 - Interval timer mode
- Counter overflow generates an interrupt request or reset:
 - Reset or NMI request in watchdog timer mode
 - OVF interrupt request in interval timer mode

12.1.2 Block Diagram

Figure 12-1 is a block diagram of the watchdog timer.

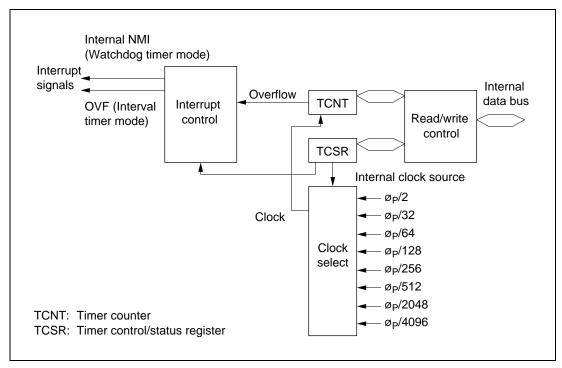
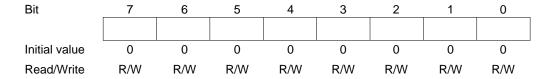


Figure 12-1 Block Diagram of Watchdog Timer

12.1.3 Register Configuration

Table 12-1 lists information on the watchdog timer registers.


Table 12-1 Register Configuration

				Addresses		
Name	Abbreviation	R/W	Initial Value	Write	Read	
Timer control/status register	TCSR	R/(W)*	H'10	H'FFAA	H'FFAA	
Timer counter	TCNT	R/W	H'00	H'FFAA	H'FFAB	

Note: * Software can write a 0 in bit 7 to clear the flag, but cannot write 1.

12.2 Register Descriptions

12.2.1 Timer Counter (TCNT)

TCNT is an 8-bit readable/writable up-counter. When the timer enable bit (TME) in the timer control/status register (TCSR) is set to 1, the timer counter starts counting pulses of an internal clock source selected by clock select bits 2 to 0 (CKS2 to CKS0) in TCSR. When the count overflows (changes from H'FF to H'00), the overflow flag (OVF) in TCSR is set to 1.

TCNT is initialized to H'00 at a reset and when the TME bit is cleared to 0.

Note: TCNT is more difficult to write to than other registers. See section 12.2.3, Register Access, for details.

12.2.2 Timer Control/Status Register (TCSR)

Bit	7	6	5	4	3	2	1	0
	OVF	WT/IT	TME	_	RST/NMI	CKS2	CKS1	CKS0
Initial value	0	0	0	1	0	0	0	0
Read/Write	R/(W)*	R/W	R/W	_	R/W	R/W	R/W	R/W

Note: * Software can write a 0 in bit 7 to clear the flag, but cannot write a 1 in this bit. TCSR is more difficult to write to than other registers. See section 12.2.3, Register Access, for details.

TCSR is an 8-bit readable/writable register that selects the timer mode and clock source and performs other functions. (TCSR is write-protected by a password. See section 12.2.3, Register Access, for details.)

Bits 7 to 5 and bit 3 are initialized to 0 by a reset and in the standby modes. Bits 2 to 0 are initialized to 0 by a reset, but retain their values in the standby modes.

Bit 7—Overflow Flag (OVF): Indicates that the watchdog timer count has overflowed.

Bit 7 OVF	Description		
0	To clear OVF, the CPU must read OVF after it has been set to 1, then write a 0 in this bit	(Initial value)	
1	Set to 1 when TCNT changes from H'FF to H'00		

Bit 6—Timer Mode Select (WT/IT**):** Selects whether to operate in watchdog timer mode or interval timer mode. In interval timer mode, an OVF interrupt request is sent to the CPU when TCNT overflows. In watchdog timer mode, a reset or NMI interrupt is requested.

Bit 6		
WT/IT	Description	
0	Interval timer mode (OVF request)	(Initial value
1	Watchdog timer mode (reset or NMI request)	

Bit 5—Timer Enable (TME): Enables or disables the timer.

Bit 5		
TME	Description	
0	TCNT is initialized to H'00 and stopped	(Initial value)
1	TCNT runs and requests a reset or an interrupt when it overflows	

Bit 4—Reserved: This bit cannot be modified and is always read as 1.

Bit 3: Reset or NMI Select (RST/NMI): Selects either an internal reset or the NMI function at watchdog timer overflow.

Bit 3 RST/NMI	Description	
0	NMI function enabled	(Initial value)
1	Reset function enabled	

Bits 2—0: Clock Select (CKS2–CKS0): These bits select one of eight clock sources obtained by dividing the system clock (ϕ) .

The overflow interval is the time from when the watchdog timer counter begins counting from H'00 until an overflow occurs. In interval timer mode, OVF interrupts are requested at this interval.

Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Clock Source	Overflow Interva	al (ф _P = 10 MHz)
0	0	0	φ _P /2	51.2 μs	(Initial value)
0	0	1	φ _P /32	819.2 µs	
0	1	0	φ _P /64	1.6 ms	
0	1	1	φ _P /128	3.3 ms	
1	0	0	φ _P /256	6.6 ms	
1	0	1	φ _P /512	13.1 ms	
1	1	0	φ _P /2048	52.4 ms	
1	1	1	φ _P /4096	104.9 ms	

12.2.3 Register Access

The watchdog timer's TCNT and TCSR registers are more difficult to write than other registers. The procedures for writing and reading these registers are given below.

Writing to TCNT and TCSR: Word access is required. Byte data transfer instructions cannot be used for write access.

The TCNT and TCSR registers have the same write address. The write data must be contained in the lower byte of a word written at this address. The upper byte must contain H'5A (password for TCNT) or H'A5 (password for TCSR). See figure 12-2. The result of the access depicted in figure 12-2 is to transfer the write data from the lower byte to TCNT or TCSR.

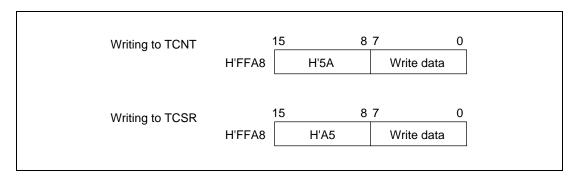


Figure 12-2 Writing to TCNT and TCSR

Reading TCNT and TCSR: The read addresses are H'FFA8 for TCSR and H'FFA9 for TCNT, as indicated in table 12-2.

These two registers are read like other registers. Byte access instructions can be used.

Table 12-2 Read Addresses of TCNT and TCSR

Read Address	Register
H'FFA8	TCSR
H'FFA9	TCNT

12.3 Operation

12.3.1 Watchdog Timer Mode

The watchdog timer function begins operating when software sets the WT/ $\overline{\text{IT}}$ and TME bits to 1 in TCSR. Thereafter, software should periodically rewrite the contents of the timer counter (normally by writing H'00) to prevent the count from overflowing. If a program crash allows the timer count to overflow, the entire chip is reset for 518 system clocks (518 ϕ), or an NMI interrupt is requested. Figure 12-3 shows the operation.

NMI requests from the watchdog timer have the same vector as NMI requests from the $\overline{\text{NMI}}$ pin. Avoid simultaneous handling of watchdog timer NMI requests and NMI requests from pin $\overline{\text{NMI}}$.

A reset from the watchdog timer has the same vector as an external reset from the \overline{RES} pin. The reset source can be determined by the XRST bit in SYSCR.

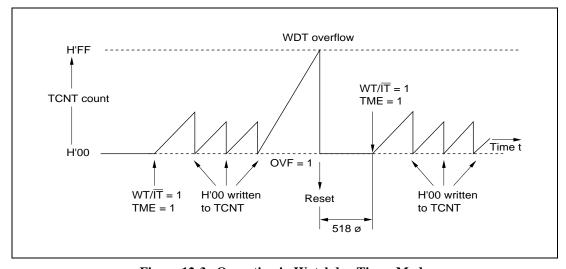


Figure 12-3 Operation in Watchdog Timer Mode

12.3.2 Interval Timer Mode

Interval timer operation begins when the WT/\overline{IT} bit is cleared to 0 and the TME bit is set to 1.

In interval timer mode, an OVF request is generated each time the timer count overflows. This function can be used to generate OVF requests at regular intervals. See figure 12-4.

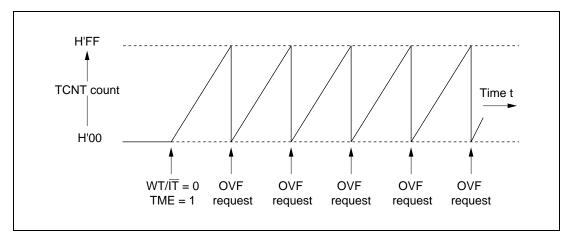


Figure 12-4 Operation in Interval Timer Mode

12.3.3 Setting the Overflow Flag

The OVF bit is set to 1 when the timer count overflows. Simultaneously, the WDT module requests an internal reset, NMI, or OVF interrupt. The timing is shown in figure 12-5.

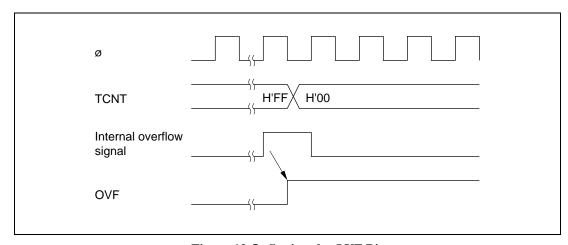


Figure 12-5 Setting the OVF Bit

12.4 Application Notes

12.4.1 Contention between TCNT Write and Increment

If a timer counter clock pulse is generated during the T₃ state of a write cycle to the timer counter, the write takes priority and the timer counter is not incremented. See figure 12-6.

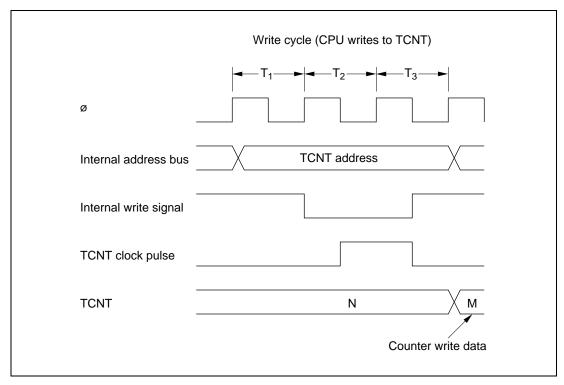


Figure 12-6 TCNT Write-Increment Contention

12.4.2 Changing the Clock Select Bits (CKS2 to CKS0)

Software should stop the watchdog timer (by clearing the TME bit to 0) before changing the value of the clock select bits. If the clock select bits are modified while the watchdog timer is running, the timer count may be incremented incorrectly.

12.4.3 Recovery from Software Standby Mode

TCSR bits, except bits 0–2, and the TCNT counter are reset when the chip recovers from software standby mode. Re-initialize the watchdog timer as necessary to resume normal operation.

242

Section 13 Serial Communication Interface

[One channel incorporated in the H8/3212, and two channels in all other models]

Note that the H8/3212 does not have a channel 1 (SCI1).

13.1 Overview

The H8/3217 Series includes two serial communication interface channels (SCI0 and SCI1) for transferring serial data to and from other chips. Either synchronous or asynchronous communication can be selected.

13.1.1 Features

The features of the on-chip serial communication interface are:

• Asynchronous mode

The H8/3217 Series can communicate with a UART (Universal Asynchronous Receiver/Transmitter), ACIA (Asynchronous Communication Interface Adapter), or other chip that employs standard asynchronous serial communication. It also has a multiprocessor communication function for communication with other processors. Twelve data formats are available.

- Data length: 7 or 8 bits
 Stop bit length: 1 or 2 bits
 Parity: Even, odd, or none
 Multiprocessor bit: 1 or 0
- Error detection: Parity, overrun, and framing errors
- Break detection: When a framing error occurs, the break condition can be detected by reading the level of the RxD line directly.
- Synchronous mode

The SCI can communicate with chips able to perform clocked synchronous data transfer.

- Data length: 8 bits
- Error detection: Overrun errors
- Full duplex communication

The transmitting and receiving sections are independent, so each channel can transmit and receive simultaneously. Both the transmit and receive sections use double buffering, so continuous data transfer is possible in either direction.

- Built-in bit rate generator
 - Any specified bit rate can be generated.
- Internal or external clock source

The SCI can operate on an internal clock signal from the baud rate generator, or an external clock signal input at the SCK0 or SCK1 pin.

• Four interrupts

TDR-empty, TSR-empty, receive-end, and receive-error interrupts are requested independently.

244

13.1.2 Block Diagram

Figure 13-1 shows a block diagram of one serial communication interface channel.

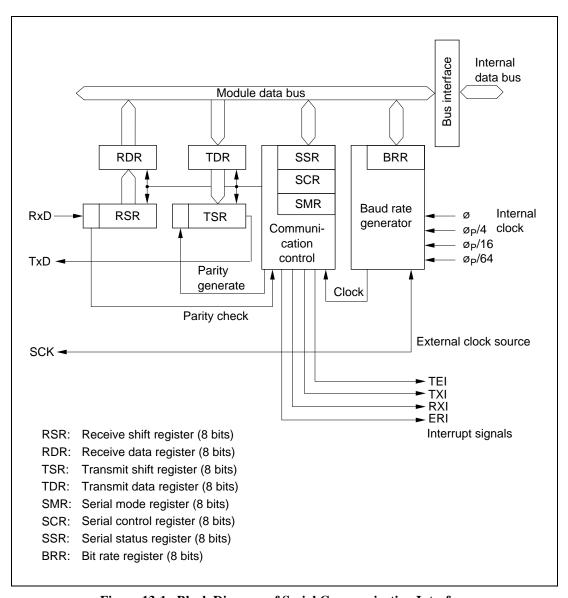


Figure 13-1 Block Diagram of Serial Communication Interface

245

13.1.3 Input and Output Pins

Table 13-1 lists the input and output pins used by the SCI module.

Table 13-1 SCI Input/Output Pins

Channel	Name	Abbr.	I/O	Function
0	Serial clock input/output	SCK ₀	Input/output	Serial clock input and output
	Receive data input	RxD ₀	Input	Receive data input
	Transmit data output	TxD ₀	Output	Transmit data output
1	Serial clock input/output	SCK ₁	Input/output	Serial clock input and output
	Receive data input	RxD ₁	Input	Receive data input
	Transmit data output	TxD ₁	Output	Transmit data output

Note: In this manual, the channel subscript has been deleted, and only SCK, RxD, and TxD are used.

13.1.4 Register Configuration

Table 13-2 lists the SCI registers. These registers specify the operating mode (synchronous or asynchronous), data format and bit rate, and control the transmit and receive sections.

Table 13-2 SCI Registers

Channel	Name	Abbr.	R/W	Value	Address
0	Receive shift register	RSR	_	_	_
	Receive data register	RDR	R	H'00	H'FFDD
	Transmit shift register	TSR	_	_	_
	Transmit data register	TDR	R/W	H'FF	H'FFDB
	Serial mode register	SMR	R/W	H'00	H'FFD8
	Serial control register	SCR	R/W	H'00	H'FFDA
	Serial status register	SSR	R/(W)*	H'84	H'FFDC
	Bit rate register	BRR	R/W	H'FF	H'FFD9
	Serial communication mode register	SCMR	R/W	H'F2	H'FFDE
1	Receive shift register	RSR	_	_	_
	Receive data register	RDR	R	H'00	H'FFE5
	Transmit shift register	TSR	_	_	_
	Transmit data register	TDR	R/W	H'FF	H'FFE3
	Serial mode register	SMR	R/W	H'00	H'FFE0
	Serial control register	SCR	R/W	H'00	H'FFE2
	Serial status register	SSR	R/(W)*	H'84	H'FFE4
	Bit rate register	BRR	R/W	H'FF	H'FFE1

Note: * Software can write a 0 to clear the flags in bits 7 to 3, but cannot write 1 in these bits.

13.2 Register Descriptions

13.2.1 Receive Shift Register (RSR)

RSR is a shift register that converts incoming serial data to parallel data. When one data character has been received, it is transferred to the receive data register (RDR).

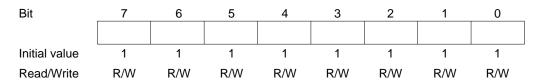
The CPU cannot read or write RSR directly.

13.2.2 Receive Data Register (RDR)

Bit	7	6	5	4	3	2	1	0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

RDR stores received data. As each character is received, it is transferred from RSR to RDR, enabling RSR to receive the next character. This double-buffering allows the SCI to receive data continuously.

RDR is a read-only register. RDR is initialized to H'00 by a reset and in the standby modes.


13.2.3 Transmit Shift Register (TSR)

TSR is a shift register that converts parallel data to serial transmit data. When transmission of one character is completed, the next character is moved from the transmit data register (TDR) to TSR and transmission of that character begins. If the TDRE bit is still set to 1, however, nothing is transferred to TSR.

The CPU cannot read or write TSR directly.

13.2.4 Transmit Data Register (TDR)

TDR is an 8-bit readable/writable register that holds the next data to be transmitted. When TSR becomes empty, the data written in TDR is transferred to TSR. Continuous data transmission is possible by writing the next data in TDR while the current data is being transmitted from TSR.

TDR is initialized to H'FF by a reset and in the standby modes.

13.2.5 Serial Mode Register (SMR)

Bit	7	6	5	4	3	2	1	0
	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SMR is an 8-bit readable/writable register that controls the communication format and selects the clock source of the on-chip baud rate generator. It is initialized to H'00 by a reset and in the standby modes. For further information on the SMR settings and communication formats, see tables 13-5 and 13-7 in section 13.3, Operation.

Bit 7—Communication Mode (C/\overline{A}): This bit selects asynchronous or synchronous communication mode.

Bit 7 C/Ā	Description	
0	Asynchronous communication	(Initial value)
1	Synchronous communication	

Bit 6—Character Length (CHR): This bit selects the character length in asynchronous mode. It is ignored in synchronous mode.

Bit 6 CHR	Description	
0	8 bits per character	(Initial value)
1	7 bits per character (Bits 6 to 0 of TDR and RDR are used for transmitting and receiving, respectively)	

Bit 5—Parity Enable (PE): This bit selects whether to add and check for a parity bit in asynchronous mode. It is ignored in synchronous mode, and when a multiprocessor format is used.

Bit 5 PE	Description	
0	Transmit: No parity bit is added	(Initial value)
	Receive: Parity is not checked	
1	Transmit: A parity bit is added	
	Receive: Parity is checked	

Bit 4—Parity Mode (O/ \overline{E}): In asynchronous mode, when parity is enabled (PE = 1), this bit selects even or odd parity.

249

Even parity means that a parity bit is added to the data bits for each character to make the total number of 1's even. Odd parity means that the total number of 1's is made odd.

This bit is ignored when PE = 0, or when a multiprocessor format is used. It is also ignored in synchronous mode.

(Initial value)

 Bit 4
 O/E
 Description

 0
 Even parity

Odd parity

Bit 3—Stop Bit Length (STOP): This bit selects the number of stop bits. It is ignored in synchronous mode, and when a multiprocessor format is used.

Bit 3 STOP	Description	
0	One stop bit Transmit: One stop bit is added Receive: One stop bit is checked to detect framing errors	(Initial value)
1	Two stop bits Transmit: Two stop bits are added Receive: The first stop bit is checked to detect framing errors If the second stop bit is a space (0), it is regarded as the next start bit.	

Bit 2—Multiprocessor Mode (MP): This bit selects the multiprocessor format. When multiprocessor format is selected, the parity settings of the parity enable bit (PE) and parity mode bit (O/\overline{E}) are ignored. The MP bit is valid only in asynchronous mode, and is ignored in synchronous mode.

Bit 2 MP	Description	
0	Multiprocessor communication function is disabled	(Initial value)
1	Multiprocessor communication function is enabled	

Bits 1 and 0—Clock Select 1 and 0 (CKS1 and CKS0): These bits select the clock source of the on-chip baud rate generator.

1

Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	φ clock	(Initial value)
0	1	φ _P /4 clock	
1	0	φ _P /16 clock	
1	1	φ _P /64 clock	

13.2.6 Serial Control Register (SCR)

Bit	7	6	5	4	3	2	1	0
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SCR is an 8-bit readable/writable register that enables or disables various SCI functions. It is initialized to H'00 by a reset and in the standby modes.

Bit 7—Transmit Interrupt Enable (TIE): This bit enables or disables the TDR-empty interrupt (TXI) requested when the transmit data register empty (TDRE) bit in the serial status register (SSR) is set to 1.

Bit 7 TIE	Description	
0	The TDR-empty interrupt request (TXI) is disabled	(Initial value)
1	The TDR-empty interrupt request (TXI) is enabled	

Bit 6—Receive Interrupt Enable (RIE): This bit enables or disables the receive-end interrupt (RXI) requested when the receive data register full (RDRF) bit in the serial status register (SSR) is set to 1, and the receive error interrupt (ERI) requested when the overrun error (ORER), framing error (FER), or parity error (PER) bit in the serial status register (SSR) is set to 1.

Bit 6 RIE	Description	
0	The receive-end interrupt (RXI) and receive-error interrupt (ERI) requests are disabled	(Initial value)
1	The receive-end interrupt (RXI) and receive-error interrupt (ERI) requests are enabled	

Bit 5—Transmit Enable (TE): This bit enables or disables the transmit function. When the transmit function is enabled, the TxD pin is automatically used for output. When the transmit function is disabled, the TxD pin can be used as a general-purpose I/O port.

Bit 5 TE	Description	
0	The transmit function is disabled The TxD pin can be used for general-purpose I/O	(Initial value)
1	The transmit function is enabled The TxD pin is used for output	

Bit 4—Receive Enable (RE): This bit enables or disables the receive function. When the receive function is enabled, the RxD pin is automatically used for input. When the receive function is disabled, the RxD pin is available as a general-purpose I/O port.

Bit 4 RE	Description	
0	The receive function is disabled The RxD pin can be used for general-purpose I/O	(Initial value)
1	The receive function is enabled The RxD pin is used for input	

Bit 3—Multiprocessor Interrupt Enable (MPIE): When serial data is received in a multiprocessor format, this bit enables or disables the receive-end interrupt (RXI) and receive-error interrupt (ERI) until data with the multiprocessor bit set to 1 is received. It also enables or disables the transfer of receive data from RSR to RDR, and enables or disables setting of the RDRF, FER, PER, and ORER bits in the serial status register (SSR).

The MPIE bit is ignored when the MP bit is cleared to 0, and in synchronous mode.

Clearing the MPIE bit to 0 disables the multiprocessor receive interrupt function. In this condition data is received regardless of the value of the multiprocessor bit in the receive data.

Setting the MPIE bit to 1 enables the multiprocessor receive interrupt function. In this condition, if the multiprocessor bit in the receive data is 0, the receive-end interrupt (RXI) and receive-error interrupt (ERI) are disabled, the receive data is not transferred from RSR to RDR, and the RDRF, FER, PER, and ORER bits in the serial status register (SSR) are not set. If the multiprocessor bit is 1, however, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0, the receive data is transferred from RSR to RDR, the FER, PER, and ORER bits can be set, and the receive-end and receive-error interrupts are enabled.

Bit 3 MPIE	Description
0	The multiprocessor receive interrupt function is disabled (Initial value) (Normal receive operation)
1	The multiprocessor receive interrupt function is enabled. During the interval before data with the multiprocessor bit set to 1 is received, the receive interrupt request (RXI) and receive-error interrupt request (ERI) are disabled, the RDRF, FER, PER, and ORER bits are not set in the serial status register (SSR), and no data is transferred from the RSR to the RDR. The MPIE bit is cleared at the following times: (1) When 0 is written in MPIE (2) When data with the multiprocessor bit set to 1 is received

Bit 2—Transmit-End Interrupt Enable (TEIE): This bit enables or disables the TSR-empty interrupt (TEI) requested when the transmit-end bit (TEND) in the serial status register (SSR) is set to 1.

Bit 2		
TEIE	Description	
0	The TSR-empty interrupt request (TEI) is disabled	(Initial value)
1	The TSR-empty interrupt request (TEI) is enabled	

Bit 1—Clock Enable 1 (CKE1): This bit selects the internal or external clock source for the baud rate generator. When the external clock source is selected, the SCK pin is automatically used for input of the external clock signal.

Bit 1 CKE1	Description	
0	Internal clock source When $C/\overline{A}=1$, the serial clock signal is output at the SCK pin When $C/\overline{A}=0$, output depends on the CKE0 bit	(Initial value)
1	External clock source The SCK pin is used for input	

Bit 0—Clock Enable 0 (CKE0): When an internal clock source is used in asynchronous mode, this bit enables or disables serial clock output at the SCK pin.

This bit is ignored when the external clock is selected, or when synchronous mode is selected.

For further information on the communication format and clock source selection, see table 13-6 in section 13.3, Operation.

Bit 0 CKE0	Description	
0	The SCK pin is not used by the SCI (and is available as a general-purpose I/O port)	(Initial value)
1	The SCK pin is used for serial clock output	

13.2.7 Serial Status Register (SSR)

Bit	7	6	5	4	3	2	1	0
	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial value	1	0	0	0	0	1	0	0
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: * Software can write a 0 in bits 7 to 3 to clear the flags, but cannot write a 1 in these bits.

SSR is an 8-bit register that indicates transmit and receive status. It is initialized to H'84 by a reset and in the standby modes.

Bit 7—Transmit Data Register Empty (TDRE): This bit indicates when transmit data can safely be written in TDR.

Bit 7 TDRE	Description	
0	To clear TDRE, the CPU must read TDRE after it has been set to 1, then write a 0 in this bit $\frac{1}{2}$	
1	This bit is set to 1 at the following times: (1) When TDR contents are transferred to TSR (2) When the TE bit in SCR is cleared to 0	(Initial value)

Bit 6—Receive Data Register Full (RDRF): This bit indicates when one character has been received and transferred to the RDR.

Bit 6 RDRF	Description	
0	To clear RDRF, the CPU must read RDRF after it has been set to 1, then write a 0 in this bit	(Initial value)
1	This bit is set to 1 when one character is received without error and transferred from RSR to RDR	

Bit 5—Overrun Error (ORER): This bit indicates an overrun error during reception.

Bit 5 ORER	Description	
0	To clear ORER, the CPU must read ORER after it has been set to 1, then write a 0 in this bit	(Initial value)
1	This bit is set to 1 if reception of the next character ends while the receive data register is still full (RDRF = 1)	

Bit 4—Framing Error (FER): This bit indicates a framing error during data reception in asynchronous mode. It has no meaning in synchronous mode.

Bit 4 FER	Description	
0	To clear FER, the CPU must read FER after it has been set to 1, then write a 0 in this bit	(Initial value)
1	This bit is set to 1 if a framing error occurs (stop bit = 0)	

Bit 3—Parity Error (PER): This bit indicates a parity error during data reception in asynchronous mode, when a communication format with parity bits is used.

This bit has no meaning in synchronous mode, or when a communication format without parity bits is used.

Bit 3 PER	Description
0	To clear PER, the CPU must read PER after it has been set to 1, (Initial value) then write a 0 in this bit
1	This bit is set to 1 when a parity error occurs (the parity of the received data does not match the parity selected by the O/\overline{E} bit in SMR)

Bit 2—Transmit End (TEND): This bit indicates that the serial communication interface has stopped transmitting because there was no valid data in TDR when the last bit of the current character was transmitted. The TEND bit is also set to 1 when the TE bit in the serial control register (SCR) is cleared to 0.

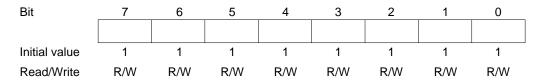
The TEND bit is a read-only bit and cannot be modified directly. To use the TEI interrupt, first start transmitting data, which clears TEND to 0, then set TEIE to 1.

Bit 2
TEND Description

O To clear TEND, the CPU must read TDRE after TDRE has been set to 1, then write a 0 in TDRE

1 This bit is set to 1 when:
(1) TE = 0
(2) TDRE = 1 at the end of transmission of a character

Bit 1—Multiprocessor Bit (MPB): Stores the value of the multiprocessor bit in data received in a multiprocessor format in asynchronous communication mode. This bit retains its previous value in synchronous mode, when a multiprocessor format is not used, or when the RE bit is cleared to 0 even if a multiprocessor format is used.


MPB can be read but not written.

Bit 1 MPB	Description	
0	Multiprocessor bit = 0 in receive data	(Initial value)
1	Multiprocessor bit = 1 in receive data	

Bit 0—Multiprocessor Bit Transfer (MPBT): Stores the value of the multiprocessor bit inserted in transmit data when a multiprocessor format is used in asynchronous communication mode. The MPBT bit is double-buffered in the same way as TSR and TDR. The MPBT bit has no effect in synchronous mode, or when a multiprocessor format is not used.

Bit 0 MPBT	Description	
0	Multiprocessor bit = 0 in transmit data	(Initial value)
1	Multiprocessor bit = 1 in transmit data	

13.2.8 Bit Rate Register (BRR)

BRR is an 8-bit register that, together with the CKS1 and CKS0 bits in SMR, determines the bit rate output by the baud rate generator.

BRR is initialized to H'FF by a reset and in the standby modes.

Tables 13-3 and 13-4 show examples of BRR settings.

Table 13-3 Examples of BRR Settings in Asynchronous Mode (When $\phi_P = \phi$)

	φ Frequency (MHz)											
			1	1.2296					2		2.09	7152
Bit Rate	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	1	70	+0.03	1	86	+0.31	1	141	+0.03	1	148	-0.04
150	0	207	+0.16	0	255	0	1	103	+0.16	1	108	+0.21
300	0	103	+0.16	0	127	0	0	207	+0.16	0	217	+0.21
600	0	51	+0.16	0	63	0	0	103	+0.16	0	108	+0.21
1200	0	25	+0.16	0	31	0	0	51	+0.16	0	54	-0.70
2400	0	12	+0.16	0	15	0	0	25	+0.16	0	26	+1.14
4800	_		_	0	7	0	0	12	+0.16	0	13	-2.48
9600	_	_	_	0	3	0	_	_	_	0	6	-2.48
19200	_	_	_	0	1	0	_	_	_	_	_	_
31250	0	0	0	_	_	_	0	1	0	_	_	_
38400	_	_	_	0	0	0	_	_	_	_	_	_

Table 13-3 Examples of BRR Settings in Asynchronous Mode (When $\phi_P = \phi$) (cont)

· · · · · · · · · · · · · · · · · · ·												
	2.	4576			3		3.	6864		4		
n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
1	174	-0.26	2	52	+0.50	2	64	+0.70	2	70	+0.03	
1	127	0	1	155	+0.16	1	191	0	1	207	+0.16	
0	255	0	1	77	+0.16	1	95	0	1	103	+0.16	
0	127	0	0	155	+0.16	0	191	0	0	207	+0.16	
0	63	0	0	77	+0.16	0	95	0	0	103	+0.16	
0	31	0	0	38	+0.16	0	47	0	0	51	+0.16	
0	15	0	0	19	-2.34	0	23	0	0	25	+0.16	
0	7	0	0	9	-2.34	0	11	0	0	12	+0.16	
0	3	0	0	4	-2.34	0	5	0	_	_		
_	_	_	0	2	0	_	_	_	0	3	0	
0	1	0	_	_	_	0	2	0	_	_	_	
	1 0 0 0 0 0 0	n N 1 174 1 127 0 255 0 127 0 63 0 31 0 15 0 7 0 3 — —	n N (%) 1 174 -0.26 1 127 0 0 255 0 0 127 0 0 63 0 0 31 0 0 15 0 0 7 0 0 3 0 - - -	n N Error (%) n 1 174 -0.26 2 1 127 0 1 0 255 0 1 0 127 0 0 0 63 0 0 0 31 0 0 0 7 0 0 0 3 0 0 0 3 0 0 0 0	n K Error (%) n N 1 174 -0.26 2 52 1 127 0 1 155 0 255 0 1 77 0 127 0 0 155 0 63 0 0 77 0 31 0 0 38 0 15 0 0 19 0 7 0 0 9 0 3 0 0 4 - - - 0 2	n Error (%) n N Error (%) 1 174 -0.26 2 52 +0.50 1 127 0 1 155 +0.16 0 255 0 1 77 +0.16 0 127 0 0 155 +0.16 0 63 0 0 77 +0.16 0 31 0 0 38 +0.16 0 15 0 0 19 -2.34 0 7 0 0 9 -2.34 0 3 0 0 4 -2.34 - - - 0 2 0	n Error (%) n N Error (%) n 1 174 -0.26 2 52 +0.50 2 1 127 0 1 155 +0.16 1 0 255 0 1 77 +0.16 1 0 127 0 0 155 +0.16 0 0 63 0 0 77 +0.16 0 0 31 0 0 38 +0.16 0 0 15 0 0 19 -2.34 0 0 7 0 0 9 -2.34 0 0 3 0 0 4 -2.34 0 - - - 0 2 0 -	n Error (%) n N Error (%) n N 1 174 -0.26 2 52 +0.50 2 64 1 127 0 1 155 +0.16 1 191 0 255 0 1 77 +0.16 1 95 0 127 0 0 155 +0.16 0 191 0 63 0 0 77 +0.16 0 95 0 31 0 0 38 +0.16 0 47 0 15 0 0 19 -2.34 0 23 0 7 0 0 9 -2.34 0 11 0 3 0 0 4 -2.34 0 5 - - - 0 2 0 - - -	n Error (%) n N Error (%) n N Error (%) 1 174 -0.26 2 52 +0.50 2 64 +0.70 1 127 0 1 155 +0.16 1 191 0 0 255 0 1 77 +0.16 1 95 0 0 127 0 0 155 +0.16 0 191 0 0 63 0 0 77 +0.16 0 95 0 0 31 0 0 38 +0.16 0 47 0 0 15 0 0 19 -2.34 0 23 0 0 7 0 0 9 -2.34 0 11 0 0 3 0 0 4 -2.34 0 5 0 - - -	n Error (%) n 1 174 -0.26 2 52 +0.50 2 64 +0.70 2 1 127 0 1 155 +0.16 1 191 0 1 0 127 0 0 155 +0.16 0 191 0 0 0 63 0 0 77 +0.16 0 95 0 0 0 31 0 0 38 +0.16 0 47 0 0 0 15 0 0 19 -2.34 0 23 0 0 0 7 0 0 9 -2.34 0 11 0 0 0 3 0 0 4 -2.34 0 5 <t< td=""><td>n Error (%) n N Error (%) n N Error (%) n N Error (%) n N</td></t<>	n Error (%) n N Error (%) n N Error (%) n N Error (%) n N	

Table 13-3 Examples of BRR Settings in Asynchronous Mode (When $\phi_P = \phi$) (cont)

		4.9152				5			6		6.144		
Bit Rate	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	86	+0.31	2	88	-0.25	2	106	-0.44	2	108	+0.08	
150	1	255	0	2	64	+0.16	2	77	0	2	79	0	
300	1	127	0	1	129	+0.16	1	155	0	1	159	0	
600	0	255	0	1	64	+0.16	1	77	0	1	79	0	
1200	0	127	0	0	129	+0.16	0	155	+0.16	0	159	0	
2400	0	63	0	0	64	+0.16	0	77	+0.16	0	79	0	
4800	0	31	0	0	32	-1.36	0	38	+0.16	0	39	0	
9600	0	15	0	0	15	+1.73	0	19	-2.34	0	19	0	
19200	0	7	0	0	7	+1.73	_	_	_	0	4	0	
31250	0	4	-1.70	0	4	0	0	5	0	0	5	+2.40	
38400	0	3	0	0	3	+1.73	_	_	_	_	_	_	

Table 13-3 Examples of BRR Settings in Asynchronous Mode (When $\phi_P = \phi$) (cont)

	7.3	3728			8		9.	8304		10		
n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
2	130	-0.07	2	141	+0.03	2	174	-0.26	3	43	+0.88	
2	95	0	2	103	+0.16	2	127	0	2	129	+0.16	
1	191	0	1	207	+0.16	1	255	0	2	64	+0.16	
1	95	0	1	103	+0.16	1	127	0	1	129	+0.16	
0	191	0	0	207	+0.16	0	255	0	1	64	+0.16	
0	95	0	0	103	+0.16	0	127	0	0	129	+0.16	
0	47	0	0	51	+0.16	0	63	0	0	64	+0.16	
0	23	0	0	25	+0.16	0	31	0	0	32	-1.36	
0	11	0	0	12	+0.16	0	15	0	0	15	+1.73	
_	_	_	0	7	0	0	9	-1.70	0	9	0	
0	5	0	_	_	_	0	7	0	0	7	+1.73	
	2 2 1 1 0 0 0 0	n N 2 130 2 95 1 191 1 95 0 191 0 95 0 47 0 23 0 11 — —	n N (%) 2 130 -0.07 2 95 0 1 191 0 1 95 0 0 191 0 0 95 0 0 47 0 0 23 0 0 11 0 - - -	n N Error (%) n 2 130 -0.07 2 2 95 0 2 1 191 0 1 1 95 0 1 0 191 0 0 0 95 0 0 0 47 0 0 0 23 0 0 0 11 0 0 0	n N (%) n N 2 130 -0.07 2 141 2 95 0 2 103 1 191 0 1 207 1 95 0 1 103 0 191 0 0 207 0 95 0 0 103 0 47 0 0 51 0 23 0 0 25 0 11 0 0 12 - - - 0 7	n K Error (%) n N Error (%) 2 130 -0.07 2 141 +0.03 2 95 0 2 103 +0.16 1 191 0 1 207 +0.16 1 95 0 1 103 +0.16 0 191 0 0 207 +0.16 0 95 0 0 103 +0.16 0 47 0 0 51 +0.16 0 23 0 0 25 +0.16 0 11 0 0 12 +0.16 - - - 0 7 0	n Error (%) n N Error (%) n 2 130 -0.07 2 141 +0.03 2 2 95 0 2 103 +0.16 2 1 191 0 1 207 +0.16 1 1 95 0 1 103 +0.16 1 0 191 0 0 207 +0.16 0 0 95 0 0 103 +0.16 0 0 47 0 0 51 +0.16 0 0 23 0 0 25 +0.16 0 0 11 0 0 12 +0.16 0 - - - - 0 7 0 0	n N Error (%) n N Error (%) n N 2 130 -0.07 2 141 +0.03 2 174 2 95 0 2 103 +0.16 2 127 1 191 0 1 207 +0.16 1 255 1 95 0 1 103 +0.16 1 127 0 191 0 0 207 +0.16 0 255 0 95 0 0 103 +0.16 0 127 0 47 0 0 51 +0.16 0 63 0 23 0 0 25 +0.16 0 31 0 11 0 0 12 +0.16 0 15 - - - 0 7 0 0 9	n Error (%) n N Error (%) n N Error (%) 2 130 -0.07 2 141 +0.03 2 174 -0.26 2 95 0 2 103 +0.16 2 127 0 1 191 0 1 207 +0.16 1 255 0 1 95 0 1 103 +0.16 1 127 0 0 191 0 0 207 +0.16 0 255 0 0 95 0 0 103 +0.16 0 127 0 0 47 0 0 51 +0.16 0 63 0 0 23 0 0 25 +0.16 0 31 0 0 11 0 0 12 +0.16 0 15 0 - -	n N Error (%) n N Error (%) n N Error (%) n N Error (%) n 2 130 -0.07 2 141 +0.03 2 174 -0.26 3 2 95 0 2 103 +0.16 2 127 0 2 1 191 0 1 207 +0.16 1 255 0 2 1 95 0 1 103 +0.16 1 127 0 1 0 191 0 0 207 +0.16 0 255 0 1 0 95 0 0 103 +0.16 0 127 0 0 0 47 0 0 51 +0.16 0 63 0 0 0 23 0 0 25 +0.16 0 31 0 0 <	n Error (%) n N 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 6 4 1 1 2 5 0 1 1 1 2 9 1 6 4 1 1 2	

Table 13-3 Examples of BRR Settings in Asynchronous Mode (When $\phi_P = \phi$) (cont)

		· · · · · · · · · · · · · · · · · · ·											
	12				12	2.288		14	.7456		1	16	
Bit Rate	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	212	+0.03	2	217	+0.08	3	64	+0.70	3	70	+0.03	
150	2	155	+0.16	2	159	0	2	191	0	2	207	+0.16	
300	2	77	+0.16	2	79	0	2	95	0	2	103	+0.16	
600	1	155	+0.16	1	159	0	1	191	0	1	207	+0.16	
1200	1	77	+0.16	1	79	0	1	95	0	1	103	+0.16	
2400	0	155	+0.16	0	159	0	0	191	0	0	207	+0.16	
4800	0	77	+0.16	0	79	0	0	95	0	0	103	+0.16	
9600	0	38	+0.16	0	39	0	0	47	0	0	51	+0.16	
19200	0	19	-2.34	0	19	0	0	23	0	0	25	+0.16	
31250	0	11	0	0	11	+2.4	0	14	-1.7	0	15	0	
38400	0	9	-2.34	0	9	0	0	11	0	0	12	+0.16	

Note: If possible, the error should be within 1%.

In the shaded section, if $\phi_P = \phi/2$, the bit rate is cut in half. In this case, BRR settings for the desired bit rate should be referenced from the column of one-half the actual system clock frequency (ϕ) .

B = F × 106/[64 ×
$$2^{2n-1}$$
 × (N + 1) \rightarrow N = F × 106/[64 × 2^{2n-1} × B] - 1

B: Bit rate (bits/second)

N: BRR value $(0 \le N \le 255)$

F: ϕ_P (MHz) when n = 0, or ϕ (MHz) when n = 0

n: Internal clock source (0, 1, 2, or 3)

The meaning of n is given by the table below:

n	CKS1	CKS0	Clock
0	0	0	ф
1	0	1	фр/4
2	1	0	φ _P /16
3	1	1	φ _P /64

Bit rate error can be calculated with the formula below.

Error (%) =
$$\left\{ \frac{F \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

Table 13-4 Examples of BRR Settings in Synchronous Mode (When $\phi_P = \phi$)

		1		2		4		5		8		10		16
Bit Rate	n	N	n	N	n	N	n	N	n	N	n	N	n	N
100	_	_	_	_	_	_	_	_	_	_	_	_	_	_
250	1	249	2	124	2	249	_	_	3	124	_	_	3	249
500	1	124	1	249	2	124	_	_	2	249	_	_	3	124
1 k	0	249	1	124	1	249	_	_	2	124	_	_	2	249
2.5 k	0	99	0	199	1	99	1	124	1	199	1	249	2	99
5 k	0	49	0	99	0	199	0	249	1	99	1	124	1	199
10 k	0	24	0	49	0	99	0	124	0	199	0	249	1	99
25 k	0	9	0	19	0	39	0	49	0	79	0	99	0	159
50 k	0	4	0	9	0	19	0	24	0	39	0	49	0	79
100 k	_	_	0	4	0	9	_	_	0	19	0	24	0	39
250 k	0	0*	0	1	0	3	0	4	0	7	0	9	0	15
500 k			0	0*	0	1	_	_	0	3	0	4	0	7
1 M					0	0*	_	_	0	1	_	_	0	3
2.5 M											0	0*	_	_
4 M													0	0*
														_

Notes: In the shaded section, if $\phi_P = \phi/2$, the bit rate is cut in half. In this case, BRR settings for the desired bit rate should be referenced from the column of one-half the actual system clock frequency (ϕ) .

Blank: No setting is available.

—: A setting is available, but the bit rate is inaccurate.

*: Continuous transfer is not possible.

B = F
$$\times$$
 10⁶/[8 \times 2²ⁿ \times (N + 1)] \rightarrow N = F \times 10⁶/[8 \times 2²ⁿ⁻¹ \times B] - 1

B: Bit rate (bits per second)

N: BRR value $(0 \le N \le 255)$

F: ϕ_P (MHz) when n _ 0, or ϕ (MHz) when n = 0

n: Internal clock source (0, 1, 2, or 3)

The meaning of n is given by the table below:

n	CKS1	CKS0	Clock	
0	0	0	ф	
1	0	1	ф _Р /4	
2	1	0	ф _Р /16	
3	1	1	ф _Р /64	

13.2.9 Serial Communication Mode Register (SCMR)

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	SDIR	SINV	_	SMIF
Initial value	1	1	1	1	0	0	1	0
Read/Write	_	_	_	_	R/W	R/W	_	R/W

SCMR is an 8-bit readable/writable register that selects the function of SCI0. SCMR is initialized to H'F2 by a reset and in the standby modes.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 1.

Bit 3—Data Transfer Direction (SDIR): This bit selects the serial/parallel conversion format.

Bit 3 SDIR	Description	
0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first	(Initial value)
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first	

Bit 2—Data Invert (SINV): This bit specifies inversion of the data logic level. Inversion specified by the SINV bit applies only to data bits D_7 to D_0 . In order to invert the parity bit, the O/\overline{E} bit in SMR must be inverted.

Bit 2 SINV	Description	
0	TDR contents are transmitted as they are TDR contents are stored in RDR as they are	(Initial value)
1	TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form	

Bit 1—Reserved: This bit cannot be modified and is always read as 1.

Bit 0—Serial Communication Mode Select (SMIF): This bit is reserved. A 1 must not be written to this bit.

Bit 0 SMIF	Description	
0	Normal SCI mode	(Initial value)
1	Reserved mode	

13.3 Operation

13.3.1 Overview

The SCI supports serial data transfer in two modes. In asynchronous mode each character is synchronized individually. In synchronous mode communication is synchronized with a clock signal.

The selection of asynchronous or synchronous mode and the communication format depend on SMR settings as indicated in table 13-5. The clock source depends on the settings of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR as indicated in table 13-6.

Asynchronous Mode

- Data length: 7 or 8 bits can be selected.
- A parity bit or multiprocessor bit can be added, and stop bit lengths of 1 or 2 bits can be selected. (These selections determine the communication format and character length.)
- Framing errors (FER), parity errors (PER), and overrun errors (ORER) can be detected in receive data, and the line-break condition can be detected.
- SCI clock source: an internal or external clock source can be selected.
 - Internal clock: The SCI is clocked by the on-chip baud rate generator and can output a clock signal at the bit-rate frequency.
 - External clock: The external clock frequency must be 16 times the bit rate. (The on-chip baud rate generator is not used.)

Synchronous Mode

- Communication format: The data length is 8 bits.
- Overrun errors (ORER) can be detected in receive data.
- SCI clock source: an internal or external clock source can be selected.
 - Internal clock: The SCI is clocked by the on-chip baud rate generator and outputs a serial clock signal to external devices.

264

HITACHI

— External clock: The on-chip baud rate generator is not used. The SCI operates on the input serial clock.

Table 13-5 Communication Formats Used by SCI

SMR Settings						Communication Format			at
Bit 7	Bit 6 CHR	Bit 2 MP	Bit 5 PE	Bit 3 STOP	Mode	Data Length	Multi- processor Bit	Parity Bit	Stop- Bit Length
0	0	0	0	0	Asynchronous mode	8 bits	None	None	1 bit
				1	_				2 bits
			1	0	_			Present	1 bit
				1	_				2 bits
	1	_	0	0	_	7 bits	_	None	1 bit
				1	_				2 bits
			1	0	_			Present	1 bit
				1	_				2 bits
	0	1	_	0	Asynchronous mode (multi- processor format)	8 bits	Present	None	1 bit
				1	_				2 bits
	1			0	_	7 bits			1 bit
				1	_				2 bits
1	_	_	_	_	Synchronous mode	8 bits	None		None

Table 13-6 SCI Clock Source Selection

SMR	;	SCR		Serial Transmit/Receive Clock		
Bit 7 C/A	Bit 1 CKE1	Bit 0 CKE0	Mode	Clock Source	SCK Pin Function	
0	0	0	Async	Internal	Input/output port (not used by SCI)	
		1	_		Serial clock output at bit rate	
	1	0	_	External	Serial clock input at 16 × bit rate	
		1				
1	0	0	Sync	Internal	Serial clock output	
		1				
	1	0	_	External	Serial clock input	
		1	_			

13.3.2 Asynchronous Mode

In asynchronous mode, each transmitted or received character is individually synchronized by framing it with a start bit and stop bit.

Full duplex data transfer is possible because the SCI has independent transmit and receive sections. Double buffering in both sections enables the SCI to be programmed for continuous data transfer.

Figure 13-2 shows the general format of one character sent or received in asynchronous mode. The communication channel is normally held in the mark state (high). Character transmission or reception starts with a transition to the space state (low).

The first bit transmitted or received is the start bit (low). It is followed by the data bits, in which the least significant bit (LSB) comes first. The data bits are followed by the parity or multiprocessor bit, if present, then the stop bit or bits (high) confirming the end of the frame.

In receiving, the SCI synchronizes on the falling edge of the start bit, and samples each bit at the center of the bit (at the 8th cycle of the internal serial clock, which runs at 16 times the bit rate).

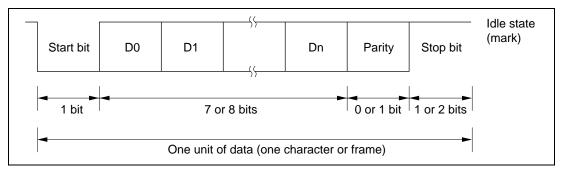


Figure 13-2 Data Format in Asynchronous Mode (Example of 8-Bit Data with Parity Bit and Two Stop Bits)

(1) **Data Format:** Table 13-7 lists the data formats that can be sent and received in asynchronous mode. Twelve formats can be selected by bits in the serial mode register (SMR).

Table 13-7 Data Formats in Asynchronous Mode

SMR Bits

CHR	PE	MP	STOP	1	2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ,	12
0	0	0	0	S	8-bit data STOP	
0	0	0	1	S	8-bit data STOP STOP	
0	1	0	0	S	8-bit data P STOP	
0	1	0	1	S	8-bit data P STOP S	STOP
1	0	0	0	S	7-bit data STOP	
1	0	0	1	S	7-bit data STOP STOP	
1	1	0	0	S	7-bit data P STOP	
1	1	0	1	S	7-bit data P STOP STOP	
0	_	1	0	S	8-bit data MPB STOP	
0	_	1	1	S	8-bit data MPB STOP \$	STOP
1	_	1	0	S	7-bit data MPB STOP	
1	_	1	1	S	7-bit data MPB STOP STOP	

Notes: SMR: Serial mode register

S: Start bit STOP: Stop bit P: Parity bit

MPB: Multiprocessor bit

(2) Clock: In asynchronous mode it is possible to select either an internal clock created by the on-chip baud rate generator, or an external clock input at the SCK pin. The selection is made by the C/\overline{A} bit in the serial mode register (SMR) and the CKE1 and CKE0 bits in the serial control register (SCR). Refer to table 13-6.

If an external clock is input at the SCK pin, its frequency should be 16 times the desired bit rate.

If the internal clock provided by the on-chip baud rate generator is selected and the SCK pin is used for clock output, the output clock frequency is equal to the bit rate, and the clock pulse rises at the center of the transmit data bits. Figure 13-3 shows the phase relationship between the output clock and transmit data.

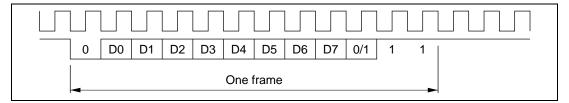


Figure 13-3 Phase Relationship between Clock Output and Transmit Data (Asynchronous Mode)

(3) Transmitting and Receiving Data

SCI Initialization: Before transmitting or receiving, software must clear the TE and RE bits to 0 in the serial control register (SCR), then initialize the SCI following the procedure in figure 13-4.

Note: When changing the communication mode or format, always clear the TE and RE bits to 0 before following the procedure given below. Clearing TE to 0 sets TDRE to 1 and initializes the transmit shift register (TSR). Clearing RE to 0, however, does not initialize the RDRF, PER, FER, and ORER flags and receive data register (RDR), which retain their previous contents.

When an external clock is used, the clock should not be stopped during initialization or subsequent operation. SCI operation becomes unreliable if the clock is stopped.

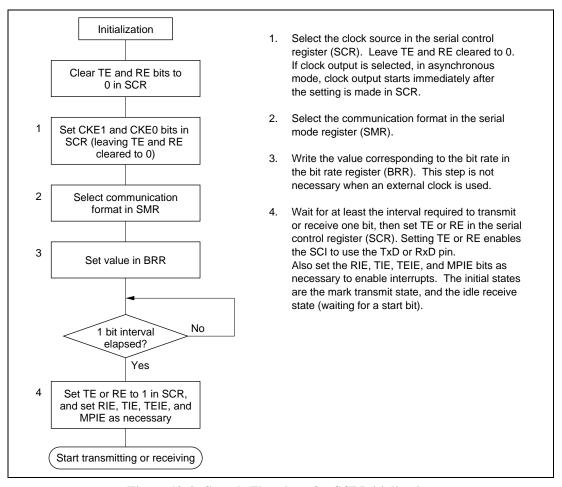


Figure 13-4 Sample Flowchart for SCI Initialization

Transmitting Serial Data: Follow the procedure in figure 13-5 for transmitting serial data.

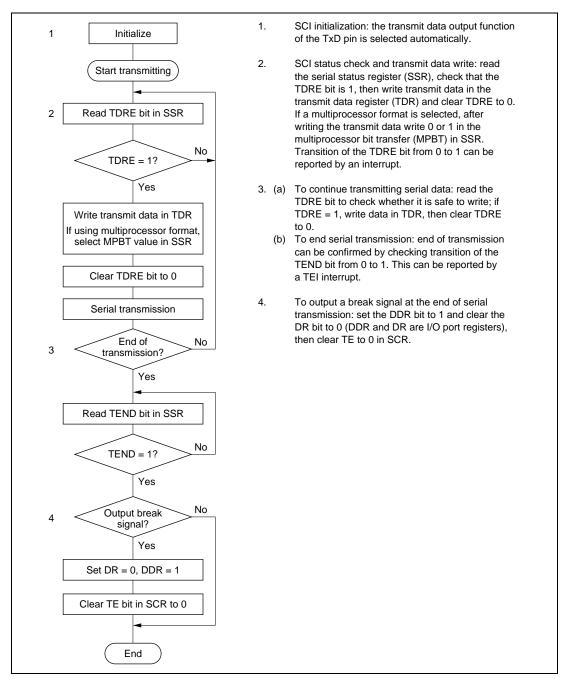


Figure 13-5 Sample Flowchart for Transmitting Serial Data

In transmitting serial data, the SCI operates as follows.

- 1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0 the SCI recognizes that the transmit data register (TDR) contains new data, and loads this data from TDR into the transmit shift register (TSR).
- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the TIE bit (TDR-empty interrupt enable) is set to 1 in SCR, the SCI requests a TXI interrupt (TDR-empty interrupt) at this time.

Serial transmit data is transmitted in the following order from the TxD pin:

- a. Start bit: One 0 bit is output.
- b. Transmit data: Seven or eight bits are output, LSB-first.
- c. Parity bit or multiprocessor bit: One parity bit (even or odd parity) or one multiprocessor bit is output. Formats in which neither a parity bit nor a multiprocessor bit is output can also be selected.
- d. Stop bit: One or two 1 bits (stop bits) are output.
- e. Mark state: Output of 1 bits continues until the start bit of the next transmit data.
- 3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is 0, after loading new data from TDR into TSR and transmitting the stop bit, the SCI begins serial transmission of the next frame. If TDRE is 1, after setting the TEND bit to 1 in SSR and transmitting the stop bit, the SCI continues 1-level output in the mark state, and if the TEIE bit (TSR-empty interrupt enable) in SCR is set to 1, the SCI generates a TEI interrupt request (TSR-empty interrupt).

Figure 13-6 shows an example of SCI transmit operation in asynchronous mode.

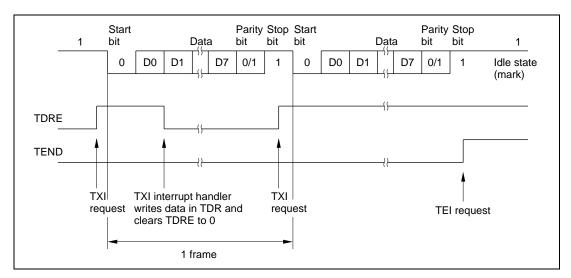


Figure 13-6 Example of SCI Transmit Operation (8-Bit Data with Parity and One Stop Bit)

Receiving Serial Data: Follow the procedure in figure 13-7 for receiving serial data.

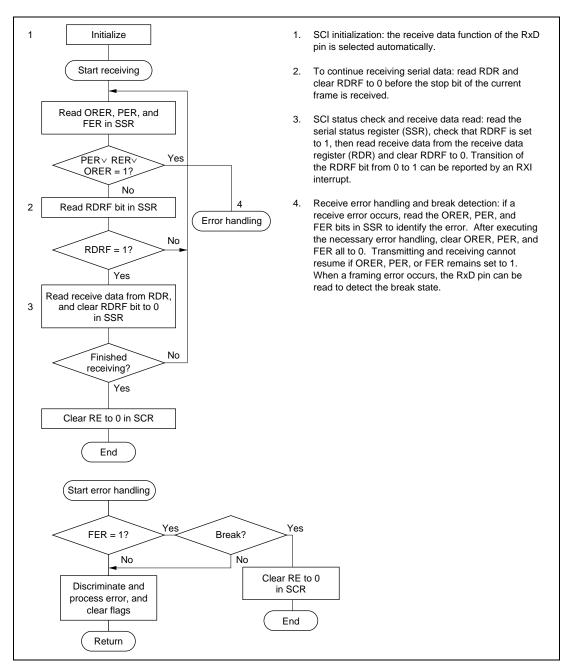


Figure 13-7 Sample Flowchart for Receiving Serial Data

In receiving, the SCI operates as follows.

- 1. The SCI monitors the receive data line and synchronizes internally when it detects a start bit.
- 2. Receive data is shifted into RSR in order from LSB to MSB.
- 3. The parity bit and stop bit are received.

After receiving these bits, the SCI makes the following checks:

- a. Parity check: The number of 1s in the receive data must match the even or odd parity setting of the O/\overline{E} bit in SMR.
- b. Stop bit check: The stop bit value must be 1. If there are two stop bits, only the first stop bit is checked.
- c. Status check: RDRF must be 0 so that receive data can be loaded from RSR into RDR.

If these checks all pass, the SCI sets RDRF to 1 and stores the received data in RDR. If one of the checks fails (receive error), the SCI operates as indicated in table 13-8.

Note: When a receive error flag is set, further receiving is disabled. The RDRF bit is not set to 1. Be sure to clear the error flags.

4. After setting RDRF to 1, if the RIE bit (receive-end interrupt enable) is set to 1 in SCR, the SCI requests an RXI (receive-end) interrupt. If one of the error flags (ORER, PER, or FER) is set to 1 and the RIE bit in SCR is also set to 1, the SCI requests an ERI (receive-error) interrupt.

Figure 13-8 shows an example of SCI receive operation in asynchronous mode.

Table 13-8 Receive Error Conditions and SCI Operation

Receive error	Abbreviation	Condition	Data Transfer
Overrun error	ORER	Receiving of next data ends while RDRF is still set to 1 in SSR	Receive data not loaded from RSR into RDR
Framing error	FER	Stop bit is 0	Receive data loaded from RSR into RDR
Parity error	PER	Parity of receive data differs from even/odd parity setting in SMR	Receive data loaded from RSR into RDR

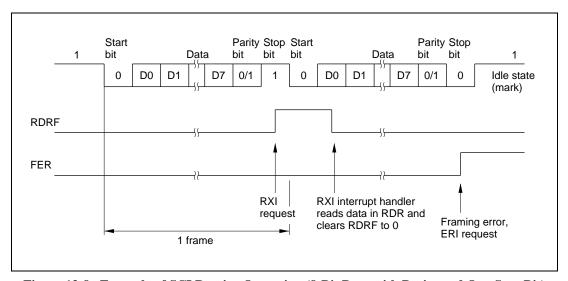


Figure 13-8 Example of SCI Receive Operation (8-Bit Data with Parity and One Stop Bit)

(4) Multiprocessor Communication

The multiprocessor communication function enables several processors to share a single serial communication line. The processors communicate in asynchronous mode using a format with an additional multiprocessor bit (multiprocessor format).

In multiprocessor communication, each receiving processor is addressed by an ID.

A serial communication cycle consists of two cycles: an ID-sending cycle that identifies the receiving processor, and a data-sending cycle. The multiprocessor bit distinguishes ID-sending cycles from data-sending cycles.

The transmitting processor starts by sending the ID of the receiving processor with which it wants to communicate as data with the multiprocessor bit set to 1. Next the transmitting processor sends transmit data with the multiprocessor bit cleared to 0.

Receiving processors skip incoming data until they receive data with the multiprocessor bit set to 1.

After receiving data with the multiprocessor bit set to 1, the receiving processor with an ID matching the received data continues to receive further incoming data. Multiple processors can send and receive data in this way.

Four formats are available. Parity-bit settings are ignored when a multiprocessor format is selected. For details see table 13-7.

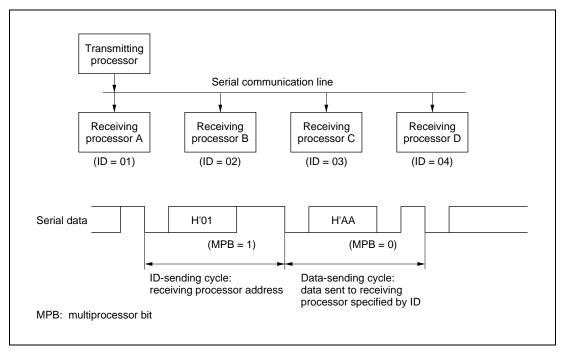


Figure 13-9 Example of Communication among Processors using Multiprocessor Format (Sending Data H'AA to Receiving Processor A)

Transmitting Multiprocessor Serial Data: See figures 13-5 and 13-6.

Receiving Multiprocessor Serial Data: Follow the procedure in figure 13-10 for receiving multiprocessor serial data.

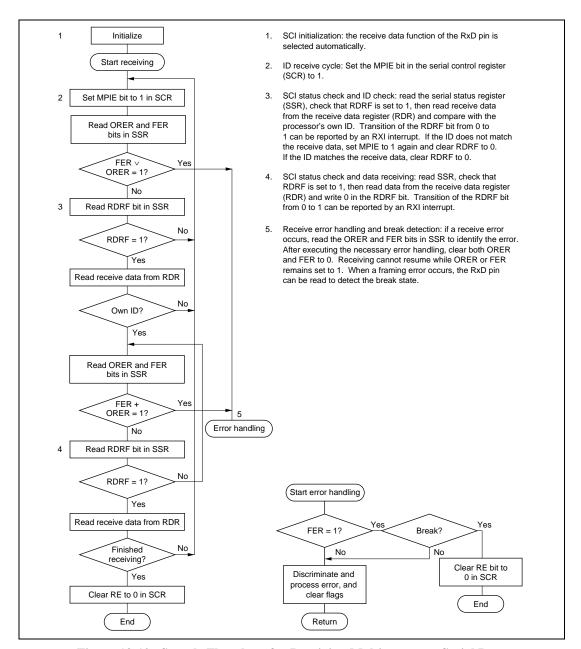


Figure 13-10 Sample Flowchart for Receiving Multiprocessor Serial Data

Figure 13-11 shows an example of an SCI receive operation using a multiprocessor format (8-bit data with multiprocessor bit and one stop bit).

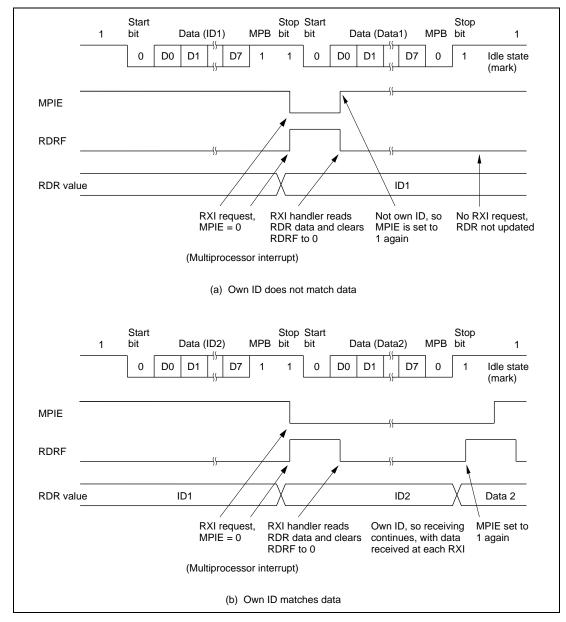


Figure 13-11 Example of SCI Receive Operation (8-Bit Data with Multiprocessor Bit and One Stop Bit)

13.3.3 Synchronous Mode

(1) Overview: In synchronous mode, the SCI transmits and receives data in synchronization with clock pulses. This mode is suitable for high-speed serial communication.

The SCI transmitter and receiver share the same clock but are otherwise independent, so full duplex communication is possible. The transmitter and receiver are also double buffered, so continuous transmitting or receiving is possible by reading or writing data while transmitting or receiving is in progress.

Figure 13-12 shows the general format in synchronous serial communication.

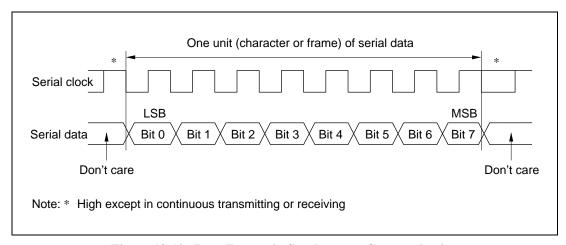


Figure 13-12 Data Format in Synchronous Communication

In synchronous serial communication, each data bit is sent on the communication line from one falling edge of the serial clock to the next. Data is received in synchronization with the rising edge of the serial clock.

In each character, the serial data bits are transmitted in order from LSB (first) to MSB (last). After output of the MSB, the communication line remains in the state of the MSB.

Communication Format: The data length is fixed at eight bits. No parity bit or multiprocessor bit can be added.

Clock: An internal clock generated by the on-chip baud rate generator or an external clock input from the SCK pin can be selected by clearing or setting the CKE1 bit in the serial control register (SCR). See table 13-6.

When the SCI operates on an internal clock, it outputs the clock signal at the SCK pin. Eight clock pulses are output per transmitted or received character. When the SCI is not transmitting or receiving, the clock signal remains at the high level.

280

HITACHI

(2) Transmitting and Receiving Data

SCI Initialization: The SCI must be initialized in the same way as in asynchronous mode. See figure 13-4. When switching from asynchronous mode to synchronous mode, check that the ORER, FER, and PER bits are cleared to 0. Transmitting and receiving cannot begin if ORER, FER, or PER is set to 1.

Transmitting Serial Data: Follow the procedure in figure 13-13 for transmitting serial data.

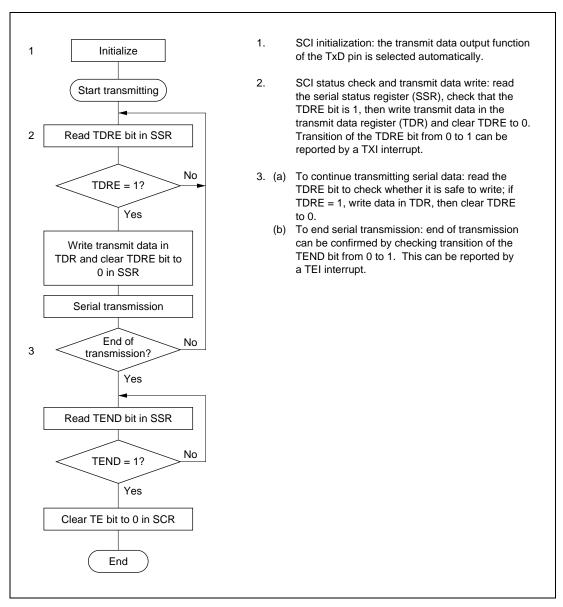


Figure 13-13 Sample Flowchart for Serial Transmitting

In transmitting serial data, the SCI operates as follows.

1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0 the SCI recognizes that the transmit data register (TDR) contains new data, and loads this data from TDR into the transmit shift register (TSR).

- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the TIE bit (TDR-empty interrupt enable) in SCR is set to 1, the SCI requests a TXI interrupt (TDR-empty interrupt) at this time.
 - If clock output is selected the SCI outputs eight serial clock pulses, triggered by the clearing of the TDRE bit to 0. If an external clock source is selected, the SCI outputs data in synchronization with the input clock.
 - Data is output from the TxD pin in order from LSB (bit 0) to MSB (bit 7).
- 3. The SCI checks the TDRE bit when it outputs the MSB (bit 7). If TDRE is 0, the SCI loads data from TDR into TSR, then begins serial transmission of the next frame. If TDRE is 1, the SCI sets the TEND bit in SSR to 1, transmits the MSB, then holds the output in the MSB state. If the TEIE bit (transmit-end interrupt enable) in SCR is set to 1, a TEI interrupt (TSR-empty interrupt) is requested at this time.
- 4. After the end of serial transmission, the SCK pin is held at the high level. Figure 13-14 shows an example of SCI transmit operation.

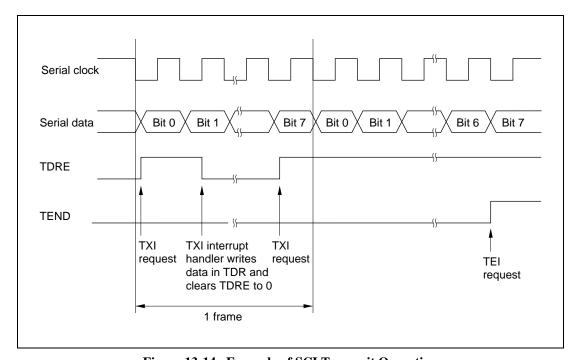


Figure 13-14 Example of SCI Transmit Operation

Receiving Serial Data: Follow the procedure in figure 13-15 for receiving serial data. When switching from asynchronous mode to synchronous mode, be sure to check that PER and FER are cleared to 0. If PER or FER is set to 1 the RDRF bit will not be set and <u>both transmitting and</u> receiving will be disabled.

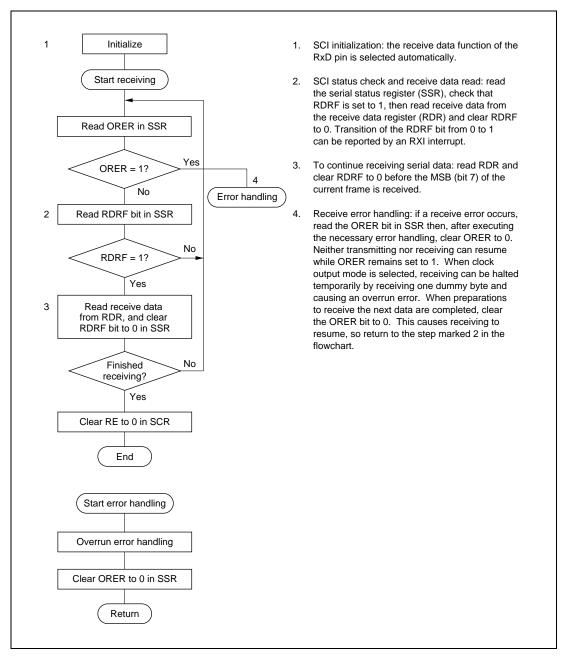
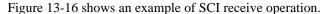


Figure 13-15 Sample Flowchart for Serial Receiving

In receiving, the SCI operates as follows.


- 1. If an external clock is selected, data is input in synchronization with the input clock. If clock output is selected, as soon as the RE bit is set to 1 the SCI begins outputting the serial clock and inputting data. If clock output is stopped because the ORER bit is set to 1, output of the serial clock and input of data resume as soon as the ORER bit is cleared to 0.
- 2. Receive data is shifted into RSR in order from LSB to MSB.

After receiving the data, the SCI checks that RDRF is 0 so that receive data can be loaded from RSR into RDR. If this check passes, the SCI sets RDRF to 1 and stores the received data in RDR. If the check does not pass (receive error), the SCI operates as indicated in table 13-8.

Note: Both transmitting and receiving are disabled while a receive error flag is set. The RDRF bit is not set to 1. Be sure to clear the error flag.

3. After setting RDRF to 1, if the RIE bit (receive-end interrupt enable) is set to 1 in SCR, the SCI requests an RXI (receive-end) interrupt. If the ORER bit is set to 1 and the RIE bit in SCR is set to 1, the SCI requests an ERI (receive-error) interrupt.

When clock output mode is selected, clock output stops when the RE bit is cleared to 0 or the ORER bit is set to 1. To prevent clock count errors, it is safest to receive one dummy byte and generate an overrun error.

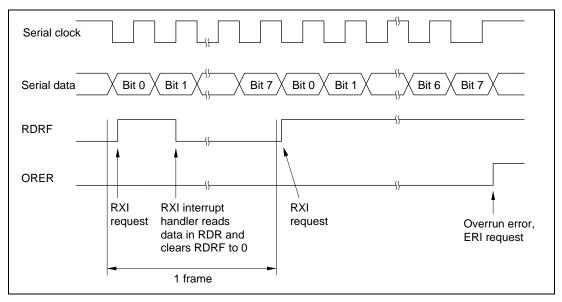


Figure 13-16 Example of SCI Receive Operation

Transmitting and Receiving Serial Data Simultaneously: Follow the procedure in figure 13-17 for transmitting and receiving serial data simultaneously. If clock output mode is selected, output of the serial clock begins simultaneously with serial transmission.

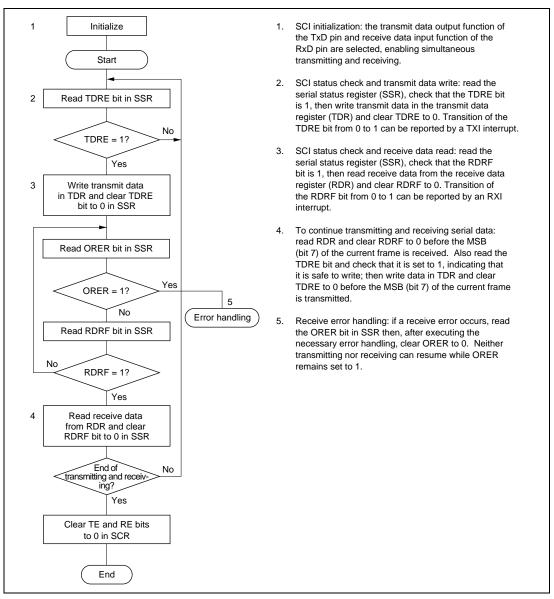


Figure 13-17 Sample Flowchart for Serial Transmitting and Receiving

Note: In switching from transmitting or receiving to simultaneous transmitting and receiving, clear both TE and RE to 0, then set both TE and RE to 1.

13.4 Interrupts

The SCI can request four types of interrupts: ERI, RXI, TXI, and TEI. Table 13-9 indicates the source and priority of these interrupts. The interrupt sources can be enabled or disabled by the TIE, RIE, and TEIE bits in the SCR. Independent signals are sent to the interrupt controller for each interrupt source, except that the receive-error interrupt (ERI) is the logical OR of three sources: overrun error, framing error, and parity error.

The TXI interrupt indicates that the next transmit data can be written. The TEI interrupt indicates that the SCI has stopped transmitting data.

Table 13-9 SCI Interrupt Sources

Interrupt	Description	Priority
ERI	Receive-error interrupt (ORER, FER, or PER)	High
RXI	Receive-end interrupt (RDRF)	
TXI	TDR-empty interrupt (TDRE)	
TEI	TSR-empty interrupt (TEND)	Low

13.5 Application Notes

Application programmers should note the following features of the SCI.

- (1) **TDR Write:** The TDRE bit in SSR is simply a flag that indicates that the TDR contents have been transferred to TSR. The TDR contents can be rewritten regardless of the TDRE value. If a new byte is written in TDR while the TDRE bit is 0, before the old TDR contents have been moved into TSR, the old byte will be lost. Software should check that the TDRE bit is set to 1 before writing to TDR.
- (2) Multiple Receive Errors: Table 13-10 lists the values of flag bits in SSR when multiple receive errors occur, and indicates whether the RSR contents are transferred to RDR.

Table 13-10 SSR Bit States and Data Transfer when Multiple Receive Errors Occur

SSR Bits

Receive error	RDRF	ORER	FER	PER	RSR → RDR*2		
Overrun error	1*1	1	0	0	No		
Framing error	0	0	1	0	Yes		
Parity error	0	0	0	1	Yes		
Overrun and framing errors	1*1	1	1	0	No		
Overrun and parity errors	1*1	1	0	1	No		
Framing and parity errors	0	0	1	1	Yes		
Overrun, framing, and parity errors	1*1	1	1	1	No		

Notes: 1. Set to 1 before the overrun error occurs.

Yes: The RSR contents are transferred to RDR.No: The RSR contents are not transferred to RDR.

(3) Line Break Detection: When the RxD pin receives a continuous stream of 0's in asynchronous mode (line-break state), a framing error occurs because the SCI detects a 0 stop bit. The value H'00 is transferred from RSR to RDR. Software can detect the line-break state as a framing error accompanied by H'00 data in RDR.

The SCI continues to receive data, so if the FER bit is cleared to 0 another framing error will occur.

(4) Sampling Timing and Receive Margin in Asynchronous Mode: The serial clock used by the SCI in asynchronous mode runs at 16 times the bit rate. The falling edge of the start bit is detected by sampling the RxD input on the falling edge of this clock. After the start bit is detected, each bit of receive data in the frame (including the start bit, parity bit, and stop bit or bits) is sampled on the rising edge of the serial clock pulse at the center of the bit. See figure 13-18.

It follows that the receive margin can be calculated as in equation (1).

When the absolute frequency deviation of the clock signal is 0 and the clock duty cycle is 0.5, data can theoretically be received with distortion up to the margin given by equation (2). This is a theoretical limit, however. In practice, system designers should allow a margin of 20% to 30%.

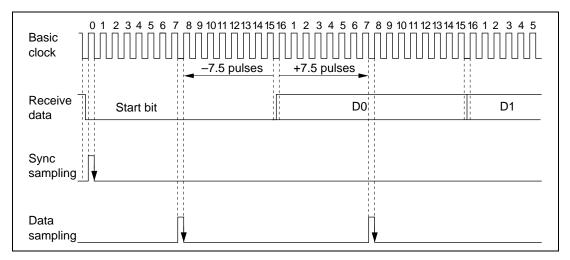


Figure 13-18 Sampling Timing (Asynchronous Mode)

$$M = \{(0.5 - 1/2N) - (D - 0.5)/N - (L - 0.5)F\} \times 100 [\%]$$
 (1)

M: Receive margin

N: Ratio of basic clock to bit rate (N=16)

D: Duty factor of clock—ratio of high pulse width to low width (0.5 to 1.0)

L: Frame length (9 to 12)

F: Absolute clock frequency deviation

When
$$D = 0.5$$
 and $F = 0$

$$M = (0.5 - 1/2 \times 16) \times 100 \, [\%] = 46.875\%$$
 (2)

290

Section 14 I²C Bus Interface [Option]

[One channel incorporated in the H8/3202, and two channels in all other models]

Note that the H8/3202 does not have a channel 1 (IIC1).

An I²C bus interface is available as an option. Observe the following notes when using this option.

- 1. Please inform your Hitachi sales representative if you intend to use this option.
- 2. For mask-ROM versions, a W is added to the part number in products in which this optional function is used.
 - Examples: HD6433217WF16, HD6433212WP12
- 3. The product number is identical for ZTAT version. However, be sure to inform your Hitachi sales representative if you will be using this option.

14.1 Overview

The I²C bus interface conforms to and provides a subset of the Philips I²C bus (inter-IC bus) interface functions. The register configuration that controls the I²C bus differs partly from the Philips configuration, however.

Each I²C bus interface channel uses only one data line (SDA) and one clock line (SCL) to transfer data, saving board and connector space. Figure 14-1 shows typical I²C bus interface connections.

14.1.1 Features

- Conforms to Philips I²C bus interface
- Start and stop conditions generated automatically
- Selectable acknowledge output level when receiving
- · Auto-loading of acknowledge bit when transmitting
- Selection of eight internal clocks (in master mode)
- Selection of acknowledgement mode, or serial mode without acknowledge bit
- Wait function: A wait can be inserted in acknowledgement mode by holding the SCL pin low after a data transfer, before acknowledgement of the transfer.
- Three interrupt sources
 - Data transfer end
 - In slave receive mode: slave address matched, or general call address received
 - In master transmit mode: bus arbitration lost

- Direct bus drive (with pins SCL and SDA)
- Four pins— $P7_0/SCL_0$, $P7_1/SDA_0$, $P7_2/SCL_1$, and $P7_3/SDA_1$ —function as NMOS-only outputs when the bus drive function is selected.

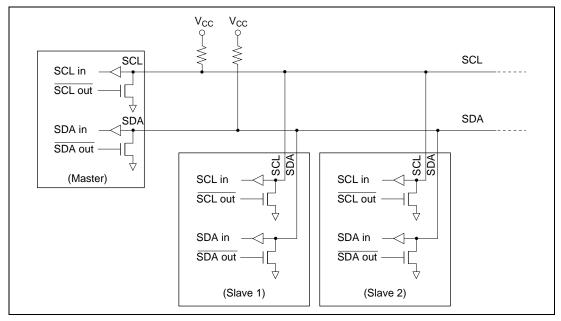


Figure 14-1 I²C Bus Interface Connections (Example: H8/3217 Series Chip as Master)

14.1.2 Block Diagram

Figure 14-2 shows a block diagram of the I²C bus interface.

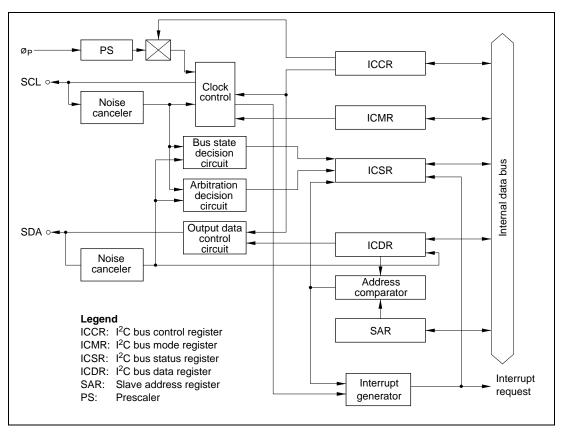


Figure 14-2 Block Diagram of I²C Bus Interface

293

14.1.3 Input/Output Pins

Table 14-1 summarizes the input/output pins used by the I²C bus interface.

Table 14-1 I²C Bus Interface Pins

Channel	Name	Abbreviation	1/0	Function
0	Serial clock	SCL ₀	Input/output	IIC0 Serial clock input/output
	Serial data	SDA ₀	Input/output	IIC0 Serial data input/output
1	Serial clock	SCL ₁	Input/output	IIC1 Serial clock input/output
	Serial data	SDA ₁	Input/output	IIC1 Serial data input/output

Note: In this manual, the channel subscript has been deleted, and only SCL and SDA are used.

14.1.4 Register Configuration

Table 14-2 summarizes the registers of the I²C bus interface.

Table 14-2 Register Configuration

Channel	Name	Abbreviation	R/W	Initial Value	Address
0	I ² C bus control register	ICCR	R/W	H'00	H'FFA0
	I ² C bus status register	ICSR	R/W	H'30	H'FFA1
	I ² C bus data register	ICDR	R/W	_	H'FFA2
	I ² C bus mode register	ICMR	R/W	H'38	H'FFA3*
	Slave address register	SAR	R/W	H'00	H'FFA3*
1	I ² C bus control register	ICCR	R/W	H'00	H'FFA4
	I ² C bus status register	ICSR	R/W	H'30	H'FFA5
	I ² C bus data register	ICDR	R/W	_	H'FFA6
	I ² C bus mode register	ICMR	R/W	H'38	H'FFA7*
	Slave address register	SAR	R/W	H'00	H'FFA7*
	Serial/timer control register	STCR	R/W	H'00	H'FFC3

Note: * The register that can be written or read depends on the ICE bit in the I²C bus control register. The slave address register can be accessed when ICE = 0. The I²C bus mode register can be accessed when ICE = 1.

14.2 Register Descriptions

14.2.1 I²C Bus Data Register (ICDR)

Bit	7	6	5	4	3	2	1	0
	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
Initial value	_	_	_	_	_	_	_	_
Read/Write	R/W							

ICDR is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a receive data register when receiving. Transmitting is started by writing data in ICDR. Receiving is started by reading data from ICDR.

ICDR is also used as a shift register, so it must not be written or read until data has been completely transmitted or received. Read or write access while data is being transmitted or received may result in incorrect data.

The value in ICDR following a reset is undetermined.

14.2.2 Slave Address Register (SAR)

Bit	7	6	5	4	3	2	1	0
	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W						

SAR is an 8-bit readable/writable register that stores the slave address and selects the communication format. When the chip is in slave mode (and the addressing format is selected), if the upper 7 bits of SAR match the upper 7 bits of the first byte received after a start condition, the chip operates as the slave device specified by the master device. SAR is assigned to the same address as ICMR. SAR can be written and read only when the ICE bit is cleared to 0 in ICCR.

SAR is initialized to H'00 by a reset.

Bits 7 to 1—Slave Address (SVA6 to SVA0): Set a unique address in bits SVA6 to SVA0, differing from the addresses of other slave devices connected to the I²C bus.

Bit 0—Format Select (FS): Selects whether to use the addressing format or non-addressing format in slave mode. The addressing format is used to recognize slave addresses.

Bit 0

FS	Description	
0	Addressing format, slave addresses recognized	(Initial value)
1	Non-addressing format	

14.2.3 I²C Bus Mode Register (ICMR)

Bit	7	6	5	4	3	2	1	0	
	MLS	WAIT	_	_	_	BC2	BC1	BC0	
Initial value	0	0	1	1	1	0	0	0	-
Read/Write	R/W	R/W	_	_	_	R/W	R/W	R/W	

ICMR is an 8-bit readable/writable register that selects whether the MSB or LSB is transferred first, performs wait control, and selects the transfer bit count. ICMR is assigned to the same address as SAR. ICMR can be written and read only when the ICE bit is set to 1 in ICCR.

ICMR is initialized to H'38 by a reset.

Bit 7—MSB-First/LSB-First Select (MLS): Selects whether data is transferred MSB-first or LSB-first.

Bit 7

MLS	Description	
0	MSB-first	(Initial value)
1	LSB-first	

Bit 6—Wait Insertion Bit (WAIT): Selects whether to insert a wait between the transfer of data and the acknowledge bit, in acknowledgement mode. When WAIT is set to 1, after the fall of the clock for the final data bit, a wait state begins (with SCL staying at the low level). When bit IRIC is cleared in ICSR, the wait ends and the acknowledge bit is transferred. If WAIT is cleared to 0, data and acknowledge bits are transferred consecutively with no wait inserted.

Bit 6

WAIT	Description	
0	Data and acknowledge transferred consecutively	(Initial value)
1	Wait inserted between data and acknowledge	

Bits 5 to 3—Reserved: These bits cannot be modified and are always read as 1.

Bits 2 to 0—Bit Counter (BC2 to BC0): BC2 to BC0 specify the number of bits to be transferred next. When the ACK bit is cleared to 0 in ICCR (acknowledgement mode), the data is transferred with one additional acknowledge bit. BC2 to BC0 settings should be made during an interval between transfer frames. If BC2 to BC0 are set to a value other than 000, the setting should be made while the SCL line is low.

The bit counter is initialized to 000 by a reset and when a start condition is detected. The value returns to 000 at the end of a data transfer, including the acknowledge.

Bit 2	Bit 1	Bit 0		Bits/Frame		
BC2	BC1	BC1	BC0	Serial Mode	Acknowledgement Mode	
0	0	0	8	9	(Initial value)	
		1	1	2		
	1	0	2	3		
		1	3	4		
1	0	0	4	5		
		1	5	6		
	1	0	6	7		
		1	7	8		

14.2.4 I²C Bus Control Register (ICCR)

Bit	7	6	5	4	3	2	1	0
	ICE	IEIC	MST	TRS	ACK	CKS2	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ICCR is an 8-bit readable/writable register that enables or disables the I²C bus interface, enables or disables interrupts, and selects master or slave mode, transmit or receive, acknowledgement or serial mode, and the clock frequency.

ICCR is initialized to H'00 by a reset.

Bit 7—I²C Bus Interface Enable (ICE): Selects whether or not to use the I²C bus interface. When ICE is set to 1, the SCL and SDA signals are assigned to input/output pins and transfer operations are enabled. When ICE is cleared to 0, SCL and SDA are placed in the high-impedance state and the interface module is disabled.

The SAR register can be accessed when ICE is 0. The ICMR register can be accessed when ICE is 1.

Bit 7 ICE	Description	
0	Interface module disabled, with SCL and SDA signal pins set to port function	(Initial value)
1	Interface module enabled for transfer operations (pins SCL and SC are driving the bus)	CA

Bit 6—I²C Bus Interface Interrupt Enable (IEIC): Enables or disables interrupts from the I²C bus interface to the CPU.

Bit 6 IEIC	Description	
0	Interrupts disabled	(Initial value)
1	Interrupts enabled	

Bit 5—Master/Slave Select (MST)

Bit 4—Transmit/Receive Select (TRS)

MST selects whether the I²C bus interface operates in master mode or slave mode.

TRS selects whether the I²C bus interface operates in transmit mode or receive mode.

In master mode, when arbitration is lost, MST and TRS are both reset by hardware, causing a transition to slave receive mode. In slave receive mode with the addressing format (FS = 0), hardware automatically selects transmit or receive mode according to the R/W bit in the first byte after a start condition.

MST and TRS select the operating mode as follows.

Bit 5 MST	Bit 4 TRS	Operating Mode	
0	0	Slave receive mode	(Initial value)
	1	Slave transmit mode	
1	0	Master receive mode	
	1	Master transmit mode	

Bit 3—Acknowledgement Mode Select (ACK): Selects acknowledgement mode or serial mode. In acknowledgement mode (ACK = 0), data is transferred in frames consisting of the number of data bits selected by BC2 to BC0 in ICMR, plus an extra acknowledge bit. In serial mode (ACK = 1), the number of data bits selected by BC2 to BC0 in ICMR is transferred as one frame.

Bit 3
ACK Description

O Acknowledgement mode (Initial value)

Serial mode

Bits 2 to 0—Serial Clock Select (CKS2 to CKS0): These bits, together with the IICX0 or IICX1 bit in the STCR register, select the serial clock frequency in master mode. They should be set according to the required transfer rate.

					Transfer Rate*				
(STCR) IICX	Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Clock	φ _P = 4 MHz	φ _P = 5 MHz	φ _P = 8 MHz	φ _P = 10 MHz	φ _P = 16 MHz
0	0	0	0	φ _P /28	143 kHz	179 kHz	286 kHz	357 kHz	571 kHz
	0	0	1	φ _P /40	100 kHz	125 kHz	200 kHz	250 kHz	400 kHz
	0	1	0	φ _P /48	83.3 kHz	104 kHz	167 kHz	208 kHz	333 kHz
	0	1	1	φ _P /64	62.5 kHz	78.1 kHz	125 kHz	156 kHz	250 kHz
	1	0	0	φ _P /80	50.0 kHz	62.5 kHz	100 kHz	125 kHz	200 kHz
	1	0	1	φ _P /100	40.0 kHz	50.0 kHz	80.0 kHz	100 kHz	160 kHz
	1	1	0	φ _P /112	35.7 kHz	44.6 kHz	71.4 kHz	89.3 kHz	143 kHz
	1	1	1	φ _P /128	31.3 kHz	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz
1	0	0	0	φ _P /56	71.4 kHz	89.3 kHz	143 kHz	179 kHz	286 kHz
	0	0	1	φ _P /80	50.0kHz	62.5 kHz	100 kHz	125 kHz	200 kHz
	0	1	0	φ _P /96	41.7 kHz	52.1 kHz	83.3 kHz	104 kHz	167 kHz
	0	1	1	φ _P /128	31.3 kHz	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz
	1	0	0	φ _P /160	25.0 kHz	31.3 kHz	50.0 kHz	62.5 kHz	100 kHz
	1	0	1	φ _P /200	20.0 kHz	25.0 kHz	40.0 kHz	50.0 kHz	80.0 kHz
	1	1	0	φ _P /224	17.9 kHz	22.3 kHz	35.7 kHz	44.6 kHz	71.4 kHz
-	1	1	1	φ _P /256	15.6 kHz	19.5 kHz	31.3 kHz	39.1 kHz	62.5 kHz

Note: $* \phi_P = \phi$.

14.2.5 I²C Bus Status Register (ICSR)

Bit	7	6	5	4	3	2	1	0
	BBSY	IRIC	SCP	_	AL	AAS	ADZ	ACKB
Initial value	0	0	1	1	0	0	0	0
Read/Write	R/W	R/(W)*	W	_	R/(W)*	R/(W)*	R/(W)*	R/W

Note: * Software can write a 0 in these bits to clear the flags, but cannot write a 1.

ICSR is an 8-bit readable/writable register with flags that indicate the status of the I²C bus interface. It is also used for issuing start and stop conditions, and recognizing and controlling acknowledge data.

ICSR is initialized to H'30 by a reset.

Bit 7—Bus Busy (BBSY): This bit can be read to check whether the I²C bus (SCL and SDA) is busy or free. In master mode this bit is also used in issuing start and stop conditions.

A high-to-low transition of SDA while SCL is high is recognized as a start condition, setting BBSY to 1. A low-to-high transition of SDA while SCL is high is recognized as a stop condition, clearing BBSY to 0.

To issue a start condition, use a MOV instruction to write 1 in BBSY and 0 in SCP. A retransmit start condition is issued in the same way. To issue a stop condition, use a MOV instruction to write 0 in BBSY and 0 in SCP. It is not possible to write to BBSY in slave mode.

В	it	7
R	R	SV

·	
Descri	ntion

0	Bus is free This bit is cleared to 0 when a stop condition is detected.	(Initial value)
1	Bus is busy This bit is set to 1 when a start condition is detected.	

Bit 6—I²C Bus Interface Interrupt Request Flag (IRIC): Indicates that the I²C bus interface has issued an interrupt request to the CPU. IRIC is set to 1 at the end of a data transfer, when a slave address or general call address is detected in slave receive mode, and when bus arbitration is lost in master transmit mode. IRIC is set at different timings depending on the ACK bit in ICCR and the WAIT bit in ICMR. See the item on IRIC Set Timing and SCL Control in section 14.3.6.

IRIC is cleared by reading IRIC after it has been set to 1, then writing 0 in IRIC.

Bit 6 IRIC	Description
0	Waiting for transfer, or transfer in progress (Initial value) To clear this bit, the CPU must read IRIC when IRIC = 1, then write 0 in IRIC
1	Interrupt requested This bit is set to 1 at the following times:
	Master mode • End of data transfer • When bus arbitration is lost
	 Slave mode (when FS = 0) When the slave address is matched, and whenever a data transfer ends after that, until a retransmit start condition or a stop condition is detected When a general call address is detected, and whenever a data transfer ends after that, until a retransmit start condition or a stop condition is detected
	Slave mode (when FS = 1) • End of data transfer

Bit 5—Start Condition/Stop Condition Prohibit (SCP): Controls the issuing of start and stop conditions in master mode. To issue a start condition, write 1 in BBSY and 0 in SCP. A start condition for retransmit is issued in the same way. To issue a stop condition, write 0 in BBSY and 0 in SCP. This bit always reads 1. Written data is not stored.

Bit 5 SCP	Description	
0	Writing 0 issues a start or stop condition, in combination with BBSY	
1	Reading always results in 1 Writing is ignored	(Initial value)

Bit 4—Reserved: This bit cannot be modified and is always read as 1.

Bit 3—Arbitration Lost (AL): This flag indicates that arbitration was lost in master mode. The I²C bus interface monitors the bus. When two or more master devices attempt to seize the bus at nearly the same time, if the I²C bus interface detects data differing from the data it sent, it sets AL to 1 to indicate that the bus has been taken by another master. At the same time, it sets the IRIC bit in ICSR to generate an interrupt request.

AL is cleared by reading AL after it has been set to 1, then writing 0 in AL. In addition, AL is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 3 AL	Description	
0	Bus arbitration won This bit is cleared to 0 at the following times: • When ICDR data is written (transmit mode) or read (receive note) • When AL is read while AL = 1, then 0 is written in AL	(Initial value)
1	Arbitration lost This bit is set to 1 at the following times: If the internal SDA signal and bus line disagree at the rise of smode If the internal SCL is high at the fall of SCL in master transmit	

Bit 2—Slave Address Recognition Flag (AAS): When the addressing format is selected (FS = 0) in slave receive mode, this flag is set to 1 if the first byte following a start condition matches bits SVA6 to SVA0 in SAR, or if the general call address (H'00) is detected.

AAS is cleared by reading AAS after it has been set to 1, then writing 0 in AAS. In addition, AAS is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 2 AAS	Description
0	Slave address or general call address not recognized (Initial value) This bit is cleared to 0 at the following times: • When ICDR data is written (transmit mode) or read (receive mode) • When AAS is read while AAS = 1, then 0 is written in AAS
1	Slave address or general call address recognized This bit is set to 1 at the following times: • When the slave address or general call address is detected in slave receive mode

Bit 1—General Call Address Recognition Flag (ADZ): When the addressing format is selected (FS = 0) in slave receive mode, this flag is set to 1 if the first byte following a start condition is the general call address (H'00).

ADZ is cleared by reading ADZ after it has been set to 1, then writing 0 in ADZ. In addition, ADZ is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 1 ADZ	Description			
0	General call address not recognized (Initial value) This bit is cleared to 0 at the following times: • When ICDR data is written (transmit mode) or read (receive mode) • When ADZ is read while ADZ = 1, then 0 is written in ADZ			
1	General call address recognized This bit is set to 1 when the general call address is detected in slave receive mode			

Bit 0—Acknowledge Bit (ACKB): Stores acknowledge data in acknowledgement mode. In transmit mode, after the receiving device receives data, it returns acknowledge data, and this data is loaded into ACKB. In receive mode, after data has been received, the acknowledge data set in this bit is sent to the transmitting device.

When this bit is read, if TRS = 1, the value loaded from the bus line is read. If TRS = 0, the value set by internal software is read.

Bit 0 ACKB	Description			
0	Receive mode: 0 is output at acknowledge output timing Transmit mode: Indicates that the receiving device has acknow	(Initial value) ledged the data		
1	Receive mode: 1 is output at acknowledge output timing Transmit mode: Indicates that the receiving device has not acknowledged the data			

14.2.6 Serial/Timer Control Register (STCR)

Bit	7	6	5	4	3	2	1	0
	IICS	IICX1	IICX0	SYNCE	PWCKE	PWCKS	ICKS1	ICKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

STCR is an 8-bit readable/writable register that controls the I²C interface operating mode and selects the TCNT clock source in the PWM timer module and the 8-bit timers. STCR is initialized to H'00 by a reset.

Bit 7—I²C Extra Buffer Select (IICS): This bit designates bits 3 and 2 of port 7 as the same kind of output buffer as bits SCL and SDA. This bit is used when implementing the I²C interface by software.

Bit 7 IICS	Description	
0	P7 ₃ and P7 ₂ are normal I/O pins	(Initial value)
1	P7 ₃ and P7 ₂ are I/O pins with bus driving capability	

Bit 6—I²C Transfer Select 1 (IICX1): This bit, together with bits CKS2 to CKS0 in IICR of IIC1, selects the transfer rate in master mode. For details, see section 14.2.4, I²C Bus Control Register.

Bit 5—I²C Transfer Select 0 (IICX0): This bit, together with bits CKS2 to CKS0 in IICR of IIC0, selects the transfer rate in master mode. For details, see section 14.2.4, I²C Bus Control Register.

Bit 4—Timer Connection Output Enable (SYNCE): This bit controls the outputs (VSYNCO, HSYNCO, CLAMPO) when the timers are interconnected. For details, see section 11, Timer Connection.

Bits 3 and 2—PWM Timer Control (PWCKE, PWCKS): These bits control the internal clock to be input to the timer counter (TCNT) in the PWM timer module. For details, see section 8, PWM Timers.

Bits 1 and 0—Internal Clock Source Select 1 and 0 (ICKS1, ICSK0): These bits select the clock input to the timer counters (TCNT) in the 8-bit timers. For details, see section 10, 8-Bit Timers.

14.3 Operation

14.3.1 I²C Bus Data Format

The I²C bus interface has three data formats: two addressing formats, shown as (a) and (b) in figure 14-3, and a non-addressing format, shown as (c) in figure 14-4. The first byte following a start condition always consists of 8 bits. Figure 14-5 shows the I²C bus timing.

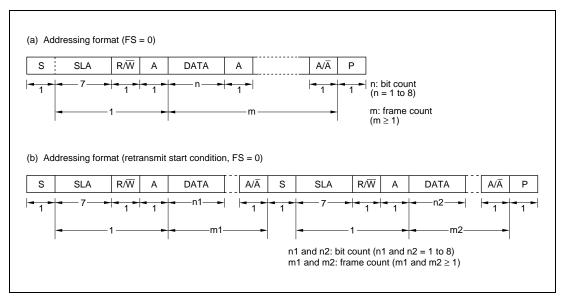


Figure 14-3 I²C Bus Data Formats (Addressing Formats)

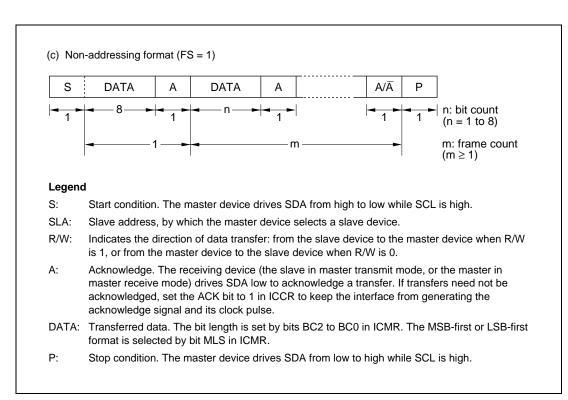


Figure 14-4 I²C Bus Data Format (Non-Addressing Format)

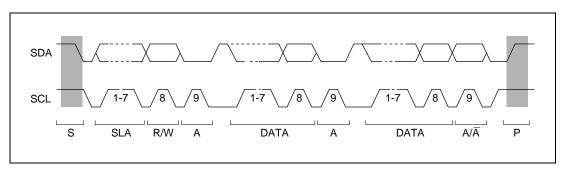


Figure 14-5 I²C Bus Timing

14.3.2 Master Transmit Operation

In master transmit mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal. The transmit procedure and operations in master transmit mode are described below.

1. Set bits MLS and WAIT in ICMR and bits ACK and CKS2 to CKS0 in ICCR according to the operating mode. Set bit ICE in ICCR to 1.

306

HITACHI

- 2. Read BBSY in ICSR, check that the bus is free, then set MST and TRS to 1 in ICCR to select master transmit mode. After that, write 1 in BBSY and 0 in SCP. This generates a start condition by causing a high-to-low transition of SDA while SCL is high.
- 3. Write data in ICDR. The master device outputs the written data together with a sequence of transmit clock pulses at the timing shown in figure 14-6. If FS is 0 in SAR, the first byte following the start condition contains a 7-bit slave address and indicates the transmit/receive direction. The selected slave device (the device with the matching slave address) drives SDA low at the ninth transmit clock pulse to acknowledge the data.
- 4. When one byte of data has been transmitted, IRIC is set to 1 in ICSR at the rise of the ninth transmit clock pulse. If IEIC is set to 1 in ICCR, a CPU interrupt is requested. After one frame has been transferred, SCL is automatically brought to the low level in synchronization with the internal clock and held low.
- 5. Software clears IRIC to 0 in ICSR.
- 6. To continue transmitting, write the next transmit data in ICDR. Transmission of the next byte will begin in synchronization with the internal clock.
 - Steps 4 to 6 can be repeated to transmit data continuously. To end the transmission, write 0 in BBSY and 0 in SCP in ICSR. This generates a stop condition by causing a low-to-high transition of SDA while SCL is high.

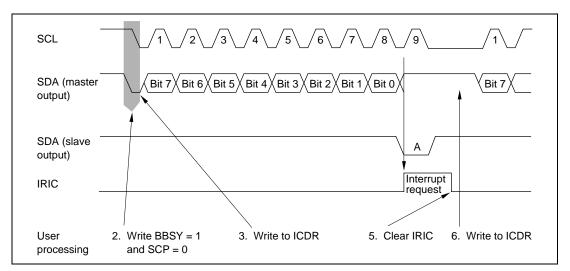


Figure 14-6 Timing in Master Transmit Mode (MLS = WAIT = ACK = 0)

14.3.3 Master Receive Operation

In master receive mode, the master device outputs the receive clock, receives data, and returns an acknowledge signal. The slave device transmits the data. The receive procedure and operations in master receive mode are described below. See also figure 14-7.

- 1. Clear TRS to 0 in ICCR to switch from transmit mode to receive mode.
- 2. Read ICDR to start receiving. When ICDR is read, a receive clock is output in synchronization with the internal clock, and data is received. At the ninth clock pulse the master device drives SDA low to acknowledge the data.
- 3. When one byte of data has been received, IRIC is set to 1 in ICSR at the rise of the ninth receive clock pulse. If IEIC is set to 1 in ICCR, a CPU interrupt is requested. After one frame has been transferred, SCL is automatically brought to the low level in synchronization with the internal clock and held low.
- 4. Software clears IRIC to 0 in ICSR.
- 6. When ICDR is read, receiving of the next data starts in synchronization with the internal clock.

Steps 3 to 5 can be repeated to receive data continuously. To stop receiving, set TRS to 1, read ICDR, then write write 0 in BBSY and 0 in SCP in ICSR. This generates a stop condition by causing a low-to-high transition of SDA while SCL is high. If it is not necessary to acknowledge each bye of data, set ACKB to 1 in ICSR before receiving starts.

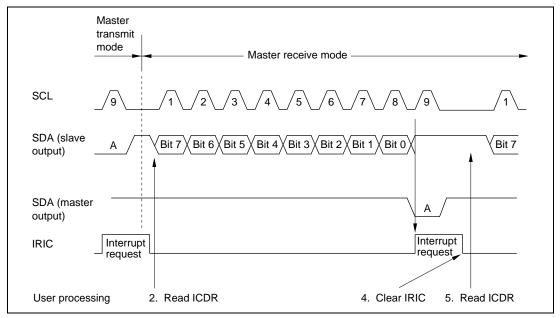


Figure 14-7 Timing in Master Receive Mode (MLS = WAIT = ACK = ACKB = 0)

14.3.4 Slave Transmit Operation

In slave transmit mode, the slave device outputs the transmit data, and the master device outputs the transmit clock and returns an acknowledge signal. The transmit procedure and operations in slave transmit mode are described below.

- 1. Set bits MLS and WAIT in ICMR and bits MST, TRS, ACK, and CKS2 to CKS0 in ICCR according to the operating mode. Set bit ICE in ICCR to 1.
- 2. After the slave device detects a start condition, if the first byte matches its slave address, at the ninth clock pulse the slave device drives SDA low to acknowledge the transfer. At the same time, IRIC is set to 1 in ICSR, generating an interrupt. If the eighth data bit (R/\overline{W}) is 1, the TRS bit is set to 1 in ICCR, automatically causing a transition to slave transmit mode. The slave device holds SCL low from the fall of the transmit clock until data is written in ICDR.
- 3. Software clears IRIC to 0 in ICSR.
- 4. Write data in ICDR. The slave device outputs the written data serially in step with the clock output by the master device, with the timing shown in figure 14-8.
- 5. When one byte of data has been transmitted, at the rise of the ninth transmit clock pulse IRIC is set to 1 in ICSR. If IEIC is set to 1 in ICCR, a CPU interrupt is requested. The slave device holds SCL low from the fall of the transmit clock until data is written in ICDR. The master device drives SDA low at the ninth clock pulse to acknowledge the data. The acknowledge signal is stored in ACKB in ICSR, and can be used to check whether the transfer was carried out normally.
- 6. Software clears IRIC to 0 in ICSR.
- 7. To continue transmitting, write the next transmit data in ICDR.

 Steps 5 to 7 can be repeated to transmit continuously. To end the transmission, write H'FF in ICDR. When a stop condition is detected (a low-to-high transition of SDA while SCL is high), BBSY will be cleared to 0 in ICSR.

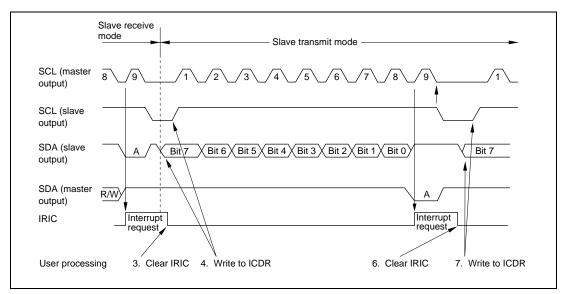


Figure 14-8 Timing in Slave Transmit Mode (MLS = WAIT = ACK = ACKB = 0)

14.3.5 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal. The receive procedure and operations in slave receive mode are described below. See also figure 14-9.

- 1. Set bits MLS and WAIT in ICMR and bits MST, TRS, and ACK in ICCR according to the operating mode. Set bit ICE in ICCR to 1, establishing slave receive mode.
- 2. A start condition output by the master device sets BBSY to 1 in ICSR.
- 3. After the slave device detects the start condition, if the first byte matches its slave address, at the ninth clock pulse the slave device drives SDA low to acknowledge the transfer. At the same time, IRIC is set to 1 in ICSR. If IEIC is 1 in ICCR, a CPU interrupt is requested. The slave device holds SCL low from the fall of the receive clock until it has read the data in ICDR.
- 4. Software clears IRIC to 0 in ICSR.
- 5. When ICDR is read, receiving of the next data starts.

 Steps 4 and 5 can be repeated to receive data continuously. When a stop condition is detected (a low-to-high transition of SDA while SCL is high), BBSY is cleared to 0 in ICSR.

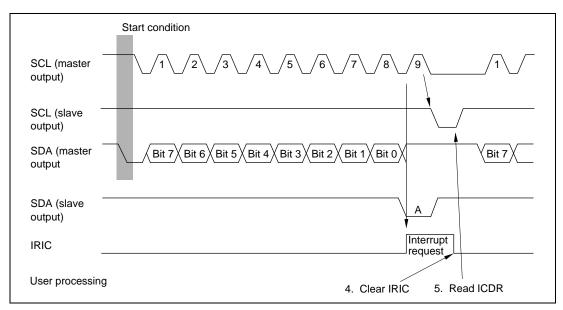


Figure 14-9 Timing in Slave Receive Mode (MLS = WAIT = ACK = 0)

14.3.6 IRIC Set Timing and SCL Control

The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR and ACK bit in ICCR. SCL is automatically held low after one frame has been transferred; this timing is synchronized with the internal clock. Figure 14-10 shows the IRIC set timing and SCL control.

312

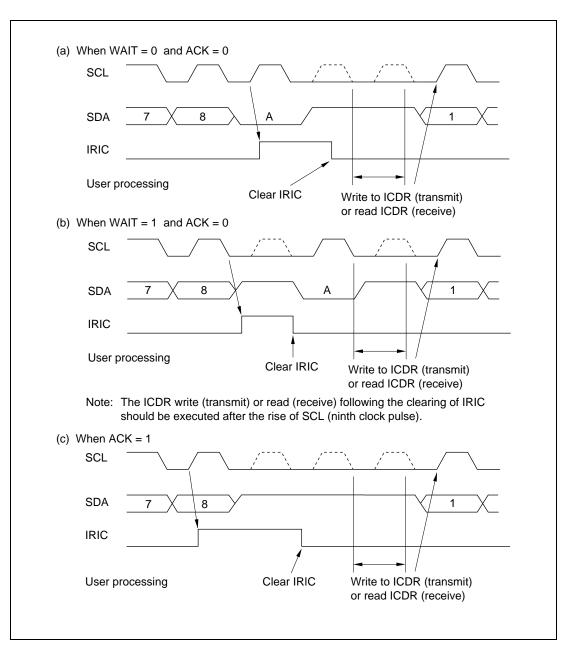


Figure 14-10 IRIC Set Timing and SCL Control

14.3.7 Noise Canceler

The logic levels at the SCL and SDA pins are routed through noise cancelers before being latched internally. Figure 14-11 shows a block diagram of the noise canceler circuit.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or SDA) input signal is sampled on the system clock, but is not passed forward to the next circuit unless the outputs of both latches agree. If they do not agree, the previous value is held.

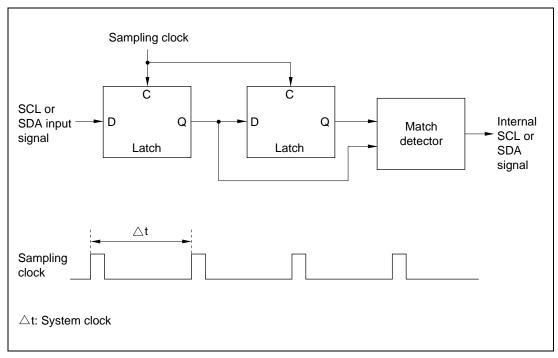


Figure 14-11 Block Diagram of Noise Canceler

14.3.8 Sample Flowcharts

Figures 14-12 to 14-15 show typical flowcharts for using the I²C bus interface in each mode.

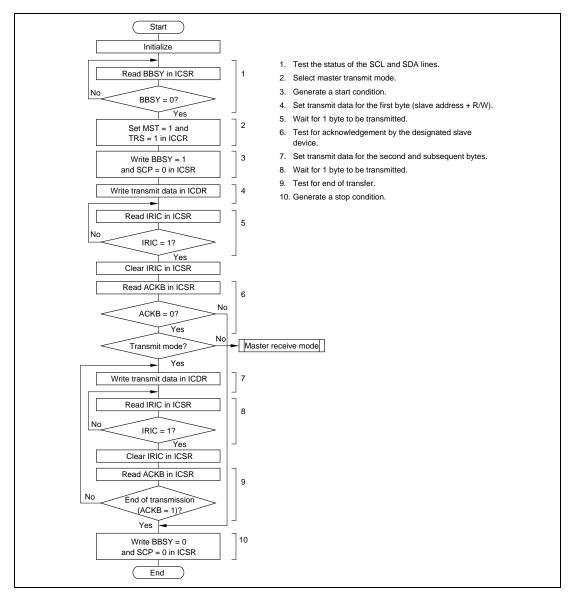


Figure 14-12 Flowchart for Master Transmit Mode (Example)

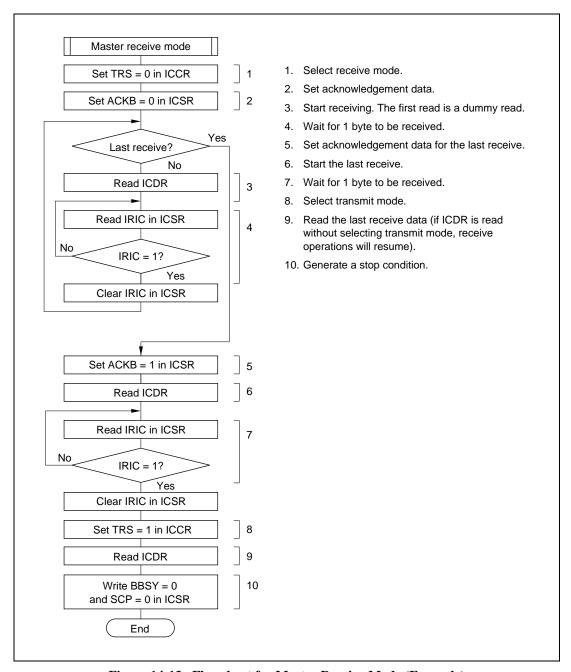


Figure 14-13 Flowchart for Master Receive Mode (Example)

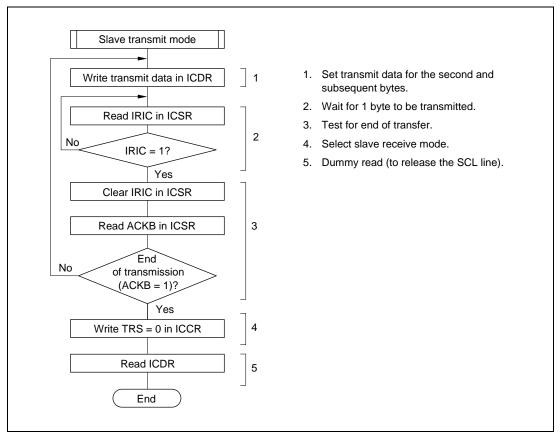


Figure 14-14 Flowchart for Slave Transmit Mode (Example)

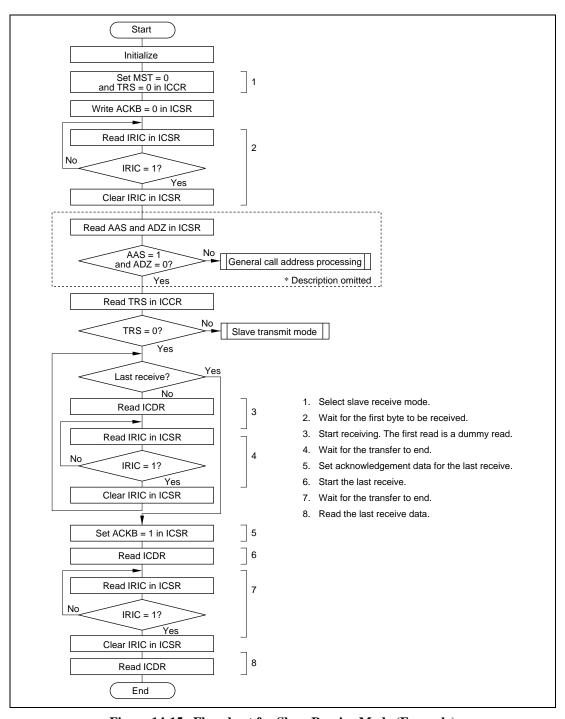


Figure 14-15 Flowchart for Slave Receive Mode (Example)

14.4 Application Notes

- In master mode, if an instruction to generate a start condition is immediately followed by an
 instruction to generate a stop condition, neither condition will be output correctly. To output
 consecutive start and stop conditions, after issuing the instruction that generates the start
 condition, read the relevant ports, check that SCL and SDA are both low, then issue the
 instruction that generates the stop condition.
- Either of the following two conditions will start the next transfer. Pay attention to these conditions when reading or writing to ICDR.
 - Write access to ICDR when ICE = 1 and TRS = 1
 - Read access to ICDR when ICE = 1 and TRS = 0
- The I²C bus interface specification for the SCL rise time tsr is under 1000 ns (300 ns for high-speed mode). In master mode, the I²C bus interface monitors the SCL line and synchronizes one bit at a time during communication. If tsr (the time for SCL to go from low to V_{IH}) exceeds the time determined by the input clock of the I²C bus interface, the high period of SCL is extended. SCL rise time is determined by the pull-up resistance and load capacitance of the SCL line. To insure proper operation at the set transfer rate, adjust the pull-up resistance and load capacitance so that the SCL rise time falls below the values given in the table below.

Time Display

CLKDBL	IICX	t _{cyc} Display		φ = 4 MHz	φ = 5 MHz	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz
0	0	2.5t _{cyc}	Normal mode	625 ns	500 ns	312 ns	250 ns	156 ns
			High- speed mode	300 ns	300 ns	300 ns	_	
0	1	7.5t _{cyc}	Normal mode	1000 ns	1000 ns	937 ns	750 ns	468 ns
1	0	_	High- speed mode	300 ns	300 ns	300 ns	300 ns	300 ns
1	1	17.5t _{cyc}	Normal mode	1000 ns	1000 ns	1000 ns	1000 ns	1000 ns
			High- speed mode	300 ns	300 ns	300 ns	300 ns	300 ns

320

Section 15 Host Interface

[Incorporated in all models except the H8/3212]

15.1 Overview

The H8/3217 Series has an on-chip host interface (HIF) that provides a dual-channel parallel interface between the on-chip CPU and a host processor. The host interface is available only when the HIE bit is set to 1 in SYSCR. This mode is called slave mode, because it is designed for a master-slave communication system in which the H8/3217-Series chip is slaved to a host processor.

The host interface consists of four 1-byte data registers, two 1-byte status registers, a 1-byte control register, fast A_{20} gate logic, and a host interrupt request circuit. Communication is carried out via five control signals from the host processor (\overline{CS}_1 , \overline{CS}_2 , \overline{HA}_0 , \overline{HA}_0 , and \overline{HA}_0), four output signals to the host processor (\overline{HA}_{20} , \overline{HA}_1 , \overline{HA}_1 , and \overline{HA}_1 , and \overline{HA}_1 , and an 8-bit bidirectional command/data bus (\overline{HA}_1) to \overline{HA}_0). The \overline{HA}_1 and \overline{HA}_2 signals select one of the two interface channels.

Note: If one of the two interface channels will not be used, tie the unused \overline{CS} pin to V_{CC} . For example, if interface channel 1 (IDR1, ODR1, STR1) is not used, tie \overline{CS}_1 to V_{CC} .

15.1.1 Block Diagram

Figure 15-1 is a block diagram of the host interface.

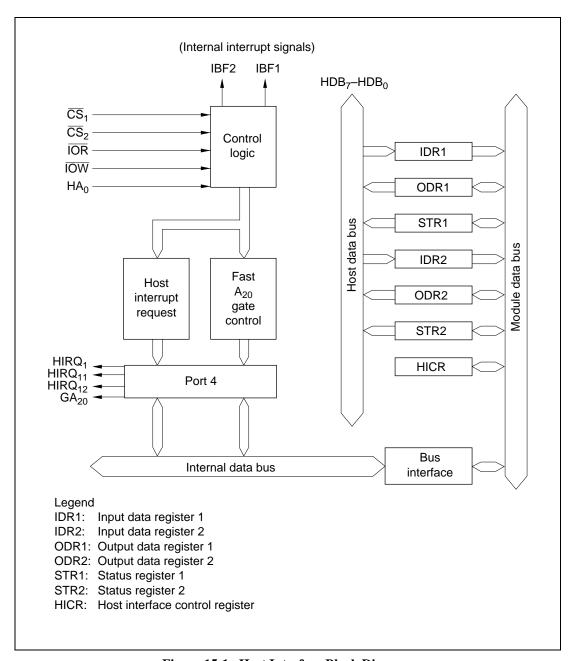


Figure 15-1 Host Interface Block Diagram

322

15.1.2 Input and Output Pins

Table 15-1 lists the input and output pins of the host interface module.

Table 15-1 HIF Input/Output Pins

Name	Abbreviation	Port	I/O	Function
I/O read	ĪŌR	P7 ₆	Input	Host interface read signal
I/O write	ĪŌW	P7 ₅	Input	Host interface write signal
Chip select 1	CS₁	P7 ₄	Input	Host interface chip select signal for IDR1, ODR1, STR1
Chip select 2	CS ₂	P4 ₆	Input	Host interface chip select signal for IDR2, ODR2, STR2
Command/data	HA ₀	P7 ₇	Input	Host interface address select signal
				In host read access, this signal selects the status registers (STR1, STR2) or data registers (ODR1, ODR2). In host write access to the data registers (IDR1, IDR2), this signal indicates whether the host is writing a command or data.
Data bus	HDB ₇ –HDB ₀	P3 ₇ -P3 ₀	I/O	Host interface data bus (single-chip mode)
Host interrupt 1	HIRQ ₁	P4 ₄	Output	Interrupt output 1 to host
Host interrupt 11	HIRQ ₁₁	P4 ₃	Output	Interrupt output 11 to host
Host interrupt 12	HIRQ ₁₂	P4 ₅	Output	Interrupt output 12 to host
Gate A ₂₀	GA ₂₀	P4 ₇	Output	A ₂₀ gate control signal output

15.1.3 Register Configuration

Table 15-2 lists the host interface registers.

Table 15-2 HIF Registers

		R/W		_ Initial	Slave	Master Address*4		
Name	Abbreviation	Slave	Host	Value	Address*3	$\overline{\text{CS}}_1$	$\overline{\text{CS}}_2$	HA_0
System control register	SYSCR	R/W*1	_	H'09	H'FFC4	_	_	_
Host interface control register	HICR	R/W	_	H'F8	H'FFF0	_	_	_
Input data register 1	IDR1	R	W	_	H'FFF4	0	1	0/1*5
Output data register 1	ODR1	R/W	R	_	H'FFF5	0	1	0
Status register 1	STR1	R/(W)*2	R	H'00	H'FFF6	0	1	1
Input data register 2	IDR2	R	W	_	H'FFFC	1	0	0
Output data register 2	ODR2	R/W	R	_	H'FFFD	1	0	0/1*5
Status register 2	STR2	R/(W)*2	R	H'00	H'FFFE	1	0	1
Serial/timer control register	STCR	R/W	_	H'00	H'FFC3	_	_	_

Notes: 1. Bit 3 is a read-only bit.

- 2. The user-defined bits (bits 7 to 4, 2) are read/write accessible from the slave processor.
- 3. Address when accessed from the slave processor.
- 4. Pin inputs used in access from the host processor.
- 5. The HA₀ input discriminates between writing of commands and data.
- 6. Registers in slave addresses H'FFF0 to H'FFFF can only be read or written to when the HIE bit in the system control register (SYSCR) is set to 1.

15.2 Register Descriptions

15.2.1 System Control Register (SYSCR)

Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME
Initial value	0	0	0	0	1	0	0	1
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register which controls chip operations. Host interface functions are enabled or disabled by the HIE bit of SYSCR. See section 3.2, System Control Register, for information on other SYSCR bits. SYSCR is initialized to H'09 by an external reset and in the hardware standby modes.

Bit 1—Host Interface Enable (HIE): Enables or disables the host interface. When enabled, the host interface handles host-slave data transfers, operating in slave mode.

Bit 1
HIE Description

0 The host interface is disabled (Initial value)

1 The host interface is enabled (slave mode)

15.2.2 Host Interface Control Register (HICR)

Bit	7	6	5	4	3	2	1	0
	_	_	_	_	_	IBFIE2	IBFIE1	FGA20E
Initial value	1	1	1	1	1	0	0	0
Slave Read/Write	_	_	_	_	_	R/W	R/W	R/W
Host Read/Write	_	_	_	_	_	_	_	_

HICR is an 8-bit readable/writable register which controls host interface interrupts and the fast A_{20} gate function. HICR is initialized to H'F8 by a reset and in the standby modes.

Bits 7 to 3—Reserved: These bits cannot be modified and are always read as 1.

Bit 2—Input Buffer Full Interrupt Enable 2 (IBFIE2): Enables or disables the IBF2 interrupt to the slave CPU.

Bit 2 IBFIE2 Description

0	IDR2 input buffer full interrupt is disabled	(Initial value)
1	IDR2 input buffer full interrupt is enabled	

Bit 1— Input Buffer Full Interrupt Enable 1 (IBFIE1): Enables or disables the IBF1 interrupt to the slave CPU.

Bit 1 IBFIE1 Description

0	IDR1 input buffer full interrupt is disabled	(Initial value)
1	IDR1 input buffer full interrupt is enabled	

Bit 0—Fast Gate A20 Enable (FGA20E): Enables or disables the fast A_{20} gate function. When the fast A_{20} gate is disabled, a regular-speed A_{20} gate signal can be implemented by using software to manipulate the P8₁ output.

Bit 0 FGA20E Description

0	Disables fast A ₂₀ gate function	(Initial value)
1	Enables fast A ₂₀ gate function	

15.2.3 Input Data Register 1 (IDR1)

Bit	7	6	5	4	3	2	1	0
	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
Initial value	_	_	_	_	_		_	_
Slave Read/Write	R	R	R	R	R	R	R	R
Host Read/Write	W	W	W	W	W	W	W	W

IDR1 is an 8-bit read-only register to the slave processor, and an 8-bit write-only register to the host processor. When \overline{CS}_1 is low, information on the host data bus is written into IDR1 at the rising edge of \overline{IOW} . The HA $_0$ state is also latched into the C/\overline{D} bit in STR1 to indicate whether the written information is a command or data.

The initial values of IDR1 after a reset and in the standby modes are undetermined.

15.2.4 Output Data Register 1 (ODR1)

Bit	7	6	5	4	3	2	1	0
	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
Initial value	_	_	_	_	_	_	_	_
Slave Read/Write	R/W							
Host Read/Write	R	R	R	R	R	R	R	R

ODR1 is an 8-bit readable/writable register to the slave processor, and an 8-bit read-only register to the host processor. The ODR1 contents are output on the host data bus when HA_0 is low, \overline{CS}_1 is low, and \overline{IOR} is low.

The initial values of ODR1 after a reset and in standby mode are undetermined.

15.2.5 Status Register 1 (STR1)

Bit	7	6	5	4	3	2	1	0
	DBU	DBU	DBU	DBU	C/D	DBU	IBF	OBF
Initial value	0	0	0	0	0	0	0	0
Slave Read/Write	R/W	R/W	R/W	R/W	R	R/W	R	R
Host Read/Write	R	R	R	R	R	R	R	R

STR1 is an 8-bit register that indicates status information during host interface processing. Bits 3, 1, and 0 are read-only bits to both the host and slave processors.

STR1 is initialized to H'00 by a reset and in the standby modes.

Bits 7 to 4 and Bit 2—Defined by User (DBU): The user can use these bits as necessary.

Bit 3—Command/Data (C/\overline{D}): Receives the HA_0 input when the host processor writes to IDR1, and indicates whether IDR1 contains data or a command.

Bit 3 C/D	Description	
0	Contents of IDR1 are data	(Initial value)
1	Contents of IDR1 are a command	

Bit 1—Input Buffer Full (IBF): Set to 1 when the host processor writes to IDR1. This bit is an internal interrupt source to the slave processor. IBF is cleared to 0 when the slave processor reads IDR1.

Bit 1 IBF	Description	
0	This bit is cleared when the slave processor reads IDR1	(Initial value)
1	This bit is set when the host processor writes to IDR1	

Bit 0—Output Buffer Full (OBF): Set to 1 when the slave processor writes to ODR1. Cleared to 0 when the host processor reads ODR1.

Bit 0		
OBF	Description	
0	This bit is cleared when the host processor reads ODR1	(Initial value)
1	This bit is set when the slave processor writes to ODR1	

Table 15-3 shows the conditions for setting and clearing the STR1 flags.

Table 15-3 Set/Clear Timing for STR1 Flags

Flag	Setting Condition	Clearing Condition
C/D	Rising edge of host's write signal (IOW) when HA ₀ is high	Rising edge of host's write signal ($\overline{\text{IOW}}$) when HA ₀ is low
IBF	Rising edge of host's write signal (IOW) when writing to IDR1	Falling edge of slave's internal read signal (\overline{RD}) when reading IDR1
OBF	Falling edge of slave's internal write signal (WR) when writing to ODR1	Rising edge of host's read signal ($\overline{\text{IOR}}$) when reading ODR1

15.2.6 Input Data Register 2 (IDR2)

Bit	7	6	5	4	3	2	1	0
	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
Initial value	_	_	_	_	_	_	_	_
Slave Read/Write	R	R	R	R	R	R	R	R
Host Read/Write	W	W	W	W	W	W	W	W

IDR2 is an 8-bit read-only register to the slave processor, and an 8-bit write-only register to the host processor. When $\overline{\text{CS}}_2$ is low, information on the host data bus is written into IDR2 at the

rising edge of \overline{IOW} . The HA_0 state is also latched into the C/\overline{D} bit in STR2 to indicate whether the written information is a command or data.

The initial values of IDR2 after a reset and in the standby modes are undetermined.

15.2.7 Output Data Register 2 (ODR2)

Bit	7	6	5	4	3	2	1	0
	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
Initial value	_		_	_	_	_	_	_
Slave Read/Write	R/W							
Host Read/Write	R	R	R	R	R	R	R	R

ODR2 is an 8-bit read/write register to the slave processor, and an 8-bit read-only register to the host processor. The ODR2 contents are output on the host data bus when HA_0 is low, \overline{CS}_2 is low, and \overline{IOR} is low.

15.2.8 Status Register 2 (STR2)

Bit	7	6	5	4	3	2	1	0
	DBU	DBU	DBU	DBU	C/D	DBU	IBF	OBF
Initial value	0	0	0	0	0	0	0	0
Slave Read/Write	R/W	R/W	R/W	R/W	R	R/W	R	R
Host Read/Write	R	R	R	R	R	R	R	R

STR2 is an 8-bit register that indicates status information during host interface processing. Bits 3, 1, and 0 are read-only bits to both the host and slave processors.

STR2 is initialized to H'00 by a reset and in the standby modes.

Bits 7 to 4 and Bit 2—Defined by User (DBU): The user can use these bits as necessary.

Bit 3—Command/Data (C/\overline{D}): Receives the HA_0 input when the host processor writes to IDR2, and indicates whether IDR2 contains data or a command.

Bit 3

C/D	Description	
0	Contents of IDR2 are data	(Initial value)
1	Contents of IDR2 are a command	

Bit 1—Input Buffer Full (IBF): Set to 1 when the host processor writes to IDR2. This bit is an internal interrupt source to the slave processor. IBF is cleared to 0 when the slave processor reads IDR2.

Bit 1 IBF	Description	
0	This bit is cleared when the slave processor reads IDR2	(Initial value)
1	This bit is set when the host processor writes to IDR2	

Bit 0—Output Buffer Full (OBF): Set to 1 when the slave processor writes to ODR2. Cleared to 0 when the host processor reads ODR2.

Bit 0		
OBF	Description	
0	This bit is cleared when the host processor reads ODR2	(Initial value)
1	This bit is set when the slave processor writes to ODR2	

Table 15-4 shows the conditions for setting and clearing the STR2 flags.

Table 15-4 Set/Clear Timing for STR2 Flags

Flag	Setting Condition	Clearing Condition
C/D	Rising edge of host's write signal ($\overline{\text{IOW}}$) when HA $_0$ is high	Rising edge of host's write signal (IOW) when HA ₀ is low
IBF	Rising edge of host's write signal (IOW) when writing to IDR2	Falling edge of slave's internal read signal (RD) when reading IDR2
OBF	Falling edge of slave's internal write signal (WR) when writing to ODR2	Rising edge of host's read signal (IOR) when reading ODR2

15.3 Operation

15.3.1 Host Interface Operation

The host interface is activated by setting the HIE bit (bit 1) to 1 in SYSCR, establishing slave mode. Activation of the host interface (entry to slave mode) appropriates the related I/O lines in port 3 (data), port 4 or 7 (control) and port 4 (host interrupt requests) for interface use.

For host interface read/write timing diagrams, see section 19.3.8, Host Interface Timing.

15.3.2 Control States

Table 15-5 indicates the slave operations carried out in response to host interface signals from the host processor.

Table 15-5 Host Interface Operation

$\overline{\text{CS}}_2$	$\overline{\text{CS}}_1$	IOR	IOW	HA_0	Operation
1	0	0	0	0	Prohibited
1	0	0	0	1	Prohibited
1	0	0	1	0	Data read from output data register 1 (ODR1)
1	0	0	1	1	Status read from status register 1 (STR1)
1	0	1	0	0	Data write to input data register 1 (IDR1)
1	0	1	0	1	Command write to input data register 1 (IDR1)
1	0	1	1	0	Idle state
1	0	1	1	1	Idle state
0	1	0	0	0	Prohibited
0	1	0	0	1	Prohibited
0	1	0	1	0	Data read from output data register 2 (ODR2)
0	1	0	1	1	Status read from status register 2 (STR2)
0	1	1	0	0	Data write to input data register 2 (IDR2)
0	1	1	0	1	Command write to input data register 2 (IDR2)
0	1	1	1	0	Idle state
0	1	1	1	1	Idle state

15.3.3 A₂₀ Gate

The A_{20} gate signal can mask address A_{20} to emulate an addressing mode used by personal computers with an 8086*-family CPU. In slave mode, a regular-speed A_{20} gate signal can be

output under software control, or a fast A_{20} gate signal can be output under hardware control. Fast A_{20} gate output is enabled by setting the FGA20E bit (bit 0) to 1 in HICR (H'FFF0).

Note: * Intel microprocessor.

Regular A₂₀ Gate Operation: Output of the A_{20} gate signal can be controlled by an H'D1 command followed by data. When the slave processor receives data, it normally uses an interrupt routine activated by the IBF1 interrupt to read IDR1. If the data follows an H'D1 command, software copies bit 1 of the data and outputs it at the gate A_{20} pin (P4₇/GA₂₀).

Fast A_{20} Gate Operation: When the FGA20E bit is set to 1, $P4_7/GA_{20}$ is used for output of a fast A_{20} gate signal. Bit $P4_7DDR$ must be set to 1 to assign this pin for output. The initial output from this pin will be a logic 1, which is the initial DR value. Afterward, the host processor can manipulate the output from this pin by sending commands and data. This function is available only when register IDR1 is accessed using \overline{CS}_1 . Slave logic decodes the commands input from the host processor. When an H'D1 host command is detected, bit 1 of the data following the host command is output from the GA_{20} output pin. This operation does not depend on software or interrupts, and is faster than the regular processing using interrupts. Table 15-6 lists the conditions that set and clear GA_{20} (P4₇). Figure 15-2 describes the GA_{20} output in flowchart form. Table 15-7 indicates the GA_{20} output signal values.

Table 15-6 GA₂₀ (P4₇) Set/Clear Timing

Pin Name	Setting Condition	Clearing Condition
GA ₂₀ (P4 ₇)		Rising edge of the host's write signal (IOW) when bit 1 of the written data is 0 and the data follows an H'D1 host command

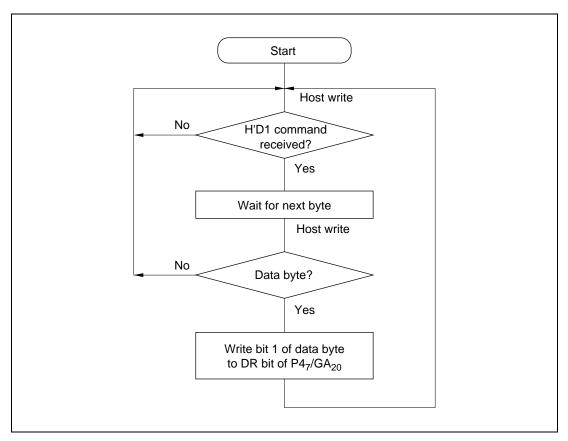


Figure 15-2 GA₂₀ Output

Table 15-7 Fast A₂₀ Gate Output Signal

HA ₀	Data/Command	Internal CPU Interrupt Flag	GA ₂₀ (P4 ₇)	Remarks
1	H'D1 command	0	Q	Turn-on sequence
0	"1" data*1	0	1	
1	H'FF command	0	Q (1)	
1	H'D1 command	0	Q	Turn-off sequence
0	"0" data*2	0	0	
1	H'FF command	0	Q (0)	
1	H'D1 command	0	Q	Short turn-on sequence
0	"1" data*1	0	1	
1/0	Command other than H'FF and H'D1	1	Q (1)	
1	H'D1 command	0	Q	Short turn-off sequence
0	"0" data*2	0	0	
1/0	Command other than H'FF and H'D1	1	Q (0)	
1	H'D1 command	0	Q	Cancelled sequence
1	Command other than H'D1	1	Q	
1	H'D1 command	0	Q	Retriggered sequence
1	H'D1 command	0	Q	
1	H'D1 command	0	Q	Consecutively executed sequences
0	Any data	0	1/0	
1	H'D1 command	0	Q (1/0)

Notes: 1. Arbitrary data with bit 1 set to 1.

2. Arbitrary data with bit 1 cleared to 0.

15.4 Interrupts

15.4.1 IBF1, IBF2

The host interface can request two interrupts to the slave CPU: IBF1 and IBF2. They are input buffer full interrupts for input data registers IDR1 and IDR2 respectively. Each interrupt is enabled when the corresponding enable bit is set (table 15-8).

Table 15-8 Input Buffer Full Interrupts

Interrupt	Description
IBF1	Requested when IBFIE1 is set to 1 and IDR1 is full
IBF2	Requested when IBFIE2 is set to 1 and IDR2 is full

15.4.2 HIRQ₁₁, HIRQ₁, and HIRQ₁₂

In slave mode (when HIE = 1 in SYSCR), three bits in the port 4 data register (P4DR) can be used as host interrupt request latches.

These three P4DR bits are cleared to 0 by the host processor's read signal (\overline{IOR}) . If \overline{CS}_1 and HA_0 are low, when \overline{IOR} goes low and the host reads ODR1, HIRQ₁ and HIRQ₁₂ are cleared to 0. If \overline{CS}_2 and HA_0 are low, when \overline{IOR} goes low and the host reads ODR2, HIRQ₁₁ is cleared to 0. To generate a host interrupt request, normally on-chip software writes 1 to the corresponding bit. In processing the interrupt, the host's interrupt-handling routine reads the output data register (ODR1 or ODR2), and this clears the host interrupt latch to 0.

Table 15-9 indicates how these bits are set and cleared. Figure 15-3 shows the processing in flowchart form.

Table 15-9 Host Interrupt Set/Clear Conditions

Host Interrupt Signal	Setting Condition	Clearing Condition
HIRQ ₁₁ (P4 ₃)	Slave CPU reads 0 from P4DR bit 3, then writes 1	Slave CPU writes 0 in P4DR bit 3, or host reads output data register 2
HIRQ ₁ (P4 ₄)	Slave CPU reads 0 from P4DR bit 4, then writes 1	Slave CPU writes 0 in P4DR bit 4, or host reads output data register 1
HIRQ ₁₂ (P4 ₅)	Slave CPU reads 0 from P4DR bit 5, then writes 1	Slave CPU writes 0 in P4DR bit 5, orhost reads output data register 1

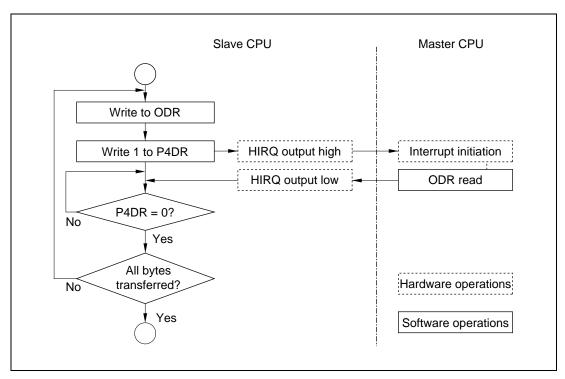


Figure 15-3 HIRQ Output Flowchart

15.5 Application Note

The host interface provides buffering of asynchronous data from the host and slave processors, but an interface protocol must be followed to implement necessary functions and avoid data contention. For example, if the host and slave processors try to access the same input or output data register simultaneously, the data will be corrupted. Interrupts can be used to design a simple and effective protocol.

336

Section 16 RAM

16.1 Overview

The H8/3217 and H8/3216 have 2 kbytes of on-chip static RAM, the H8/3214 has 1 kbyte, and the H8/3212 and H8/3202 have 512 bytes. The on-chip RAM is connected to the CPU by a 16-bit data bus. Both byte and word access to the on-chip RAM are performed in two states, enabling rapid data transfer and instruction execution.

The on-chip RAM occupies the following addresses in the chip's address space.

H8/3217, H8/3216: H'F780 to H'FF7F H8/3214: H'FB80 to H'FF7F H8/3212, H8/3202: H'FD80 to H'FF7F

The RAME bit in the system control register (SYSCR) can enable or disable the on-chip RAM, permitting these addresses to be allocated to external memory instead, if so desired.

16.2 Block Diagram

Figure 16-1 is a block diagram of the on-chip RAM.

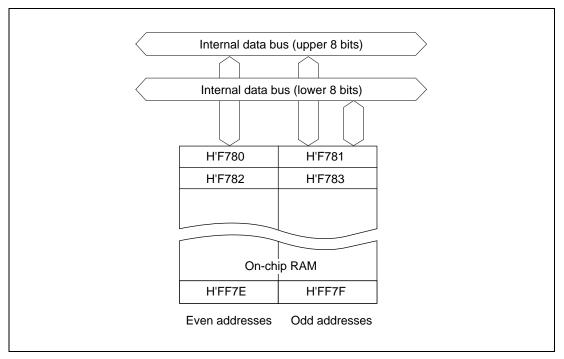


Figure 16-1 Block Diagram of On-Chip RAM (H8/3217)

16.3 RAM Enable Bit (RAME)

The on-chip RAM is enabled or disabled by the RAME (RAM Enable) bit in the system control register (SYSCR). Table 16-1 lists information about the system control register.

Table 16-1 System Control Register

Name	Abbreviation SYSCR		R/W Init		tial value	Address H'FFC4		
System control register					09			
	_		_					
Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME
Initial value	0	0	0	0	1	0	0	1
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

338

HITACHI

The only bit in the system control register that concerns the on-chip RAM is the RAME bit. See section 3.2, System Control Register for the other bits.

Bit 0—RAM Enable (RAME): This bit enables or disables the on-chip RAM.

The RAME bit is initialized to 1 on the rising edge of the \overline{RES} signal, so a reset enables the onchip RAM. The RAME bit is not initialized in the software standby mode.

Bit 7 RAME Description On-chip RAM is disabled On-chip RAM is enabled (Initial value)

16.4 Operation

16.4.1 Expanded Modes (Modes 1 and 2)

If the RAME bit is set to 1, accesses to the following addresses are directed to the on-chip RAM.

H8/3217, H8/3216: H'F780 to H'FF7F H8/3214: H'FB80 to H'FF7F H8/3212, H8/3202: H'FD80 to H'FF7F

If the RAME bit is cleared to 0, accesses to these addresses are directed to the external data bus.

16.4.2 Single-Chip Mode (Mode 3)

If the RAME bit is set to 1, accesses to the following addresses are directed to the on-chip RAM.

H8/3217, H8/3216: H'F780 to H'FF7F H8/3214: H'FB80 to H'FF7F H8/3212, H8/3202: H'FD80 to H'FF7F

If the RAME bit is cleared to 0, the on-chip RAM data cannot be accessed. Attempted write access has no effect. Attempted read access always results in H'FF data being read.

340

Section 17 ROM

17.1 Overview

The H8/3217 has 60 kbytes of high-speed, on-chip ROM, the H8/3216 has 48 kbytes, the H8/3214 has 32 kbytes, and the H8/3212 and H8/3202 have 16 kbytes. The on-chip ROM is connected to the CPU via a 16-bit data bus. Both byte data and word data are accessed in two states, enabling rapid data transfer and instruction fetching.

The H8/3217 and H8/3214 are available in two versions: one with electrically programmable ROM (PROM); the other with masked ROM. The PROM version has a PROM mode in which the chip can be programmed with a standard PROM writer.

The on-chip ROM is enabled or disabled depending on the MCU operating mode, which is determined by the inputs at the mode pins $(MD_1 \text{ and } MD_0)$ when the chip comes out of the reset state. See table 17-1.

The H8/3217 has 61,312 bytes of ROM (addresses H'0000 to H'EF7F) enabled in mode 2, and 63,360 bytes (addresses H'0000 to H'F77F) in mode 3. See section 3, MCU Operating Modes and Address Space, for details.

Table 17-1 On-Chip ROM Usage in Each MCU Mode

	IV	lode Pins	
Mode	MD ₁	MD ₀	On-Chip ROM
Mode 1 (expanded mode)	0	1	Disabled (external addresses)
Mode 2 (expanded mode)	1	0	Enabled
Mode 3 (single-chip mode)	1	1	Enabled

17.1.1 Block Diagram

Figure 17-1 is a block diagram of the on-chip ROM.

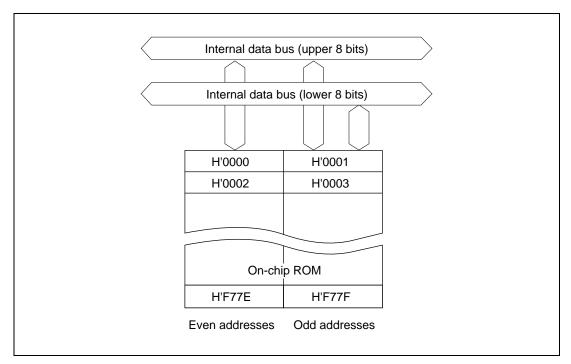


Figure 17-1 Block Diagram of On-Chip ROM (H8/3217, Single-Chip Mode)

17.2 PROM Mode (H8/3217 and H8/3214)

17.2.1 PROM Mode Setup

In the PROM mode of the PROM version of the H8/3217 and H8/3214, the usual microcomputer functions are halted to allow the on-chip PROM to be programmed. The programming method is the same as for the HN27C101. However, page programming is not supported.

To select the PROM mode, apply the signal inputs listed in table 17-2.

Table 17-2 Selection of PROM Mode

Pin	Input
Mode pin MD ₁	Low
Mode pin MD ₀	Low
STBY pin	Low
Pins P7 ₀ and P7 ₁	High

17.2.2 Socket Adapter Pin Assignments and Memory Map

The H8/3217 and H8/3214 can be programmed with a general-purpose PROM writer. Since the microcontroller package has 64 or 80 pins, a socket adapter is necessary. Table 17-3 lists recommended socket adapters. Figure 17-2 shows the socket adapter pin assignments by giving the correspondence between microcontroller pins and HN27C101 pin functions.

The H8/3217 has 60 kbytes of PROM, and the H8/3214 has 32 kbytes. Figures 17-3 and 17-4 show memory maps of the H8/3217 and H8/3214 in PROM mode. H'FF data should be specified for unused address areas.

When programming with a PROM writer, specify an address range of H'0000 to H'F77F for the H8/3217, or H'0000 to H'7FFF for the H8/3214. Specify H'FF data for addresses equal to or greater than H'F780 for the H8/3217, or H'8000 for the H8/3214. If these areas are programmed by mistake, it may become impossible to write or verify PROM data. The same applies if page programming is attempted. Be particularly careful with microcontrollers in plastic packages, in which the PROM cannot be reprogrammed.

Table 17-3 Recommended Socket Adapters

Туре	Package	Recommended Socket Adapter				
H8/3217 H8/3214	64-pin windowed shrink DIP (DC-64S)	HS3217ESSS1H				
	64-pin shrink DIP (DP-64S)					
	64-pin QFP (FP-64A)	HS3217ESHS1H				
	80-pin TQFP (TFP-80C)	HS3217ESNS1H				

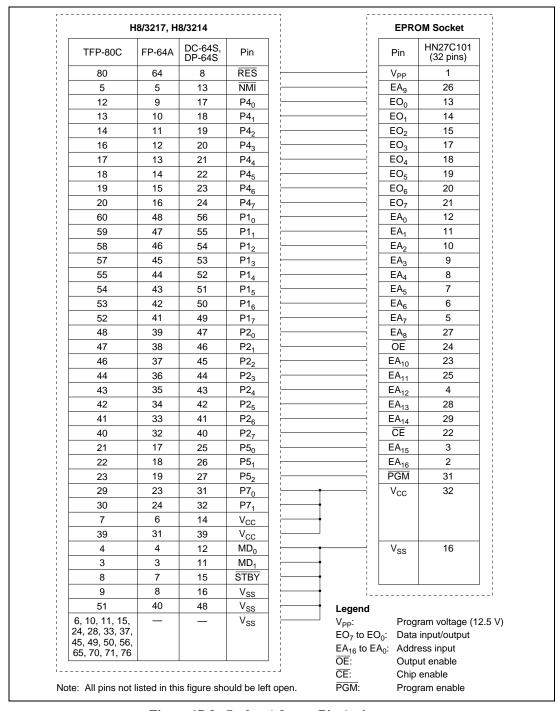


Figure 17-2 Socket Adapter Pin Assignments

344

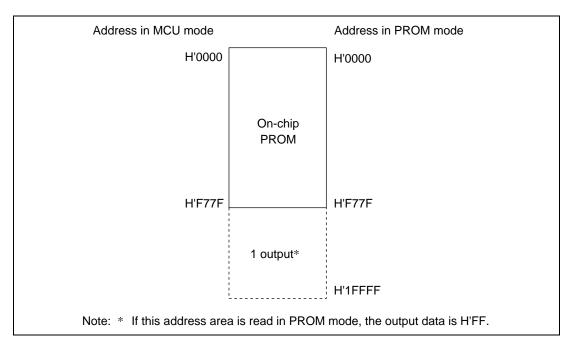


Figure 17-3 H8/3217 Memory Map in PROM Mode

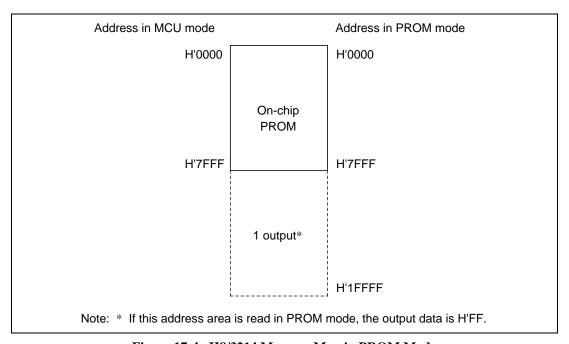


Figure 17-4 H8/3214 Memory Map in PROM Mode

17.3 Programming

17.3.1 Selection of Sub-Modes in PROM Mode

The write, verify, and other sub-modes of the PROM mode are selected as shown in table 17-4.

Table 17-4 Selection of Sub-Modes in PROM Mode

Sub-Mode	CE	ŌĒ	DCM				
			PGM	V_{PP}	v_{cc}	E0 ₇ to E0 ₀	EA ₁₆ to EA ₀
Write	Low	High	Low	V_{PP}	V_{CC}	Data input	Address input
Verify	Low	Low	High	V_{PP}	V_{CC}	Data output	Address input
- 3 3	Low	Low	Low	V_{PP}	V _{CC}	High-impedance	Address input
inhibited	Low	High	High				
	High	Low	Low				
	High	High	High				

The H8/3217 or H8/3214 PROM has the same standard read/write specifications as the HN27C101 EPROM. Page programming is not supported, however, so do not select page programming mode. PROM writers that provide only page programming cannot be used. When selecting a PROM writer, check that it supports the byte-at-a-time high-speed programming mode. Be sure to set the address range to H'0000 to H'F77F for the H8/3217, and to H'0000 to H'7FFF for the H8/3214.

17.3.2 Programming and Verification

An efficient, high-speed programming procedure can be used to write and verify PROM data. This procedure writes data quickly without subjecting the chip to voltage stress and without sacrificing data reliability. It leaves the data H'FF written in unused addresses.

Figures 17-5 show the basic high-speed programming flowchart.

Tables 17-5 and 17-6 list the electrical characteristics of the chip in the PROM mode. Figure 17-6 shows a write/verify timing chart.

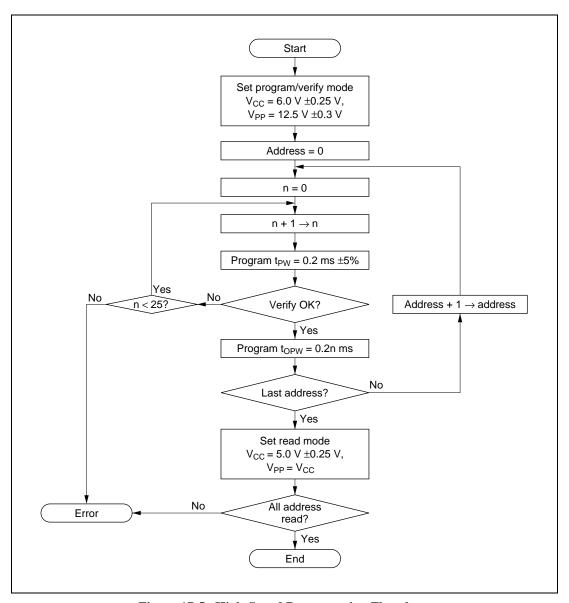


Figure 17-5 High-Speed Programming Flowchart

Table 17-5 DC Characteristics (When V_{CC} = 6.0 V ±0.25 V, V_{PP} = 12.5 V ±0.3 V, V_{SS} = 0 V, Ta = 25_C ±5_C)

Item		Symbol	Min	Тур	Мах	Unit	Measurement Conditions
Input high voltage	EO ₇ –EO ₀ , EA ₁₆ –EA ₀ , OE, CE, PGM	V _{IH}	2.4	_	V _{CC} + 0.3	V	
Input low voltage	EO ₇ –EO ₀ , EA ₁₆ –EA ₀ , OE, CE, PGM	V _{IL}	- 0.3	_	0.8	V	
Output high voltage	EO ₇ –EO ₀	V _{OH}	2.4	_	_	V	I _{OH} = -200 μA
Output low voltage	EO ₇ –EO ₀	V _{OL}	_	_	0.45	V	I _{OL} = 1.6 mA
Input leakage current	EO ₇ –EO ₀ , EA ₁₆ –EA ₀ , OE, CE, PGM	I _{LI}	_	_	2	μΑ	V _{in} = 5.25V/0.5V
V _{CC} current		I _{CC}	_	_	40	mA	
V _{PP} current		I _{PP}	_	_	40	mA	

Table 17-6 AC Characteristics (When V_{CC} = 6.0V ± 0.25 V, V_{PP} = 12.5 V ± 0.3 V, Ta = 25_C ± 5 _C)

Item	Symbol	Min	Тур	Max	Unit	Measurement Conditions
Address setup time	t _{AS}	2	_	_	μs	See figure 17-6*
OE setup time	t _{OES}	2		_	μs	_
Data setup time	t _{DS}	2		_	μs	_
Address hold time	t _{AH}	0	_	_	μs	_
Data hold time	t _{DH}	2	_	_	μs	_
Data output disable time	t _{DF}	_	_	130	ns	_
V _{PP} setup time	t _{VPS}	2	_	_	μs	_
Program pulse width	t _{PW}	0.19	0.20	0.21	ms	_
OE pulse width for overwrite-programming	t _{OPW}	0.19	_	5.25	ms	_
V _{CC} setup time	t _{VCS}	2	_	_	μs	_
CE setup time	t _{CES}	2	_	_	μs	_
Data output delay time	t _{OE}	0	_	150	ns	_

Note: * Input pulse level: 0.8 V to 2.2 V

Input rise/fall time \leq 20 ns

Timing reference levels: input—1.0 V, 2.0 V; output—0.8 V, 2.0 V

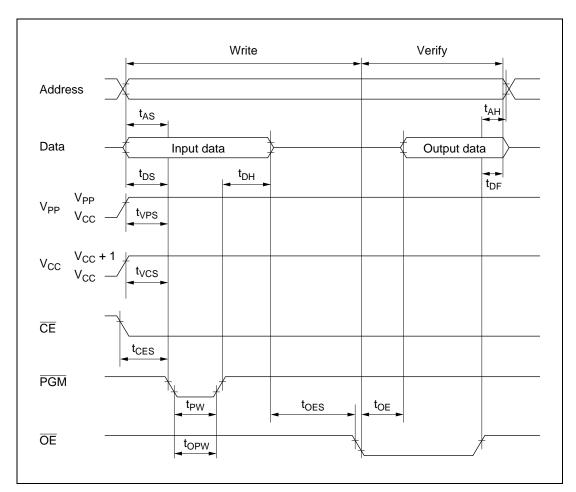


Figure 17-6 PROM Write/Verify Timing

17.3.3 Notes on Writing

- (1) Write with the specified voltages and timing. The programming voltage (V_{PP}) is 12.5 V. Caution: Applied voltages in excess of the specified values can permanently destroy the chip. Be particularly careful about the PROM writer's overshoot characteristics.
 If the PROM writer is set to Hitachi HN27C101 specifications, V_{PP} will be 12.5 V.
- (2) Before writing data, check that the socket adapter and chip are correctly mounted in the PROM writer. Overcurrent damage to the chip can result if the index marks on the PROM writer, socket adapter, and chip are not correctly aligned.
- (3) **Don't touch the socket adapter or chip while writing.** Touching either of these can cause contact faults and write errors.
- (4) Page programming is not supported. Do not select a fast programming mode.

(5) The PROM size is 60 kbytes in the H8/3217 and 32 kbytes in the H8/3214. Be sure to set an address space of H'0000 to H'F77F for the H8/3217, or H'0000 to H'7FFF for the H8/3214. H'FF data should be specified for unused address areas (H'F780 to H'1FFFF in the H8/3217, H'8000 to H'1FFFF in the H8/3214).

17.3.4 Reliability of Written Data

An effective way to assure the data holding characteristics of the programmed chips is to bake them at 150_C, then screen them for data errors. This procedure quickly eliminates chips with PROM memory cells prone to early failure.

Figure 17-7 shows the recommended screening procedure.

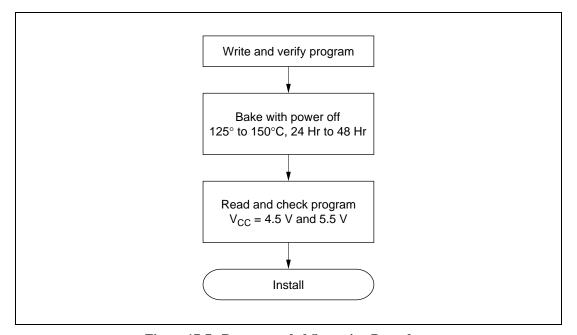


Figure 17-7 Recommended Screening Procedure

If a series of write errors occurs while the same PROM writer is in use, stop programming and check the PROM writer and socket adapter for defects, using a microcomputer chip with a windowed package and on-chip EPROM.

Please inform Hitachi of any abnormal conditions noted during programming or in screening of program data after high-temperature baking.

17.3.5 Erasing of Data

The windowed package enables data to be erased by illuminating the window with ultraviolet light. Table 17-7 lists the erasing conditions.

Table 17-7 Erasing Conditions

Item	Value
Ultraviolet wavelength	253.7 nm
Minimum illumination	15W·s/cm ²

The conditions in table 17-7 can be satisfied by placing a 12000- $\mu W/cm^2$ ultraviolet lamp 2 or 3 centimeters directly above the chip and leaving it on for about 20 minutes.

17.4 Handling of Windowed Packages

(1) Glass Erasing Window: Rubbing the glass erasing window of a windowed package with a plastic material or touching it with an electrically charged object can create a static charge on the window surface which may cause the chip to malfunction.

If the erasing window becomes charged, the charge can be neutralized by a short exposure to ultraviolet light. This returns the chip to its normal condition, but it also reduces the charge stored in the floating gates of the PROM, so it is recommended that the chip be reprogrammed afterward.

Accumulation of static charge on the window surface can be prevented by the following precautions:

- When handling the package, ground yourself. Don't wear gloves. Avoid other possible sources of static charge.
- Avoid friction between the glass window and plastic or other materials that tend to accumulate static charge.
- Be careful when using cooling sprays, since they may have a slight ion content.
- Cover the window with an ultraviolet-shield label, preferably a label including a conductive material. Besides protecting the PROM contents from ultraviolet light, the label protects the chip by distributing static charge uniformly.
- (2) Handling after Programming: Fluorescent light and sunlight contain small amounts of ultraviolet, so prolonged exposure to these types of light can cause programmed data to invert. In addition, exposure to any type of intense light can induce photoelectric effects that may lead to chip malfunction. It is recommended that after programming the chip, you cover the erasing window with a light-proof label (such as an ultraviolet-shield label).

Section 18 Power-Down State

[Key-sense interrupt function incorporated in all models except the H8/3212]

Note that the H8/3212 does not have an IRQ6 interrupt function controlled by the \overline{KEYIN}_0 to \overline{KEYIN}_7 input signals and the KMIMR register.

18.1 Overview

The H8/3217 Series has a power-down state that greatly reduces power consumption by stopping some or all of the chip functions. The power-down state includes three modes:

- 1. Sleep mode
- 2. Software standby mode
- 3. Hardware standby mode

Table 18-1 lists the conditions for entering and leaving the power-down modes. It also indicates the status of the CPU, on-chip supporting modules, etc., in each power-down mode.

Table 18-1 Power-Down State

Mode	Entering Procedure	Clock	CPU	CPU Reg's.	Sup. Mod.*	RAM	I/O Ports		kiting ethods
Sleep	Execute	Run	Halt	Held	Run	Held	Held	•	Interrupt
mode	SLEEP instruction							•	RES
	ili Sti detion							•	STBY
Software	Set SSBY bit	Halt	Halt	Held	Halt and	Held	Held	•	NMI
standby mode	in SYSCR to 1, then				initialized			•	IRQ_0 – IRQ_2
mode	execute							•	KEYIN ₀ -
	SLEEP							•	KEYIN ₇
	instruction							•	STBY
								•	RES
Hardware	Set STBY pin	Halt	Halt	Not	Halt and	Held	High	•	STBY high,
standby mode	to low level			held	initialized		impe- dance		then RES
mode							state		$low \to high$

Notes: 1. SYSCR: System control register

2. SSBY: Software standby bit

^{*} On-chip supporting modules.

18.1.1 System Control Register (SYSCR)

Bits 7 to 4 of the system control register (SYSCR) concern the power-down state. Specifically, they concern the software standby mode.

Table 18-2 lists the attributes of the system control register.

Table 18-2 System Control Register

Name			Abbreviation		R/W	Initial Value		Address	
System control register		;	SYSCR		R/W	H'09	H	H'FFC4	
Bit	7	6	5	4	3	2	1	0	
	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME	
Initial value	0	0	0	0	1	0	0	1	
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	

Bit 7—Software Standby (SSBY): This bit enables or disables the transition to the software standby mode.

On recovery from the software standby mode by an external interrupt SSBY remains set to 1. To clear this bit, software must write a 0.

Bit 7 SSBY	Description	
0	The SLEEP instruction causes a transition to the sleep mode	(Initial value)
1	The SLEEP instruction causes a transition to the software standb	y mode

Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the clock settling time when the chip recovers from the software standby mode by means of an external interrupt. During the selected time, the clock oscillator runs but clock pulses are not supplied to the CPU or the on-chip supporting modules. Refer to table 18-3 to select an appropriate settling time for the operating frequency.

Bit 6 STS2	Bit 5 STS1	Bit 4 STS0	Description	
0	0	0	Settling time = 8192 states	(Initial value)
0	0	1	Settling time = 16384 states	
0	1	0	Settling time = 32768 states	
0	1	1	Settling time = 65536 states	
1	0	_	Settling time = 131072 states	
1	1	_	Use prohibited	

18.2 Sleep Mode

18.2.1 Transition to Sleep Mode

When the SSBY bit in the system control register is cleared to 0, execution of the SLEEP instruction causes a transition from the program execution state to the sleep mode. After executing the SLEEP instruction, the CPU halts, but the contents of its internal registers remain unchanged. The on-chip supporting modules continue to operate normally.

18.2.2 Exit from Sleep Mode

The chip wakes up from the sleep mode when it receives an internal or external interrupt request, or a low input at the \overline{RES} or \overline{STBY} pin.

- (1) Wake-Up by Interrupt: An interrupt releases the sleep mode and starts the CPU's interrupt-handling sequence.
 - If an interrupt from an on-chip supporting module is disabled by the corresponding enable/disable bit in the module's control register, the interrupt cannot be requested, so it cannot wake the chip up. Similarly, the CPU cannot be awoken by an interrupt other than NMI if the I (interrupt mask) bit in CCR (the condition code register) is set when the SLEEP instruction is executed.
- (2) Wake-Up by \overline{RES} pin: When the \overline{RES} pin goes low, the chip exits from the sleep mode to the reset state.
- (3) Wake-Up by STBY pin: When the STBY pin goes low, the chip exits from the sleep mode to the hardware standby mode.

18.3 Software Standby Mode

18.3.1 Transition to Software Standby Mode

To enter software standby mode, set the standby bit (SSBY) in the system control register (SYSCR) to 1, then execute the SLEEP instruction.

In software standby mode, the system clock stops and chip functions halt, including both CPU functions and the functions of the on-chip supporting modules. Power consumption is reduced to an extremely low level. The on-chip supporting modules and their registers are reset to their initial states, but as long as a minimum necessary voltage supply is maintained, the contents of the CPU registers and on-chip RAM remain unchanged.

18.3.2 Exit from Software Standby Mode

The chip can be brought out of the software standby mode by an input at one of the following pins: \overline{NMI} , \overline{IRQ}_0 , to \overline{IRQ}_2 , \overline{KEYIN}_0 to \overline{KEYIN}_7 , \overline{RES} , or \overline{STBY} .

- (1) **Recovery by External Interrupt:** When an NMI, IRQ₀, IRQ₁, IRQ₂ or key-sense interrupt (IRQ₆) request signal is received, the clock oscillator begins operating. After the waiting time set in the system control register (bits STS2 to STS0), clock pulses are supplied to the CPU and on-chip supporting modules. The CPU executes the interrupt-handling sequence for the requested interrupt, then returns to the instruction after the SLEEP instruction. See Section 18.1.1, System Control Register, for information about the STS bits.
- (2) Recovery by RES Pin: When the RES pin goes low, the clock oscillator starts. Next, when the RES pin goes high, the CPU begins executing the reset sequence.

 The RES pin must be held low long enough for the clock to stabilize.
- (3) **Recovery by \overline{STBY} Pin:** When the \overline{STBY} pin goes low, the chip exits from the software standby mode to the hardware standby mode.

18.3.3 Clock Settling Time for Exit from Software Standby Mode

Set bits STS2 to STS0 in SYSCR as follows:

- · Crystal oscillator
 - Set STS2 to STS0 for a settling time of at least 8 ms. Table 18-3 lists the settling times selected by these bits at several clock frequencies.
- External clock
 - The STS bits can be set to any value. Normally, the minimum time (STS2 = STS1 = STS0 = 0) is recommended.

Table 18-3 Times Set by Standby Timer Select Bits (Unit: ms)

System Clock Frequency (MHz)

STS2	STS1	STS0	Settling Time (States)	16	12	10	8	6	4	2	1	0.5
0	0	0	8.192	0.51	0.65	0.8	1.0	1.3	2.0	4.1	8.2	16.4
0	0	1	16,384	1.0	1.3	1.6	2.0	2.7	4.1	8.2	16.4	32.8
0	1	0	32,768	2.0	2.7	3.3	4.1	5.5	8.2	16.4	32.8	65.5
0	1	1	65,536	4.1	5.5	6.6	8.2	10.9	16.4	32.8	65.5	131.1
1	0	0	131.072	8.2	10.9	13.1	16.4	21.8	32.8	65.5	131.1	262.1

Notes: 1. All times are in milliseconds.

^{2.} Recommended values are printed in boldface.

18.3.4 Sample Application of Software Standby Mode

In this example the chip enters the software standby mode when \overline{NMI} goes low and exits when \overline{NMI} goes high, as shown in figure 18-1.

The NMI edge bit (NMIEG) in the system control register is originally cleared to 0, selecting the falling edge. When $\overline{\text{NMI}}$ goes low, the $\overline{\text{NMI}}$ interrupt handling routine sets NMIEG to 1 (selecting the rising edge), sets SSBY to 1, then executes the SLEEP instruction. The chip enters the software standby mode. It recovers from the software standby mode on the next rising edge of $\overline{\text{NMI}}$.

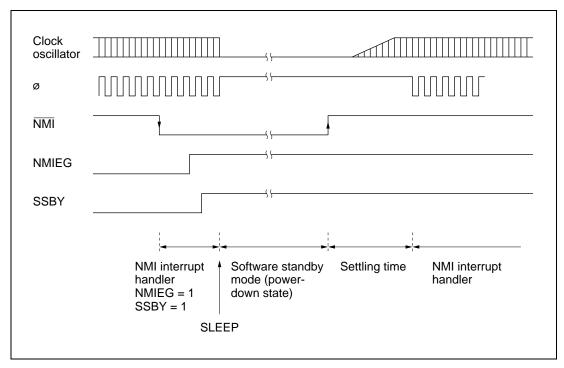


Figure 18-1 Software Standby Mode NMI Timing (Example)

18.3.5 Note on Current Dissipation

The I/O ports remain in their current states in software standby mode. If a port is in the high output state, it continues to dissipate power in proportion to the output current.

18.4 Hardware Standby Mode

18.4.1 Transition to Hardware Standby Mode

Regardless of its current state, the chip enters the hardware standby mode whenever the STBY pin goes low.

The hardware standby mode reduces power consumption drastically by halting the CPU, stopping all the functions of the on-chip supporting modules, and placing I/O ports in the high-impedance state. The registers of the on-chip supporting modules are reset to their initial values. Only the on-chip RAM is held unchanged, provided the minimum necessary voltage supply is maintained.

- Notes: 1. The RAME bit in the system control register should be cleared to 0 before the STBY pin goes low, to disable the on-chip RAM during the hardware standby mode.
 - 2. Do not change the inputs at the mode pins (MD₁, MD₀) during hardware standby mode. Be particularly careful not to let both mode pins go low in hardware standby mode, since that places the chip in PROM mode and increases current drain.

18.4.2 Recovery from Hardware Standby Mode

Recovery from the hardware standby mode requires inputs at both the \overline{STBY} and \overline{RES} pins.

When the \overline{STBY} pin goes high the clock oscillator begins running. The \overline{RES} pin should be low at this time and should be held low long enough for the clock to stabilize. When the \overline{RES} pin changes from low to high, the reset sequence is executed and the chip returns to the program execution state.

18.4.3 Timing Relationships

Figure 18-2 shows the timing relationships in the hardware standby mode.

In the sequence shown, first \overline{RES} goes low, then \overline{STBY} goes low, at which point the chip enters the hardware standby mode. To recover, first \overline{STBY} goes high, then after the clock settling time, \overline{RES} goes high.

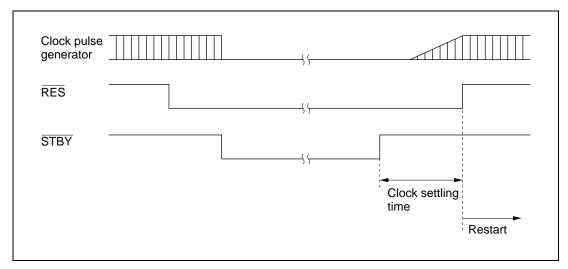


Figure 18-2 Hardware Standby Mode Timing

360

Section 19 Electrical Specifications

19.1 Absolute Maximum Ratings

Table 19-1 lists the absolute maximum ratings.

Table 19-1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage	V _{CC}	-0.3 to +7.0	V
Programming voltage	V_{PP}	-0.3 to +13.5	V
Input voltage	V _{in}	-0.3 to V _{CC} + 0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Note: Exceeding the absolute maximum ratings shown in table 19-1 can permanently damage the chip.

19.2 Electrical Characteristics

19.2.1 DC Characteristics

Tables 19-2, 19-3, and 19-4 list the DC characteristics of the 5 V, 4 V, and 3 V versions, respectively. Table 19-5 gives the allowable current output values of the 5 V and 4 V versions, and table 19-6 gives the allowable current output values of the 3 V version. Bus drive characteristics common to the 5 V, 4 V, and 3 V versions are listed in table 19-7.

Table 19-2 DC Characteristics (5 V Version) — Preliminary — Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = -20^{\circ}\text{C}$ to +75°C (regular specifications), $Ta = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger Input voltage	P7 ₇ , (1) P7 ₅ to P7 ₀ *3, FTCI, FTI,	V _T -	1.0	_	_	V	
voltage	TMRI ₀ , TMRI ₁ , TMCI ₀ , TMCI ₁ ,	V _T +	_	_	V _{CC} × 0.7	_	
	VSYNCI, HSYNCI, CSYNCI, FBACKI, KEYIN ₇ to KEYIN ₀	$V_T^+ - V_T^-$	0.4	_	_	_	
Input high voltage	RES, STBY, (2) MD ₁ , MD ₀ , EXTAL, NMI	V _{IH}	V _{CC} – 0.7	_	V _{CC} + 0.3	V	
	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ , P7 ₃ , P7 ₂ (when bus drive function is selected)		V _{CC} × 0.7	_	V _{CC} + 0.3	_	
	All input pins other than (1) and (2) above	_	2.0	_	V _{CC} + 0.3	_	
Input low voltage	RES, STBY, (3) MD ₁ , MD ₀	V _{IL}	-0.3	_	0.5	V	
	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ , P7 ₃ , P7 ₂ (when bus drive function is selected)		-0.3	_	1.0	_	
	All input pins other than (1) and (3) above		-0.3	_	0.8		
Output high	All output pins*4	V _{OH}	V _{CC} – 0.5	_	_	V	I _{OH} = -200 μA
voltage			3.5	_	_		$I_{OH} = -1.0 \text{ mA}$

Table 19-2 DC Characteristics (5 V Version) (cont) — Preliminary — Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
	All output pins*4	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
voltage	P1 ₇ to P1 ₀ , P2 ₇ to P2 ₀ , P3 ₇ to P3 ₀		_	_	1.0	-	I _{OL} = 10.0 mA
Input	RES	I _{in}	_	_	10.0	μΑ	Vin = 0.5 V to
leakage current	STBY, NMI, MD ₁ , MD ₀		_	_	1.0	_	V _{CC} – 0.5 V
Leakage current in three-state (off state)	Ports 1 to 7	I _{TSI}	_	_	1.0	μA	$Vin = 0.5 V to$ $V_{CC} - 0.5 V$
Input pull-	Ports 1 to 3	-I _p	30		250	μΑ	Vin = 0 V
up MOS current	P7 ₃ to P7 ₀ , P6 ₃ to P6 ₀		60	_	500		
Input .	RES (4)	C _{in}	_	_	60	pF	Vin = 0 V, f = 1 MHz, Ta = 25°C
capaci- tance	NMI		_	_	50	_	
	P7 ₃ to P7 ₀		_	_	20	=	
	All input pins other than (4)		_	_	15		
Current	Normal operation	I _{CC}	_	27	45	mA	f = 12 MHz
dissipa ⁻ tion*1			_	36	60	_	f = 16 MHz
	Sleep mode		_	18	30	-	f = 12 MHz
			_	24	40	_	f = 16 MHz
	Standby modes*2		_	0.01	5.0	μΑ	Ta ≤ 50°C
			_	_	20.0	_	50°C < Ta
RAM stand	lby voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. Value when $V_{IH \, min} = V_{CC} - 0.5 \, V$, $V_{IL \, max} = 0.5 \, V$, all output pins are unloaded, and input MOS pull-ups are off.

^{2.} Value when $V_{RAM}\!\le\!V_{CC}$ < 4.5 V, $V_{IH\;min}$ = $V_{CC}\!\times\,$ 0.9 and $V_{IL\;max}$ = 0.3 V.

^{3.} P7₇ and P7₅ to P7₀ do not include SCL₀, SDA₀, SCL₁, SDA₁, HA₀, $\overline{\text{IOW}}$, $\overline{\text{CS}}_1$, and $\overline{\text{WAIT}}$.

^{4.} When IICS = ICE = 0. The output low level when the bus drive function is selected with P7 $_3$, P7 $_2$, SDA $_1$, SCL $_1$, SDA $_0$, and SCL $_0$ is determined separately.

Table 19-3 DC Characteristics (4 V Version) — Preliminary — Conditions: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $Ta = -20^{\circ}\text{C}$ to +75°C (regular specifications), $Ta = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

Item			Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger	P7 ₇ , P7 ₅ to P7 ₀ *3,	(1)	V _T -	1.0	_	_	V	V _{CC} = 4.5 V to 5.5 V
input voltage	FTČI, FTI, TMRI ₀ ,		V _T +	_	_	$V_{\text{CC}} \times 0.7$		
voltage	TMRI ₁ , TMCI ₀ , TMCI ₁ ,		$V_T^+ - V_T^-$	0.4	_	_	_	
			V _T -	0.8	_	_	-	$V_{CC} = 4.0 \text{ V to} $ 4.5 V
	VSYNCI, HSYNCI,		V _T +	_	_	$V_{CC} \times 0.7$	_	
	CSYNCI, FBACKI, $\overline{\text{KEYIN}}_7$ to $\overline{\text{KEYIN}}_0$		$V_T^+ - V_T^-$	0.3	_	_	-	
Input high voltage	RES, STBY, MD ₁ , MD ₀ , EXTAL, NMI	(2)	V _{IH}	V _{CC} - 0.7	_	V _{CC} + 0.3	V	
	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ , P7 ₃ , P7 ₂ (when bus drive function is selected)			$V_{CC} \times 0.7$	_	V _{CC} + 0.3		
	All input pins o than (1) and (2 above			2.0	_	V _{CC} + 0.3		
Input low voltage	RES, STBY, MD ₁ , MD ₀	(3)	V_{IL}	-0.3	_	0.5	V	
	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ ,			-0.3		1.0		V _{CC} = 4.5 V to 5.5 V
	P7 ₃ , P7 ₂ (when bus drive function is selected)	nen bus ve function		-0.3	_	0.8	=	V _{CC} = 4.0 V to 4.5 V
	All input pins other than (1) and (3)			-0.3	_	0.8		V _{CC} = 4.5 V to 5.5 V
	above			-0.3	_	0.6		V _{CC} = 4.0 V to 4.5 V

Table 19-3 DC Characteristics (4 V Version) (cont) — Preliminary — Conditions: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Output	All output pins*4	V _{OH}	V _{CC} - 0.5	_	_	V	I _{OH} = -200 μA
high voltage			3.5	_	_		$I_{OH} = -1.0 \text{ mA},$ $V_{CC} = 4.5 \text{ V to}$ 5.5 V
			2.8	_	_	_	$I_{OH} = -1.0 \text{ mA},$ $V_{CC} = 4.0 \text{ V to}$ 4.5 V
Output low voltage	All output pins*4	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
	P1 ₇ to P1 ₀ , P2 ₇ to P2 ₀ , P3 ₇ to P3 ₀	_	_	_	1.0		I _{OL} = 10.0 mA
Input leakage current	RES	I _{in}	_	_	10.0	μΑ	Vin = 0.5 V to
	STBY, NMI, MD ₁ , MD ₀		_	_	1.0		V _{CC} – 0.5 V
Leakage current in three-state (off state)	Ports 1 to 7	I _{TSI}	_	_	1.0	μА	$Vin = 0.5 V to V_{CC} - 0.5 V$
Input pull-	Ports 1 to 3	$-I_p$	30	_	250	μA	Vin = 0 V,
up MOS current	P7 ₃ to P7 ₀ , P6 ₃ to P6 ₀		60	_	500		$V_{CC} = 4.5 \text{ V}$ to 5.5 V
	Ports 1 to 3		20	_	200		Vin = 0 V,
	P7 ₃ to P7 ₀ , P6 ₃ to P6 ₀		40	_	400		$V_{CC} = 4.0 \text{ V to}$ 4.5 V
Input	RES (4) C _{in}	_	_	60	pF	Vin = 0 V,
capaci- tance	NMI		_	_	50		f = 1 MHz, Ta = 25°C
	P7 ₃ to P7 ₀		_	_	20		
	All input pins other than (4)	_	_	_	15		

Table 19-3 DC Characteristics (4 V Version) (cont) — Preliminary — Conditions: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Current	Normal operation	I _{CC}	_	27	45	mA	f = 12 MHz
dissipa ⁻ tion ^{*1}			_	36	60		f = 16 MHz, V _{CC} = 4.5 V to 5.5 V
	Sleep mode	_	_	18	30		f = 12 MHz
			_	24	40		f = 16 MHz, V _{CC} = 4.5 V to 5.5 V
	Standby modes*2	_		0.01	5.0	μΑ	Ta ≤ 50°C
			_	_	20.0		50°C < Ta
RAM star	ndby voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. Value when $V_{IH min} = V_{CC} - 0.5 \text{ V}$, $V_{IL max} = 0.5 \text{ V}$, all output pins are unloaded, and input MOS pull-ups are off.

- 2. Value when $V_{RAM}\!\leq\!V_{CC}$ < 4.0 V, $V_{IH\;min}$ = $V_{CC}\!\times\,$ 0.9 and $V_{IL\;max}$ = 0.3 V.
- 3. $P7_7$ and $P7_5$ to $P7_0$ do not include SCL_0 , SDA_0 , SCL_1 , SDA_1 , HA_0 , \overline{OW} , \overline{CS}_1 , and \overline{WAIT} .
- 4. When IICS = ICE = 0. The output low level when the bus drive function is selected with $P7_3$, $P7_2$, SDA_1 , SCL_1 , SDA_0 , and SCL_0 is determined separately.

Table 19-4 DC Characteristics (3 V Version) — Preliminary —

Conditions: $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, Ta = -20^{\circ}\text{C to } +75^{\circ}\text{C}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger input voltage	P7 ₇ , (1) P7 ₅ to P7 ₀ *3, FTCI, FTI, TMRI ₀ ,	V _T ⁻	V _{CC} × 0.15	_	_	V	
voltage	TMRI ₁ , TMCI ₀ , TMCI ₁ ,	V _T ⁺	_	_	V _{CC} × 0.7		
	VSYNCI, HSYNCI, CSYNCI, FBACKI KEYIN ₇ to KEYIN ₀	$V_T^+ - V_T^-$	0.2	_	_		
Input high voltage	RES, STBY, (2) MD ₁ , MD ₀ , EXTAL, NMI	V _{IH}	V _{CC} × 0.9	_	V _{CC} + 0.3	V	
	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ , P7 ₃ , P7 ₂ (when bus drive function is selected)		V _{CC} × 0.7	_	V _{CC} + 0.3		
	All input pins other than (1) and (2) above	_	$V_{CC} \times 0.7$	_	V _{CC} + 0.3		
Input low voltage	RES, STBY, (3) MD ₁ , MD ₀	V _{IL}	-0.3	_	V _{CC} × 0.1	V	
	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ , P7 ₃ , P7 ₂ (when bus drive function is selected)		-0.3	_	V _{CC} × 0.15		
	All input pins other than (1) and (3) above	_	-0.3	_	V _{CC} × 0.15		
Output high	All output pins*4	V _{OH}	V _{CC} - 0.5	_		V	I _{OH} = -200 μA
voltage			V _{CC} – 1.0	_	_		$I_{OH} = -1.0 \text{ mA}$

Table 19-4 DC Characteristics (3 V Version) (cont) — Preliminary — Conditions: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $T_{A} = -20 ^{\circ}\text{C}$ to +75 $^{\circ}\text{C}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions	
	All output pins*4	V _{OL}	_	_	0.4	V	I _{OL} = 0.8 mA	
voltage	P1 ₇ to P1 ₀ , P2 ₇ to P2 ₀ , P3 ₇ to P3 ₀	_	_	_	0.4		I _{OL} = 1.6 mA	
Input	RES	I _{in}	<u> </u>	μΑ	Vin = 0.5 V to			
Leakage	STBY, NMI, MD ₁ , MD ₀	_	_	_	1.0		V _{CC} – 0.5 V	
Leakage current in three-state (off state)	Ports 1 to 7	I _{TSI}	_		1.0	μА	$Vin = 0.5 V to V_{CC} - 0.5 V$	
Input pull-	Ports 1 to 3	-I _p	p 3 — 120 μA	μA	Vin = 0 V,			
up MOS current	P7 ₃ to P7 ₀ , P6 ₃ to P6 ₀	_	30	_	250		$V_{CC} = 2.7 \text{ V to}$ 4.0 V	
Input .	RES (4)	C _{in}			60	pF	Vin = 0 V,	
capaci- tance	NMI			_	50		f = 1 MHz, Ta = 25°C	
-	P7 ₃ to P7 ₀		_	_	20			
	All input pins other than (4)	•	_	_	15			

Table 19-4 DC Characteristics (3 V Version) (cont) — Preliminary — Conditions: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Current dissipa- tion*1	Normal operation	I _{CC}	_	7	_	mA	f = 6 MHz, V _{CC} = 2.7 V to 3.6 V
			_	12	22		f = 10 MHz, V _{CC} = 2.7 V to 3.6 V
			_	25	_		f = 10 MHz, V _{CC} = 4.0 V to 5.5 V
	Sleep mode	-	_	5	_		f = 6 MHz, V _{CC} = 2.7 V to 3.6 V
			_	9	16		f = 10 MHz, V _{CC} = 2.7 V to 3.6 V
			_	18	_		f = 10 MHz, V _{CC} = 4.0 V to 5.5 V
	Standby modes*2	_	_	0.01	5.0	μA	Ta ≤ 50°C
			_	_	20.0		50°C < Ta
RAM stan	dby voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. Value when $V_{IH \, min} = V_{CC} - 0.5 \, V$, $V_{IL \, max} = 0.5 \, V$, all output pins are unloaded, and input MOS pull-ups are off.

^{2.} Value when $V_{RAM}\!\leq\!V_{CC}$ < 2.7 V, $V_{IH\;min}$ = $V_{CC}\!\times\,$ 0.9 and $V_{IL\;max}$ = 0.3 V.

^{3.} $P7_7$ and $P7_5$ to $P7_0$ do not include SCL_0 , SDA_0 , SCL_1 , SDA_1 , HA_0 , \overline{IOW} , \overline{CS}_1 , and \overline{WAIT} .

^{4.} When IICS = ICE = 0. The output low level when the bus drive function is selected with $P7_3$, $P7_2$, SDA_1 , SCL_1 , SDA_0 , and SCL_0 is determined separately.

Table 19-5 Allowable Output Current Values — Preliminary — (5 V and 4 V Versions)

Conditions: $V_{CC}=4.0~V$ to 5.5 V, $V_{SS}=0~V$, $Ta=-20^{\circ}C$ to +75°C (regular specifications), $Ta=-40^{\circ}C$ to +85°C (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Allowable output low current (per pin)	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ , P7 ₂ , P7 ₃ (when bus drive function is selected)	l _{OL}	_	_	20	mA
	Ports 1, 2 and 3	_	_	_	10	
	Other output pins	_	_	_	2	
Allowable output low current (total)	Ports 1, 2 and 3 total	ΣI_{OL}	_	_	80	mA
	Total of all output	_	_	_	120	
Allowable output high current (per pin)	All output pins	-l _{OH}	_	_	2	mA
Allowable output high current (total)	Total of all output	Σ–I _{OH}	_	_	40	mA

Table 19-6 Allowable Output Current Values (3 V Version) — Preliminary — Conditions: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $Ta = -20^{\circ}\text{C}$ to +75°C

Item		Symbol	Min	Тур	Max	Unit
Allowable output low current (per pin)	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ , P7 ₂ , P7 ₃ (when bus drive function is selected)	l _{OL}	_	_	10	mA
	Ports 1, 2 and 3	•	_	_	2	
	Other output pins	•	_	_	1	
Allowable output low current (total)	Ports 1, 2 and 3 total	Σl _{OL}	_	_	40	mA
	Total of all output	-	_	_	60	
Allowable output high current (per pin)	All output pins	-I _{OH}	_	_	2	mA
Allowable output high current (total)	Total of all output	Σ-I _{OH}	_	_	30	mA

Note: To avoid degrading the reliability of the chip, be careful not to exceed the output current values in tables 19-5 and 19-6. In particular, when driving a Darlington transistor or

LED directly, be sure to insert a current-limiting resistor in the output path. See figures 19-1 and 19-2.

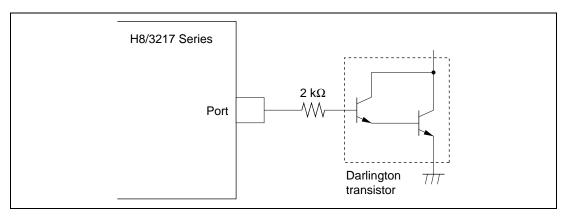


Figure 19-1 Example of Circuit for Driving a Darlington Transistor (5 V Version)

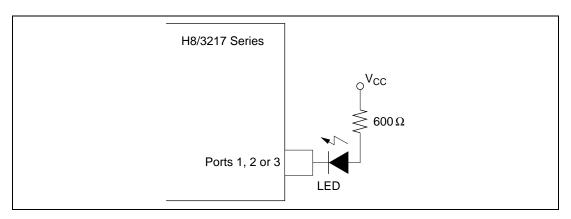


Figure 19-2 Example of Circuit for Driving an LED (5 V Version)

Table 19-7 Bus Drive Characteristics — Preliminary — Conditions: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $Ta = -20^{\circ}\text{C}$ to +75°C

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Output low voltage	SCL ₀ , SCL ₁ , SDA ₀ , SDA ₁ ,	V _{OL}	_	_	0.5	V	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $I_{OL} = 16 \text{ mA}$
	P7 ₂ , P7 ₃ (when bus drive function is selected)		_	_	0.5		$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V},$ $I_{OL} = 8 \text{ mA}$

19.2.2 AC Characteristics

The AC characteristics are listed in five tables. Bus timing parameters are given in table 19-8, control signal timing parameters in table 19-9, timing parameters of the on-chip supporting modules in table 19-10, I²C bus interface timing parameters in table 19-11, and External Clock Output Settling Delay Time in table 19-12.

Table 19-8 Bus Timing — Preliminary —

Condition A: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Condition C: $V_{CC}=2.7~V$ to 5.5 V, $V_{SS}=0~V,~\varphi=2.0~MHz$ to maximum operating frequency, Ta = $-20^{\circ}C$ to $+75^{\circ}C$

		Condition C		Con	dition B	Con	dition A		
		10) MHz	12	MHz	16	MHz	•	Test
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Clock cycle time	t _{cyc}	100	500	83.3	500	62.5	500	ns	Fig. 19-4
Clock pulse width low	t _{CL}	30	_	30	_	20	_		
Clock pulse width high	t _{CH}	30	_	30	_	20	_		
Clock rise time	t _{Cr}	_	20	_	10	_	10		
Clock fall time	t _{Cf}	_	20	_	10	_	10		
Address delay time	t _{AD}	_	50	_	35	_	30		
Address hold time	t _{AH}	20	_	15	_	10	_		
Address strobe delay time	t _{ASD}	_	50	_	35	_	30		
Write strobe delay time	t _{WSD}	_	50	_	35	_	30		
Strobe delay time	t _{SD}	_	50	_	35	_	30		
Write strobe pulse width*	t _{WSW}	110	_	90	_	60	_		
Address setup time 1*	t _{AS1}	15	_	10	_	10	_		
Address setup time 2*	t _{AS2}	65	_	50	_	40	_		
Read data setup time	t _{RDS}	35	_	20	_	20	_		
Read data hold time*	t _{RDH}	0	_	0	_	0	_		
Read data access time*	t _{ACC}	_	170	_	160	_	110		
Write data delay time	t _{WDD}	_	75	_	60	_	60		
Write data setup time	t _{WDS}	5	_	5	_	5	_		
Write data hold time	t _{WDH}	20	_	20	_	20	_		
Wait setup time	t _{WTS}	40	_	35	_	30	_		Fig. 19-5
Wait hold time	t _{WTH}	10	_	10	_	10	_		

Note: * Values at maximum operating frequency

Table 19-9 Control Signal Timing — Preliminary —

Condition A: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Condition C: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, $Ta = -20^{\circ}C$ to $+75^{\circ}C$

		Con	dition C	Con	dition B	Con	dition A		
		10) MHz	12	2 MHz	16	6 MHz		Test
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
RES setup time	t _{RESS}	300	_	200	_	200	_	ns	Fig. 19-6
RES pulse width	t _{RESW}	10	_	10	_	10	_	t _{cyc}	
$\overline{\overline{\text{NMI}}}$ setup time (NMI, $\overline{\text{IRQ}}_0$ to $\overline{\text{IRQ}}_2$, $\overline{\text{IRQ}}_6$)	t _{NMIS}	300	_	150	_	150	_	ns	Fig. 19-7
$\overline{\overline{\text{NMI}}}$ hold time (NMI, $\overline{\text{IRQ}}_0$ to $\overline{\text{IRQ}}_2$, $\overline{\text{IRQ}}_6$)	t _{NMIH}	10	_	10	_	10	_		
Interrupt pulse width for recovery from software standby mode (NMI, IRQ ₀ to IRQ ₂ , IRQ ₆)	t _{NMIW}	300	_	200	_	200	_		
Crystal oscillator settling time (reset)	t _{OSC1}	20	_	20	_	20	_	ms	Fig. 19-8
Crystal oscillator settling time (software standby)	t _{OSC2}	8	_	8	_	8	_		Fig. 19-9

Measurement Conditions for AC Characteristics

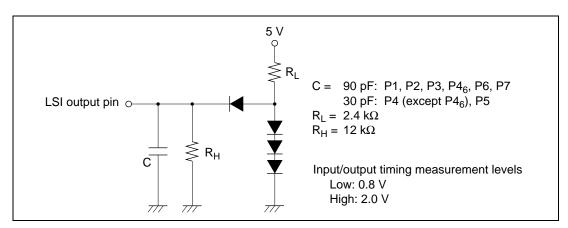


Figure 19-3 Test Conditions for AC Characteristics

Table 19-10 Timing Conditions of On-Chip Supporting Modules — Preliminary —

Condition A: $V_{CC} = 4.5 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, $T_{A} = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_{A} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Condition C: $V_{CC}=2.7$ V to 5.5 V, $V_{SS}=0$ V, $\phi=2.0$ MHz to maximum operating frequency, $Ta=-20^{\circ}C$ to $+75^{\circ}C$

			Con	dition C	Con	dition B	Con	dition A		
			10) MHz	12	2 MHz	16	MHz	-	Test
Item		Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
FRT	Timer output delay time	t _{FTOD}	_	150	_	100	_	100	ns	Fig. 19-10
	Timer input setup time	t _{FTIS}	80	_	50	_	50	_		
	Timer clock input setup time	t _{FTCS}	80	_	50	_	50	_		Fig. 19-11
	Timer clock pulse width	t _{FTCWH} t _{FTCWL}	1.5	_	1.5	_	1.5	_	t _{cyc}	
TMR	Timer output delay time	t _{TMOD}	_	150	_	100	_	100	ns	Fig. 19-12
	Timer reset input setup time	t _{TMRS}	80	_	50	_	50	_		Fig. 19-14
	Timer clock input setup time	t _{TMCS}	80	_	50	_	50	_		Fig. 19-13
	Timer clock pulse width (single edge)	t _{TMCWH} t _{TMCWL}	1.5	_	1.5	_	1.5	_	t _{cyc}	
	Timer clock pulse width (both edges)	_	2.5	_	2.5	_	2.5	_		
PWM	Timer output delay time	t _{PWOD}	_	150	_	100	_	100	ns	Fig. 19-15
SCI	Input clock (Async)	t _{Scyc}	4	_	4	_	4	_	t _{cyc}	Fig. 19-16
	cycle (Sync)		6	_	6	_	6	_	•	
	Transmit data delay time (Sync)	t _{TXD}	_	200	_	100	_	100	ns	
	Receive data setup time (Sync)	t _{RXS}	150	_	100	_	100	_		
	Receive data hold time (Sync)	t _{RXH}	150	_	100	_	100	_		
	Input clock pulse width	t _{SCKW}	0.4	0.6	0.4	0.6	0.4	0.6	t _{Scyc}	Fig. 19-17

Table 19-10 Timing Conditions of On-Chip Supporting Modules (cont) — Preliminary

Condition A: $V_{CC}=4.5~V$ to 5.5 V, $V_{SS}=0~V$, $\phi=2.0~MHz$ to maximum operating frequency, $T_{a}=-20^{\circ}C$ to $+75^{\circ}C$ (regular specifications), $T_{a}=-40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)

Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2.0 \text{ MHz}$ to maximum operating frequency, Ta = -20° C to +75°C (regular specifications), Ta = -40° C to +85°C (wide-range specifications)

Condition C: $V_{CC}=2.7~V$ to 5.5 V, $V_{SS}=0~V, \, \varphi=2.0~MHz$ to maximum operating frequency, Ta = $-20^{\circ}C$ to $+75^{\circ}C$

			Con	dition C	Con	dition B	Con	dition A		
			10) MHz	12	2 MHz	16	6 MHz	•	Test
Item		Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
PORT	Output data delay time	t _{PWD}	_	150	_	100	_	100	ns	Fig. 19-18
	Input data setup time	t _{PRS}	80	_	50	_	50	_		
	Input data hold time	t _{PRH}	80	_	50	_	50	_		
HIF read	CS/HA₀ setup time	t _{HAR}	10	_	10	_	10	_	ns	Fig. 19-19
cycle	$\overline{\text{CS}}/\text{HA}_0$ hold time	t _{HRA}	10	_	10	_	10	_		
	IOR pulse width	t _{HRPW}	220	_	120	_	120	_		
	HDB delay time	t _{HRD}	_	200	_	100	_	100		
	HDB hold time	t _{HRF}	0	40	0	25	0	25		
	HIRQ delay time	t _{HIRQ}	_	200	_	120	_	120	•	
HIF write	$\overline{\text{CS}}/\text{HA}_0$ setup time	t _{HAW}	10	_	10	_	10	_	ns	Fig. 19-20
cycle	$\overline{\text{CS}}/\text{HA}_0$ hold time	t _{HWA}	10	_	10	_	10	_		
	IOW pulse width	t _{HWPW}	100	_	60	_	60	_		
	HDB setup time	t _{HDW}	50	_	30	_	30	_		
	HDB hold time	t _{HWD}	25		15		15	_	•	
	GA ₂₀ delay time	t _{HGA}	_	180	_	90	_	90	·	

Table 19-11 I²C Bus Timing — Preliminary —

Conditions: $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, Ta = -20^{\circ}\text{C to } +75^{\circ}\text{C}$

tem	Symbol	Min	Тур	Max	Unit	Test Conditions	Note
SCL clock cycle time	t _{SCL}	12t _{cyc}	_	_	ns		Fig. 19-21
SCL clock high pulse width	t _{SCLH}	3t _{cyc}	_	_	ns		_
SCL clock low pulse width	t _{SCLL}	5t _{cyc}	_	_	ns		_
SCL, SDA rise time	t _{Sr}	_	_	1000	ns	Normal mode 100 kbits/s (max)	_
		20 + 0.1C _b	_	300	_	High-speed mode 400 kbits/s (max)	_
SCL, SDA fall time	t _{Sf}	_	_	300	ns	Normal mode 100 kbits/s (max)	_
		20 + 0.1C _b	_	300	_	High-speed mode 400 kbits/s (max)	_
SDA bus free time	t _{BUF}	7t _{cyc} – 300	_	_	ns		_
SCL start condition hold time	t _{STAH}	3t _{cyc}	_	_	ns		_
SCL resend start condition setup time	t _{STAS}	3t _{cyc}	_	_	ns		-
SDA stop condition setup time	t _{STOS}	3t _{cyc}	_	_	ns		-
SDA data setup time	t _{SDAS}	1t _{cyc} + 10	_	_	ns		_
SDA data hold time	t _{SDAH}	0	_	_	ns		_
SDA load capacitance	C _b	_	_	400	pF		_

Table 19-12 External Clock Output Settling Delay Time — Preliminary —

Conditions: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Item	Symbol	Min	Max	Unit	Notes
External clock output settling delay time	t _{DEXT} *	500	_	μs	Figure 19-22

Note: $*t_{DEXT}$ includes a 10 t_{cyc} \overline{RES} pulse width (t_{RESW}) .

19.3 MCU Operational Timing

This section provides the following timing charts:

19.3.1	Bus Timing	Figures 19-4 and 19-5
19.3.2	Control Signal Timing	Figures 19-6 to 19-9
19.3.3	16-Bit Free-Running Timer Timing	Figures 19-10 and 19-11
19.3.4	8-Bit Timer Timing	Figures 19-12 to 19-14
19.3.5	Pulse Width Modulation Timer Timing	Figure 19-15
19.3.6	Serial Communication Interface Timing	Figures 19-16 and 19-17
19.3.7	I/O Port Timing	Figure 19-18
19.3.8	Host Interface Timing	Figure 19-19 and 19-20
19.3.9	I ² C Bus Interface Timing (Option)	Figure 19-21
19.3.10	External Clock Ouptput Timing	Figure 19-22

19.3.1 Bus Timing

(1) Basic Bus Cycle (without Wait States) in Expanded Modes

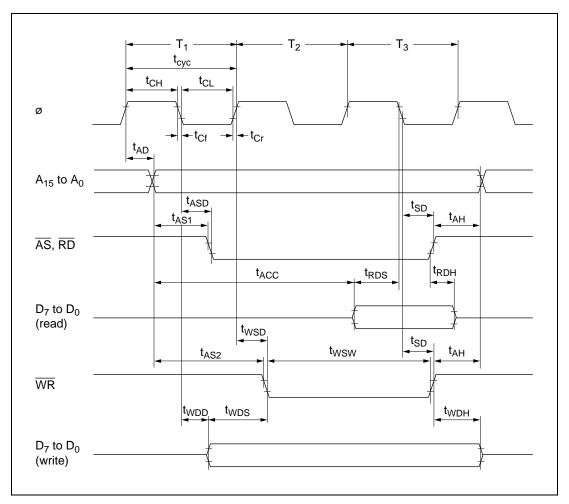


Figure 19-4 Basic Bus Cycle (without Wait States) in Expanded Modes

379

(2) Basic Bus Cycle (with 1 Wait State) in Expanded Modes

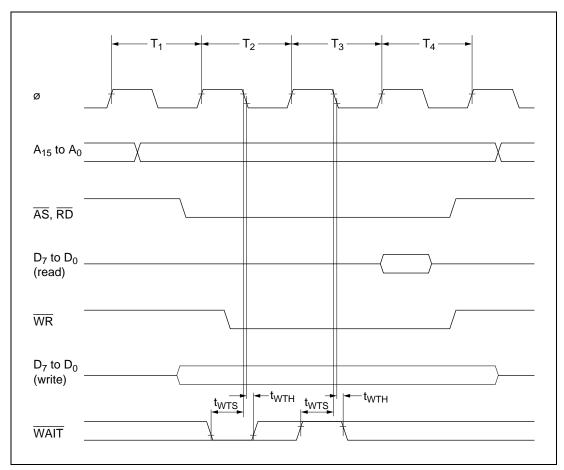


Figure 19-5 Basic Bus Cycle (with 1 Wait State) in Expanded Modes

380

19.3.2 Control Signal Timing

(1) Reset Input Timing

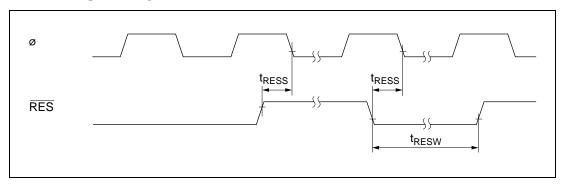


Figure 19-6 Reset Input Timing

(2) Interrupt Input Timing

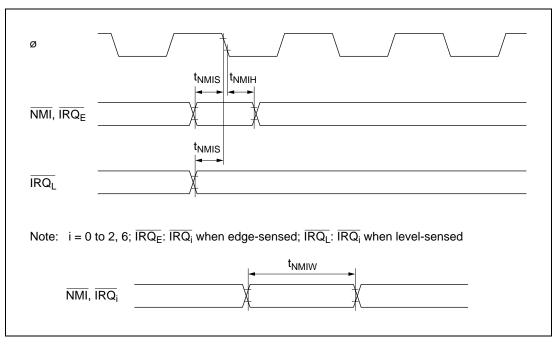


Figure 19-7 Interrupt Input Timing

(3) Clock Settling Timing

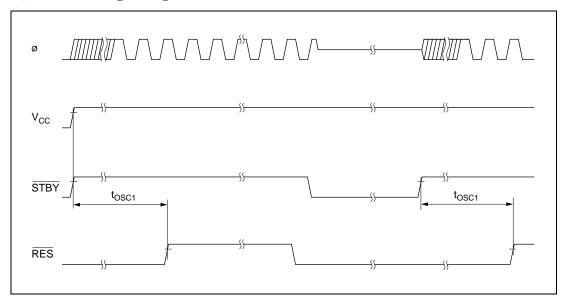


Figure 19-8 Clock Settling Timing

(4) Clock Settling Timing for Recovery from Software Standby Mode

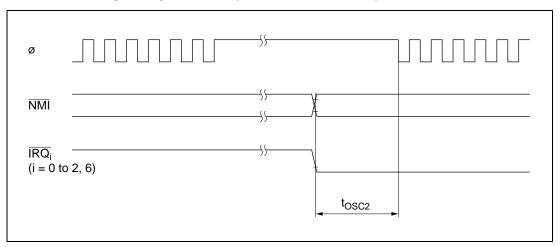


Figure 19-9 Clock Settling Timing for Recovery from Software Standby Mode

382

19.3.3 16-Bit Free-Running Timer Timing

(1) Free-Running Timer Input/Output Timing

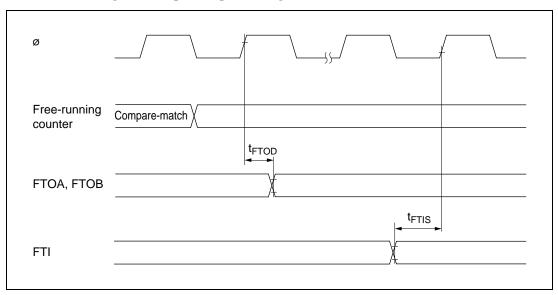


Figure 19-10 Free-Running Timer Input/Output Timing

(2) External Clock Input Timing for Free-Running Timer

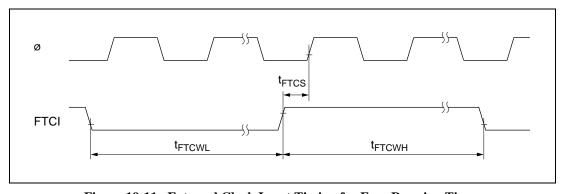


Figure 19-11 External Clock Input Timing for Free-Running Timer

19.3.4 8-Bit Timer Timing

(1) 8-Bit Timer Output Timing

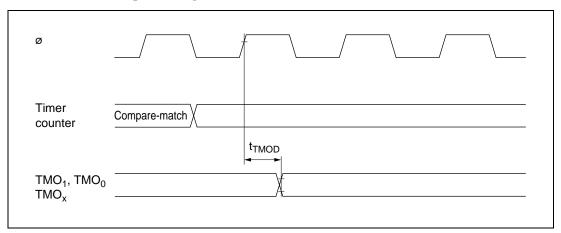


Figure 19-12 8-Bit Timer Output Timing

(2) 8-Bit Timer Clock Input Timing

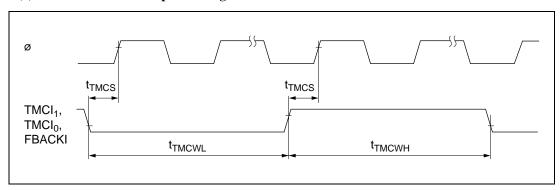


Figure 19-13 8-Bit Timer Clock Input Timing

384

(3) 8-Bit Timer Reset Input Timing

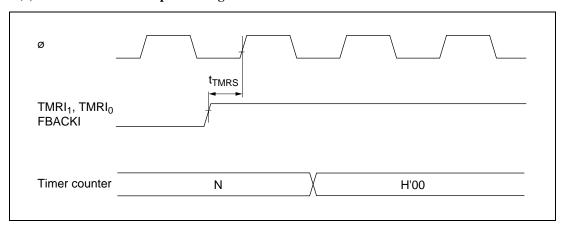


Figure 19-14 8-Bit Timer Reset Input Timing

19.3.5 Pulse Width Modulation Timer Output Timing

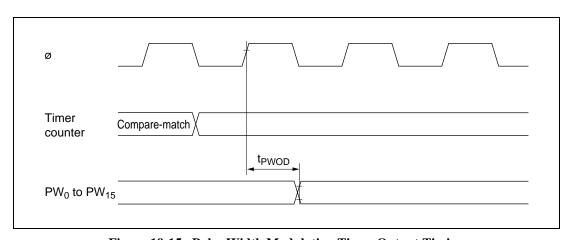


Figure 19-15 Pulse Width Modulation Timer Output Timing

19.3.6 Serial Communication Interface Timing

(1) SCI Input/Output Timing

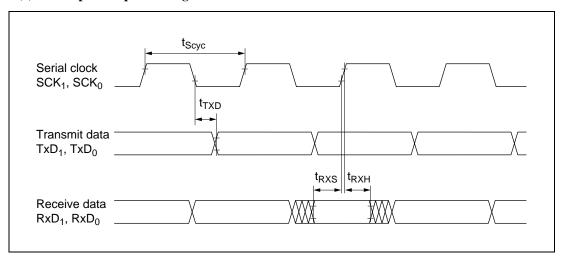


Figure 19-16 SCI Input/Output Timing (Synchronous Mode)

(2) SCI Input Clock Timing

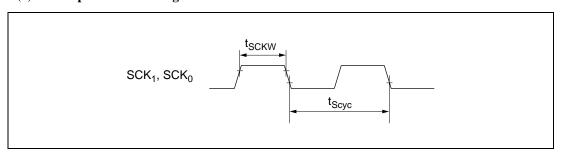


Figure 19-17 SCI Input Clock Timing

19.3.7 I/O Port Timing

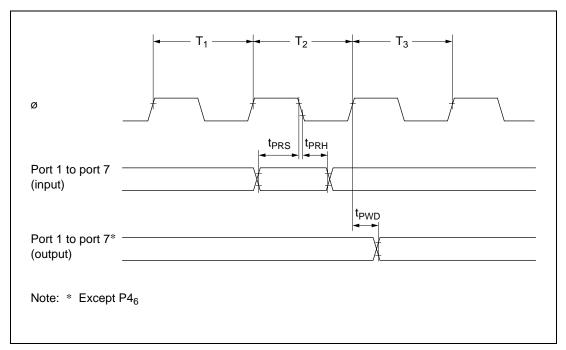


Figure 19-18 I/O Port Input/Output Timing

19.3.8 Host Interface Timing

(1) Host Interface Read Timing

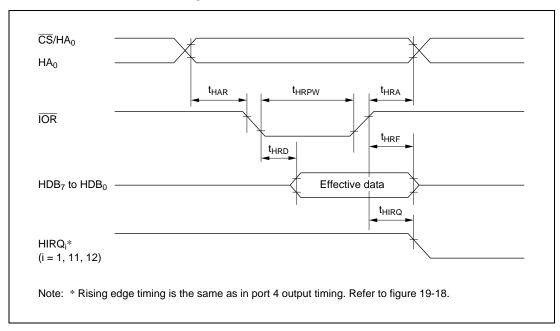


Figure 19-19 Host Interface Read Timing

(2) Host Interface Write Timing

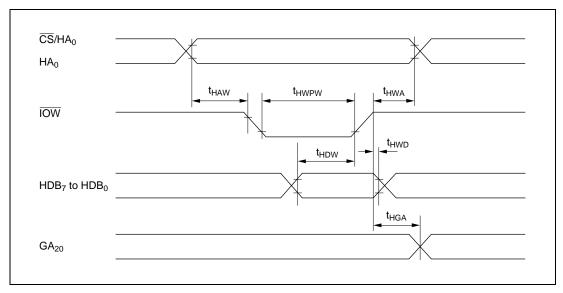


Figure 19-20 Host Interface Write Timing

388

HITACHI

19.3.9 I²C Bus Interface (Option) Timing

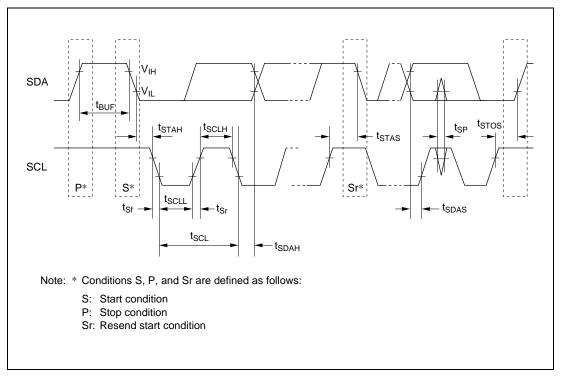


Figure 19-21 I²C Bus Interface Input/Output Timing

19.3.10 External Clock Output Timing

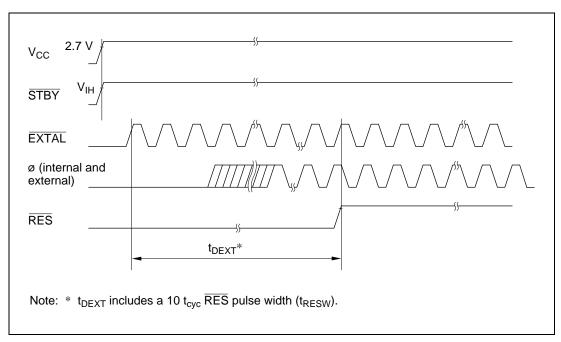


Figure 19-22 External Clock Output Settling Delay Timing

Appendix A CPU Instruction Set

A.1 Instruction Set List

Operation Notation

Rd8/16	General register (destination) (8 or 16 bits)
Rs8/16	General register (source) (8 or 16 bits)
Rn8/16	General register (8 or 16 bits)
CCR	Condition code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#xx:3/8/16	Immediate data (3, 8, or 16 bits)
d:8/16	Displacement (8 or 16 bits)
@aa:8/16	Absolute address (8 or 16 bits)
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	AND logical
<u></u>	OR logical
\oplus	Exclusive OR logical
\rightarrow	Move
$\overline{}$	Not

Condition Code Notation

Δ	Modified according to the instruction result
*	Undetermined (unpredictable)
0	Always cleared to 0
_	Not affected by the instruction result

Table A-1 Instruction Set

			lr			res		_		e/ Syte:	s)	
Mnemonic	Operand Size	Operation	#xx:8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+		<u>ن</u>	@ @ aa	<u>ر</u>	Condition Code NO O States
MOV.B #xx:8, Rd	В	#xx:8 → Rd8	2									− − Δ Δ 0 − 2
MOV.B Rs, Rd	В	Rs8 → Rd8		2								<u>Δ Δ 0 — 2</u>
MOV.B @Rs, Rd	В	@Rs16 → Rd8			2							<u>Δ Δ 0 — 4</u>
MOV.B @(d:16, Rs), Rd	В	@(d:16, Rs16)→ Rd8				4						Δ Δ 0 — 6
MOV.B @Rs+, Rd	В	@Rs16 → Rd8 Rs16+1 → Rs16					2					—— Δ Δ 0 — 6
MOV.B @aa:8, Rd	В	@aa:8 → Rd8						2				Δ Δ 0 — 4
MOV.B @aa:16, Rd	В	@aa:16 → Rd8						4				Δ Δ 0 — 6
MOV.B Rs, @Rd	В	Rs8 → @Rd16			2							—— Δ Δ 0 — 4
MOV.B Rs, @(d:16, Rd)	В	$Rs8 \rightarrow @(\text{d:}16,Rd16)$				4						Δ Δ 0 - 6
MOV.B Rs, @-Rd	В	$Rd16-1 \rightarrow Rd16$ $Rs8 \rightarrow @Rd16$					2					—— Δ Δ 0 — 6
MOV.B Rs, @aa:8	В	Rs8 → @aa:8						2				—— Δ Δ 0 — 4
MOV.B Rs, @aa:16	В	Rs8 → @aa:16						4				Δ Δ 0 — 6
MOV.W #xx:16, Rd	W	#xx:16 \rightarrow Rd	4									—— Δ Δ 0 — 4
MOV.W Rs, Rd	W	$Rs16 \rightarrow Rd16$		2								Δ Δ 0 - 2
MOV.W @Rs, Rd	W	$@Rs16 \rightarrow Rd16$			2							Δ Δ 0 - 4
MOV.W @(d:16, Rs), Rd	W	$@(d:16, Rs16) \rightarrow Rd16$				4						— Δ Δ 0 — 6
MOV.W @Rs+, Rd	W						2					—— Δ Δ 0 — 6
MOV.W @aa:16, Rd	W	@aa:16 → Rd16						4				Δ Δ 0 <u>_</u> 6
MOV.W Rs, @Rd	W	$Rs16 \to @Rd16$			2							—— Δ Δ 0 — 4
MOV.W Rs, @(d:16, Rd)	W	$Rs16 \rightarrow @(\text{d:}16, Rd16)$				4						<u> Δ Δ 0 6</u>
MOV.W Rs, @-Rd	W	$Rd16-2 \rightarrow Rd16$ $Rs16 \rightarrow @Rd16$					2					—— Δ Δ 0 — 6
MOV.W Rs, @aa:16	W	Rs16 → @aa:16						4				Δ Δ 0 - 6
POP Rd	W						2					—— Δ Δ 0 — 6

Table A-1 Instruction Set (cont)

			In				sin(_		e/ syte:	s)							
Mnemonic	Operand Size	Operation	#xx:8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa:8/16	@(d:8, PC)	@ @ aa	-					Cod		No. of States*
	<u> </u>											ı	Н		Z	٧	С	Ļ
PUSH Rs	W	$SP-2 \rightarrow SP$ $Rs16 \rightarrow @SP$					2					_	_	Δ	Δ	0	_	6
MOVFPE @aa:16, Rd	В	Not supported																
MOVTPE Rs, @aa:16	В	Not supported																
ADD.B #xx:8, Rd	В	$Rd8\text{+}\#xx\text{:}8 \to Rd8$	2									_	Δ	Δ	Δ	Δ	Δ	2
ADD.B Rs, Rd	В	$Rd8\text{+}Rs8\toRd8$		2								_	Δ	Δ	Δ	Δ	Δ	2
ADD.W Rs, Rd	W	$Rd16\text{+}Rs16 \to Rd16$		2								_	(1)	Δ	Δ	Δ	Δ	2
ADDX.B #xx:8, Rd	В	$Rd8 + \#xx:8 + C \rightarrow Rd8$	2									_	Δ	Δ	(2)	Δ	Δ	2
ADDX.B Rs, Rd	В	$Rd8\text{+}Rs8\text{+}C\toRd8$		2								_	Δ	Δ	(2)	Δ	Δ	2
ADDS.W #1, Rd	W	Rd16+1 → Rd16		2								_	_	_	_	_	_	2
ADDS.W #2, Rd	W	Rd16+2 → Rd16		2								_	_	_	_	_	_	2
INC.B Rd	В	$Rd8\text{+}1 \rightarrow Rd8$		2								_	_	Δ	Δ	Δ	_	2
DAA.B Rd	В	Rd8 decimal adjust \rightarrow Rd8		2								_	*	Δ	Δ	*	(3)	2
SUB.B Rs, Rd	В	$Rd8\text{-}Rs8\toRd8$		2								_	Δ	Δ	Δ	Δ	Δ	2
SUB.W Rs, Rd	W	Rd16–Rs16 → Rd16		2								_	(1)	Δ	Δ	Δ	Δ	2
SUBX.B #xx:8, Rd	В	Rd8-#xx:8-C \rightarrow Rd8	2									_	Δ	Δ	(2)	Δ	Δ	2
SUBX.B Rs, Rd	В	$Rd8\text{-}Rs8\text{-}C\toRd8$		2								_	Δ	Δ	(2)	Δ	Δ	2
SUBS.W #1, Rd	W	Rd16–1 → Rd16		2								_	_	_	_	_	_	2
SUBS.W #2, Rd	W	Rd16–2 → Rd16		2								_	_	_	_	_	_	2
DEC.B Rd	В	$Rd8-1 \rightarrow Rd8$		2								_	_	Δ	Δ	Δ	_	2
DAS.B Rd	В	Rd8 decimal adjust →Rd8		2								_	*	Δ	Δ	*	_	2
NEG.B Rd	В	$0\text{-Rd} \rightarrow \text{Rd}$		2								_	Δ	Δ	Δ	Δ	Δ	2
CMP.B #xx:8, Rd	В	Rd8-#xx:8	2									_	Δ	Δ	Δ	Δ	Δ	2
CMP.B Rs, Rd	В	Rd8-Rs8		2								_	Δ	Δ	Δ	Δ	Δ	2
CMP.W Rs, Rd	W	Rd16-Rs16		2								_	(1)	Δ	Δ	Δ	Δ	2
MULXU.B Rs, Rd	В	$Rd8 \times Rs8 \rightarrow Rd16$		2								_	_	_	_	_	_	14

Table A-1 Instruction Set (cont)

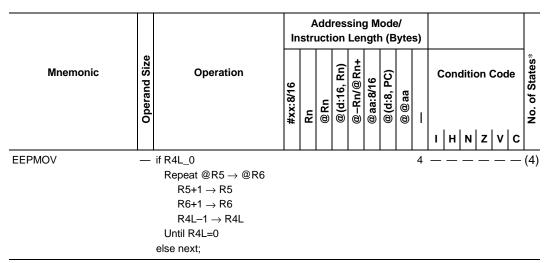
			In			res				e/ Sytes	
Mnemonic	Operand Size	Operation	#xx:8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa:8/16	@(d:8, PC)	@ @ aa	Condition Code States
DIVXU.B Rs, Rd	В	Rd16÷Rs8 → Rd16 (RdH: remainder, RdL: quotient)		2							— — (6) (7) — — 14
AND.B #xx:8, Rd	В	$Rd8 {\scriptstyle \wedge} \#xx{:}8 \to Rd8$	2								Δ Δ 0 - 2
AND.B Rs, Rd	В	$Rd8 {\scriptstyle \wedge} Rs8 \to Rd8$		2							Δ Δ 0 - 2
OR.B #xx:8, Rd	В	Rd8√#xx:8 → Rd8	2								<u>Δ Δ 0 — 2</u>
OR.B Rs, Rd	В	$Rd8{\lor}Rs8 \to Rd8$		2							—— Δ Δ 0 — 2
XOR.B #xx:8, Rd	В	$Rd8{\oplus}\#xx{:}8 \to Rd8$	2								Δ Δ 0 - 2
XOR.B Rs, Rd	В	$Rd8 \oplus Rs8 \to Rd8$		2							<u>Δ Δ 0 — 2</u>
NOT.B Rd	В	$\overline{Rd} o Rd$		2							<u>Δ Δ 0 — 2</u>
SHAL.B Rd	В	C + 0 + 0		2							—— Δ Δ Δ Δ 2
SHAR.B Rd	В	b ₇ b ₀		2							—— Δ Δ 0 Δ 2
SHLL.B Rd	В	C + 0 + 0		2							—— Δ Δ 0 Δ 2
SHLR.B Rd	В	0 - C		2							—— 0 Δ 0 Δ 2
ROTXL.B Rd	В	b ₇ b ₀		2							—— Δ Δ 0 Δ 2
ROTXR.B Rd	В	b ₇ b ₀		2							—— Δ Δ 0 Δ 2
ROTL.B Rd	В	b ₇ b ₀		2							—— Δ Δ 0 Δ 2
ROTR.B Rd	В	b ₇ b ₀		2							—— Δ Δ 0 Δ 2

Table A-1 Instruction Set (cont)

			In				sinç Ler	•		e/ sytes)	
Mnemonic	Operand Size	Operation	#xx:8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa:8/16	@(d:8, PC)	@ @ aa 	Condition Code I H N Z V C
BSET #xx:3, Rd	В	(#xx:3 of Rd8) ← 1		2							2
BSET #xx:3, @Rd	В	(#xx:3 of @Rd16) ← 1			4						8
BSET #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 1						4			
BSET Rn, Rd	В	(Rn8 of Rd8) ← 1		2							
BSET Rn, @Rd	В	(Rn8 of @Rd16) ← 1			4						8
BSET Rn, @aa:8	В	(Rn8 of @aa:8) ← 1						4			8
BCLR #xx:3, Rd	В	(#xx:3 of Rd8) ← 0		2							2
BCLR #xx:3, @Rd	В	(#xx:3 of @Rd16) ← 0			4						
BCLR #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 0						4			8
BCLR Rn, Rd	В	(Rn8 of Rd8) ← 0		2							2
BCLR Rn, @Rd	В	(Rn8 of @Rd16) ← 0			4						8
BCLR Rn, @aa:8	В	(Rn8 of @aa:8) \leftarrow 0						4			8
BNOT #xx:3, Rd	В	$(\#xx:3 \text{ of } Rd8)$ ← $(\#xx:3 \text{ of } \overline{Rd8})$		2							2
BNOT #xx:3, @Rd	В	(#xx:3 of @Rd16) ← (#xx:3 of @Rd16)			4						8
BNOT #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← (#xx:3 of @aa:8)						4			8
BNOT Rn, Rd	В	$ \frac{(Rn8 \ of \ Rd8) \leftarrow}{(\overline{Rn8} \ of \ \overline{Rd8})} $		2							2
BNOT Rn, @Rd	В	$ \begin{array}{c} (\text{Rn8 of @Rd16}) \leftarrow \\ (\overline{\text{Rn8 of @Rd16}}) \end{array} $			4						8
BNOT Rn, @aa:8	В	(Rn8 of @aa:8) ← (Rn8 of @aa:8)						4			8
BTST #xx:3, Rd	В	$(\#xx:3 \ \overline{of} \ \overline{Rd8}) \to Z$		2							<u> </u>
BTST #xx:3, @Rd	В	$(\overline{*xx:3} \ \overline{of} \ \overline{@Rd16}) \rightarrow Z$			4						<u> </u>
BTST #xx:3, @aa:8	В	$(\#xx:3 \ \overline{of} \ \overline{@aa:8}) \to Z$						4			6
BTST Rn, Rd	В	$(\overline{Rn8}\ \overline{of}\ \overline{Rd8}) \to Z$		2							<u> </u>

Table A-1 Instruction Set (cont)

			In					_	ode 1 (B		s)	
Mnemonic	Operand Size	Operation	#xx:8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+		@(d:8, PC)	@ @ aa	<u>,</u> 	Condition Code 8 to 1 H N Z V C
BTST Rn, @Rd	В	$(\overline{Rn8} \overline{of} \overline{@Rd16}) \rightarrow Z$			4		<u> </u>					Δ 6
BTST Rn, @aa:8	В	$(\overline{\text{Rn8 of }} \overline{\text{of }} \overline{\text{@aa:8}}) \rightarrow \text{Z}$						4				<u> </u>
BLD #xx:3, Rd	В	(#xx:3 of Rd8) → C		2								Δ 2
BLD #xx:3, @Rd	В	(#xx:3 of @Rd16) → C			4							Δ 6
BLD #xx:3, @aa:8	В	(#xx:3 of @aa:8) → C						4				<u> </u>
BILD #xx:3, Rd	В	$(\#xx:3 \ \overline{of} \ \overline{Rd8}) \to C$		2								<u> </u>
BILD #xx:3, @Rd	В	$(\overline{\text{#xx:3 of }} \overline{\text{of }} \overline{\text{@Rd16}}) \rightarrow C$			4							<u> </u>
BILD #xx:3, @aa:8	В	$(\#xx:3 \ \overline{of} \ \overline{@aa:8}) \to C$						4				<u> </u>
BST #xx:3, Rd	В	$C \rightarrow (\#xx:3 \text{ of Rd8})$		2								
BST #xx:3, @Rd	В	C → (#xx:3 of @Rd16)			4							8
BST #xx:3, @aa:8	В	C → (#xx:3 of @aa:8)						4				8
BIST #xx:3, Rd	В	$\overline{C} \rightarrow (\#xx:3 \text{ of Rd8})$		2								2
BIST #xx:3, @Rd	В	$\overline{C} \rightarrow (\#xx:3 \text{ of } @Rd16)$			4							8
BIST #xx:3, @aa:8	В	$\overline{C} \rightarrow (\#xx:3 \text{ of } @aa:8)$						4				8
BAND #xx:3, Rd	В	$C_{\wedge}(\#xx:3 \text{ of Rd8}) \rightarrow C$		2								<u> </u>
BAND #xx:3, @Rd	В	$C \land (\#xx:3 \text{ of } @Rd16) \rightarrow C$			4							<u> </u>
BAND #xx:3, @aa:8	В	$C \land (\#xx:3 \text{ of } @aa:8) \rightarrow C$						4				<u> </u>
BIAND #xx:3, Rd	В	$C \land (\overline{\#xx:3} \ \overline{of} \ \overline{Rd8}) \to C$		2								<u> </u>
BIAND #xx:3, @Rd	В	$C \land (\overline{\#xx:3} \ \overline{of} \ \overline{@Rd16}) \to C$			4							<u> </u>
BIAND #xx:3, @aa:8	В	$C \land (\overline{\#xx:3} \ \overline{of} \ \overline{@aa:8}) \to C$						4				<u> </u>
BOR #xx:3, Rd	В	$\text{C}{\scriptstyle\vee}(\text{\#xx:3 of Rd8}) \rightarrow \text{C}$		2								<u>Δ</u> 2
BOR #xx:3, @Rd	В	$C_{\lor}(\#xx:3 \text{ of } @Rd16) \rightarrow C$			4							<u> </u>
BOR #xx:3, @aa:8	В	$C_{\lor}(\#xx:3 \text{ of } @aa:8) \rightarrow C$						4				<u> </u>
BIOR #xx:3, Rd	В	$C\lor(\overline{\#xx:3}\ \overline{of}\ \overline{Rd8})\to C$		2								<u> </u>
BIOR #xx:3, @Rd	В	$C\lor(\overline{\#xx:3}\ \overline{of}\ \overline{@Rd16})\to C$			4							<u> </u>
BIOR #xx:3, @aa:8	В	$C\lor(\overline{\#xx:3}\ \overline{of}\ \overline{@aa:8})\to C$						4				Δ 6


Table A-1 Instruction Set (cont)

				In			res:		_			s)	
Mnemonic	Operand Size	Operation	Branching Condition	#xx:8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa:8/16	@(d:8, PC)	@ @ aa	ı	Condition Code States S. V. C. V. V. C. V.
BXOR #xx:3, Rd	В	C⊕(#xx:3 of	Rd8) → C		2								<u> </u>
BXOR #xx:3, @Rd	В	C⊕(#xx:3 of	@Rd16) → C			4							<u> </u>
BXOR #xx:3, @aa:8	В	C⊕(#xx:3 of	• @aa:8) → C						4				<u> </u>
BIXOR #xx:3, Rd	В	C⊕(#xx:3 of	Rd8) → C		2								<u> </u>
BIXOR #xx:3, @Rd	В	C⊕(#xx:3 of	@Rd16) → C			4							<u> </u>
BIXOR #xx:3, @aa:8	В	C⊕(#xx:3 of	<u>@aa:8</u>) → C						4				<u> </u>
BRA d:8 (BT d:8)	_	PC ← PC+c	1:8							2			4
BRN d:8 (BF d:8)	_	PC ← PC+2	2							2			4
BHI d:8	_	If -condition -	$C \vee Z = 0$							2			4
BLS d:8	_	is true	C ∨ Z = 1							2			4
BCC d:8 (BHS d:8)	_	then PC ←	C = 0							2			4
BCS d:8 (BLO d:8)	_	PC+d:8 else next;	C = 1							2			4
BNE d:8	_		Z = 0							2			 4
BEQ d:8	_	_	Z = 1							2			4
BVC d:8			V = 0							2			4
BVS d:8	_	_	V = 1							2			4
BPL d:8	_	-	N = 0							2			4
BMI d:8	_	_	N = 1							2			4
BGE d:8	_	-	N⊕V = 0							2			4
BLT d:8	_		N⊕V = 1							2			4
BGT d:8	_		$Z \vee (N \oplus V) = 0$							2			4
BLE d:8	_	-	Z ∨ (N⊕V) = 1							2			4
JMP @Rn	_	PC ← Rn16	i			2							4
JMP @aa:16	_	PC ← aa:16	3						4				6
JMP @@aa:8	_	PC ← @aa:	8								2		8

Table A-1 Instruction Set (cont)

			In	str			sin Ler	_			s)						
Mnemonic	Operand Size	Operation	#xx:8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa:8/16	@(d:8, PC)	@ @ aa	ı	c	on	ditio	on (Code	No. of States*
												ı	н	N	z	v c	;
BSR d:8	_	$\begin{array}{c} SP-2 \to SP \\ PC \to @SP \\ PC \leftarrow PC+d:8 \end{array}$							2			_	_	_	_		- 6
JSR @Rn	_	$SP-2 \rightarrow SP$ $PC \rightarrow @SP$ $PC \leftarrow Rn16$			2							_	_	_	_		- 6
JSR @aa:16	_	$SP-2 \rightarrow SP$ $PC \rightarrow @SP$ $PC \leftarrow aa:16$						4				_	_	_	_		- 8
JSR @@aa:8	_	$SP-2 \rightarrow SP$ $PC \rightarrow @SP$ $PC \leftarrow @aa:8$								2		_	_	_	_		- 8
RTS	_	$\begin{array}{l} PC \leftarrow @SP \\ SP+2 \rightarrow SP \end{array}$									2	_	_	_	_		- 8
RTE	_	$\begin{array}{l} CCR \leftarrow @SP \\ SP+2 \rightarrow SP \\ PC \leftarrow @SP \\ SP+2 \rightarrow SP \end{array}$									2	Δ	Δ	Δ	Δ	Δ Δ	10
SLEEP	_	Transition to power-down state									2	_	_	_	_		- 2
LDC #xx:8, CCR	В	#xx:8 → CCR	2									Δ	Δ	Δ	Δ	Δ	2
LDC Rs, CCR	В	$Rs8 \to CCR$		2								Δ	Δ	Δ	Δ	Δ	2
STC CCR, Rd	В	$CCR \to Rd8$		2								_	_	_	_		- 2
ANDC #xx:8, CCR	В	$CCR_{\wedge} \# xx{:} 8 \to CCR$	2									Δ	Δ	Δ	Δ	Δ	2
ORC #xx:8, CCR	В	CCR√#xx:8 → CCR	2									Δ	Δ	Δ	Δ	Δ	2
XORC #xx:8, CCR	В	CCR⊕#xx:8 → CCR	2									Δ	Δ	Δ	Δ	Δ	2
NOP	_	PC ← PC+2									2	_	_	_	_		- 2

Table A-1 Instruction Set (cont)

Notes: The number of states is the number of states required for execution when the instruction and its operands are located in on-chip memory.

- (1) Set to 1 when there is a carry or borrow from bit 11; otherwise cleared to 0.
- (2) If the result is zero, the previous value of the flag is retained: otherwise the flag is cleared to 0.
- (3) Set to 1 if decimal adjustment produces a carry; otherwise cleared to 0.
- (4) The number of states required for execution is 4n + 8 (n = value of R4L).
- (5) These instructions are not supported by the H8/3217 Series.
- (6) Set to 1 if the divisor is negative: otherwise cleared to 0.
- (7) Cleared to 0 if the divisor is not zero; set to 1 if the divisor is zero.

A.2 Operation Code Map

Table A-2 is a map of the operation codes contained in the first byte of the instruction code (bits 15 to 8 of the first instruction word).

Some pairs of instructions have identical first bytes. These instructions are differentiated by the first bit of the second byte (bit 7 of the first instruction word).

Instruction when first bit of byte 2 (bit 7 of first instruction word) is 0.

Instruction when first bit of byte 2 (bit 7 of first instruction word) is 1.

Table A-2 Operation Code Map

High 0 NO NO SHLLL 5 NO NO SHLLL 6 NO	* X X III	SHLR SHAR, SHAR, BRN*2	STC SOTAL ROTL	BIS BIS	ORC ORC ORC BCC*2	XORC XORC XORC BSR BSR 23	ANDC ANDC AND BNE BAND	NOT NOT NOT NOT NOT NEG	SUB ADD SUB	e O BRS	INC DEC DEC	ADDS SUBS ON MO	O BGE	CMP MOV	SUBX SUBX	DAA DAS BLE
					\ \\	BIXOR	BIAND		ADD	NO W		EEPMOV		manipulatic	Bit manipulation instructions	SU
								ADDX	X							
								SUBX	SUBX							
								ō	OR							
								XC	XOR							
								AND	QI							
								MOV	\ \ \ \							

Notes: 1. The PUSH and POP instructions are identical in machine language to MOV instructions.
2. The BT, BF, BHS, and BLO instructions are identical in machine language to BRA, BRN, BCC, and BCS, respectively.

A.3 Number of States Required for Execution

The tables below can be used to calculate the number of states required for instruction execution. Table A-3 indicates the number of states required for each cycle (instruction fetch, branch address read, stack operation, byte data access, word data access, internal operation). Table A-4 indicates the number of cycles of each type occurring in each instruction. The total number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states =
$$I \times S_I + J \times S_J + K \times S_K + L \times S_L + M \times S_M + N \times S_N$$

Examples: Mode 1 (on-chip ROM disabled), stack located in external memory, 1 wait state inserted in external memory access.

1. BSET #0, @FFC7

From table A-4: I = L = 2, J = K = M = N = 0

From table A-3: $S_I = 8$, $S_L = 3$

Number of states required for execution: $2 \times 8 + 2 \times 3 = 22$

2. JSR @@30

From table A-4: I = 2, J = K = 1, L = M = N = 0

From table A-3: $S_I = S_I = S_K = 8$

Number of states required for execution: $2 \times 8 + 1 \times 8 + 1 \times 8 = 32$

Table A-3 Number of States Taken by Each Cycle in Instruction Execution

Execution Status			Access location	
(Instruction Cycle)		On-Chip Memory	On-Chip Reg. Field	External Memory
Instruction fetch	Sı	2	6	6 + 2m
Branch address read	SJ	_		
Stack operation	S _K	_		
Byte data access	S _L	_	3	3 + m
Word data access	S _M	_	6	6 + 2m
Internal operation	S_N	1	1	1

Note: m: Number of wait states inserted in access to external device.

Table A-4 Number of Cycles in Each Instruction

Instruction	Mnemonic	Instruction Fetch	Branch Address Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
ADD	ADD.B #xx:8, Rd	1					
	ADD.B Rs, Rd	1					
	ADD.W Rs, Rd	1					
ADDS	ADDS.W #1/2, Rd	1					
ADDX	ADDX.B #xx:8, Rd	1					
	ADDX.B Rs, Rd	1					
AND	AND.B #xx:8, Rd	1					
	AND.B Rs, Rd	1					
ANDC	ANDC #xx:8, CCR	1					
BAND	BAND #xx:3, Rd	1					
	BAND #xx:3, @Rd	2			1		
	BAND #xx:3, @aa:8	2			1		
Всс	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					
	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					

 Table A-4
 Number of Cycles in Each Instruction (cont)

Instruction	Mnemonic	Instruction Fetch	Branch Address Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
BCLR	BCLR #xx:3, Rd	1					
	BCLR #xx:3, @Rd	2			2		
	BCLR #xx:3, @aa:8	2			2		
	BCLR Rn, Rd	1					
	BCLR Rn, @Rd	2			2		
	BCLR Rn, @aa:8	2			2		
BIAND	BIAND #xx:3, Rd	1					
	BIAND #xx:3, @Rd	2			1		
	BIAND #xx:3, @aa:8	2			1		
BILD	BILD #xx:3, Rd	1					
	BILD #xx:3, @Rd	2			1		
	BILD #xx:3, @aa:8	2			1		
BIOR	BIOR #xx:3, Rd	1					
	BIOR #xx:3, @Rd	2			1		
	BIOR #xx:3, @aa:8	2			1		
BIST	BIST #xx:3, Rd	1					
	BIST #xx:3, @Rd	2			2		
	BIST #xx:3, @aa:8	2			2		
BIXOR	BIXOR #xx:3, Rd	1					
	BIXOR #xx:3, @Rd	2			1		
	BIXOR #xx:3, @aa:8	2			1		
BLD	BLD #xx:3, Rd	1					
	BLD #xx:3, @Rd	2			1		
	BLD #xx:3, @aa:8	2			1		
BNOT	BNOT #xx:3, Rd	1					
	BNOT #xx:3, @Rd	2			2		
	BNOT #xx:3, @aa:8	2			2		
	BNOT Rn, Rd	1					
	BNOT Rn, @Rd	2			2		
	BNOT Rn, @aa:8	2			2		

Table A-4 Number of Cycles in Each Instruction (cont)

Instruction	Mnemonic	Instruction Fetch	Branch Address Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
BOR	BOR #xx:3, Rd	1					
DOIL	BOR #xx:3, @Rd	2			1		
	BOR #xx:3, @aa:8	2			1		
BSET	BSET #xx:3, Rd	1			•		
DOLI	BSET #xx:3, @Rd	2			2		
	BSET #xx:3, @aa:8	2			2		
		1			2		
	BSET Rn, Rd	2			2		
	BSET Rn, @Rd				2		
DOD	BSET Rn, @aa:8	2		4	2		
BSR	BSR d:8	2		1			
BST	BST #xx:3, Rd	1					
	BST #xx:3, @Rd	2			2		
	BST #xx:3, @aa:8	2			2		
BTST	BTST #xx:3, Rd	1					
	BTST #xx:3, @Rd	2			1		
	BTST #xx:3, @aa:8	2			1		
	BTST Rn, Rd	1					
	BTST Rn, @Rd	2			1		
	BTST Rn, @aa:8	2			1		
BXOR	BXOR #xx:3, Rd	1					
	BXOR #xx:3, @Rd	2			1		
	BXOR #xx:3, @aa:8	2			1		
CMP	CMP.B #xx:8, Rd	1					
	CMP.B Rs, Rd	1					
	CMP.W Rs, Rd	1					
DAA	DAA.B Rd	1					_
DAS	DAS.B Rd	1					
DEC	DEC.B Rd	1					
DIVXU	DIVXU.B Rs, Rd	1					12
EEPMOV	EEPMOV	2			2n + 2*		1
INC	INC.B Rd	1					

 Table A-4
 Number of Cycles in Each Instruction (cont)

Instruction	Mnemonic	Instruction Fetch	Branch Address Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
JMP	JMP @Rn	2					
	JMP @aa:16	2					2
	JMP @@aa:8	2	1				2
JSR	JSR @Rn	2		1			
	JSR @aa:16	2		1			2
	JSR @@aa:8	2	1	1			
LDC	LDC #xx:8, CCR	1					
	LDC Rs, CCR	1					
MOV	MOV.B #xx:8, Rd	1					
	MOV.B Rs, Rd	1					
	MOV.B @Rs, Rd	1			1		
	MOV.B @(d:16,Rs), Rd	2			1		
	MOV.B @Rs+, Rd	1			1		2
	MOV.B @aa:8, Rd	1			1		
	MOV.B @aa:16, Rd	2			1		
	MOV.B Rs, @Rd	1			1		
	MOV.B Rs, @(d:16, Rd)	2			1		
	MOV.B Rs, @-Rd	1			1		2
	MOV.B Rs, @aa:8	1			1		
	MOV.B Rs, @aa:16	2			1		
	MOV.W #xx:16, Rd	2					
	MOV.W Rs, Rd	1					
	MOV.W @Rs, Rd	1				1	
	MOV.W @(d:16, Rs), Rd	2				1	
	MOV.W @Rs+, Rd	1				1	2
	MOV.W @aa:16, Rd	2				1	
	MOV.W Rs, @Rd	1				1	
	MOV.W Rs, @(d:16, Rd)	2				1	
	MOV.W Rs, @-Rd	1				1	2
	MOV.W Rs, @aa:16	2				1	
MOVFPE	MOVFPE @aa:16, Rd	Not supporte	d				

Table A-4 Number of Cycles in Each Instruction (cont)

Instruction	Mnemonic	Instruction Fetch I	Branch Address Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
MOVTPE	MOVTPE Rs, @aa:16	Not supporte	ed				
MULXU	MULXU.B Rs, Rd	1					12
NEG	NEG.B Rd	1					
NOP	NOP	1					
NOT	NOT.B Rd	1					
OR	OR.B #xx:8, Rd	1					
	OR.B Rs, Rd	1					
ORC	ORC #xx:8, CCR	1					
ROTL	ROTL.B Rd	1					
ROTR	ROTR.B Rd	1					
ROTXL	ROTXL.B Rd	1					
ROTXR	ROTXR.B Rd	1					
RTE	RTE	2		2			2
RTS	RTS	2		1			2
SHAL	SHAL.B Rd	1					
SHAR	SHAR.B Rd	1					
SHLL	SHLL.B Rd	1					
SHLR	SHLR.B Rd	1					
SLEEP	SLEEP	1					
STC	STC CCR, Rd	1					
SUB	SUB.B Rs, Rd	1					
	SUB.W Rs, Rd	1					
SUBS	SUBS.W #1/2, Rd	1					
SUBX	SUBX.B #xx:8, Rd	1					
	SUBX.B Rs, Rd	1					
XOR	XOR.B #xx:8, Rd	1					
	XOR.B Rs, Rd	1					
XORC	XORC #xx:8, CCR	1					
A.I. 4. A.II.		_			•		

Note: All values left blank are zero.

^{*} n: Initial value in R4L. Source and destination are accessed n + 1 times each.

Appendix B Register Field

B.1 Register Addresses and Bit Names

B.1.1 I/O Registers in Maximum Specification (Except H8/3212 and H8/3202)

					Bit N	Names				
Address										_
(Last	Register									Module
Byte)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'80										External memory (in ex- panded modes)
H'81	_									,
H'82	_									
H'83	_									
H'84	_									
H'85	_									
H'86	_									
H'87	_									
H'88	_									
H'89	_									
H'8A	_									
H'8B	_									
H'8C	_									
H'8D	_									
H'8E	_									
H'8F										
H'90	TCR	ICIE	OCIEB	OCIEA	OVIE	OEB	OEA	CKS1	CKS0	FRT
H'91	TCSR	ICF	OCFB	OCFA	OVF	OLVLB	OLVLA	IEDG	CCLRA	
H'92	FRCH									_
H'93	FRCL									_
H'94	OCRAH									_
H'95	OCRAL									_
H'96	OCRBH									
H'97	OCRBL					<u> </u>			<u>-</u>	_
H'98	ICRH									_
H'99	ICRL									

Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'9A	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMRX
H'9B	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'9C	TCORA									_
H'9D	TCORB									_
H'9E	TCNT									_
H'9F	TCONR	SMOD1	SMOD0	CLMOD	INVV	SCON1	SCON0	INVI	INVO	Timer connec- tion
H'A0	ICCR	ICE	IEIC	MST	TRS	ACK	CKS2	CKS1	CKS0	IIC0
H'A1	ICSR	BBSY	IRIC	SCP	_	AL	AAS	ADZ	ACKB	_
H'A2	ICDR									_
H'A3	ICMR/ SAR	MLS/ SVA6	WAIT/ SVA5	—/ SVA4	—/ SVA3	—/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/ FS	_
H'A4	ICCR	ICE	IEIC	MST	TRS	ACK	CKS2	CKS1	CKS0	IIC1
H'A5	ICSR	BBSY	IRIC	SCP	_	AL	AAS	ADZ	ACKB	_
H'A6	ICDR									_
H'A7	ICMR/ SAR	MLS/ SVA6	WAIT/ SVA5	—/ SVA4	—/ SVA3	—/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/ FS	_
H'A8	SEDGR	VEDG	HEDG	CEDG	FEDG	_	_	_	_	Timer connec- tion
H'A9										
H'AA	TCSR/ TCNT	OVF	WT/ĪT	TME	_	RST/ NMI	CKS2	CKS1	CKS0	WDT
H'AB	TCNT									_
H'AC	P1PCR	P1 ₇ PCR	P1 ₆ PCR	P1 ₅ PCR	P1 ₄ PCR	P1 ₃ PCR	P1 ₂ PCR	P1 ₁ PCR	P1 ₀ PCR	Port 1
H'AD	P2PCR	P2 ₇ PCR	P2 ₆ PCR	P2 ₅ PCR	P2 ₄ PCR	P2 ₃ PCR	P2 ₂ PCR	P2 ₁ PCR	P2 ₀ PCR	Port 2
H'AE	P3PCR	P3 ₇ PCR	P3 ₆ PCR	P3 ₅ PCR	P3 ₄ PCR	P3 ₃ PCR	P3 ₂ PCR	P3 ₁ PCR	P3 ₀ PCR	Port 3
H'AF										
H'B0	P1DDR	P1 ₇ DDR	P1 ₆ DDR	P1 ₅ DDR	P1 ₄ DDR	P1 ₃ DDR	P1 ₂ DDR	P1₁DDR	P1 ₀ DDR	Port 1
H'B1	P2DDR	P2 ₇ DDR	P2 ₆ DDR	P2 ₅ DDR	P2 ₄ DDR	P2 ₃ DDR	P2 ₂ DDR	P2 ₁ DDR	P2 ₀ DDR	Port 2
HB2	P1DR	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀	Port 1
H'B3	P2DR	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀	Port 2
H'B4	P3DDR	P3 ₇ DDR	P3 ₆ DDR	P3 ₅ DDR	P3 ₄ DDR	P3 ₃ DDR	P3 ₂ DDR	P3 ₁ DDR	P3 ₀ DDR	Port 3
H'B5	P4DDR	P4 ₇ DDR	P4 ₆ DDR	P4 ₅ DDR	P4 ₄ DDR	P4 ₃ DDR	P4 ₂ DDR	P4 ₁ DDR	P4 ₀ DDR	Port 4
H'B6	P3DR	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀	Port 3
H'B7	P4DR	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀	Port 4

Address (Last	Register									– Module
Byte)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'B8	P5DDR	_	_	P5 ₅ DDR	P5 ₄ DDR	P5 ₃ DDR	P5 ₂ DDR	P5 ₁ DDR	P5 ₀ DDR	Port 5
H'B9	P6DDR	_	P6 ₆ DDR	P6 ₅ DDR	P6 ₄ DDR	P6 ₃ DDR	P6 ₂ DDR	P6 ₁ DDR	P6 ₀ DDR	Port 6
H'BA	P5DR	_	_	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀	Port 5
H'BB	P6DR	—/P7 ₃	P6 ₆ /P7 ₂	P6 ₅ /P7 ₁	P6 ₄ /P7 ₀	P6 ₃	P6 ₂	P6 ₁	P6 ₀	Port 6
H'BC	P7DDR	P7 ₇ DDR	P7 ₆ DDR	P7 ₅ DDR	P7 ₄ DDR	P7 ₃ DDR	P7 ₂ DDR	P7 ₁ DDR	P7 ₀ DDR	Port 7
H'BD	_	_	_			_	_	_	_	_
H'BE	P7DR	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀	Port 7
H'BF	_	_	_	_	_	_	_	_	_	_
H'C0										
H'C1	_									
H'C2	WSCR	_	_	CLKDBL	_	WMS1	WMS0	WC1	WC0	_
H'C3	STCR	IICS	IICX1	IICX0	SYNCE	PWCKE	PWCKS	ICKS1	ICKS0	_
H'C4	SYSCR	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME	_
H'C5	MDCR	_	_	_	_	_	_	MDS1	MDS0	_
H'C6	ISCR	_	IRQ6SC	_	_	_	IRQ2SC	IRQ1SC	IRQ0SC	_
H'C7	IER	_	IRQ6E	_	_	_	IRQ2E	IRQ1E	IRQ0E	_
H'C8	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR0
H'C9	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'CA	TCORA									_
H'CB	TCORB									_
H'CC	TCNT									_
H'CD	PWOERB	OE15	OE14	OE13	OE12	OE11	OE10	OE9	OE8	PWM
H'CE	PWDPRB	OS15	OS14	OS13	OS12	OS11	OS10	OS9	OS8	_
H'CF	PWDPRA	OS7	OS6	OS5	OS4	OS3	OS2	OS1	OS0	_
H'D0	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR1
H'D1	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'D2	TCORA									_
H'D3	TCORB									_
H'D4	TCNT									_
H'D5	PWOERA	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0	PWM
H'D6										_
H'D7										_

Address (Last	Register	D:4 7	D:4 C	D:4 5	D:4.4	D:4 0	D# 0	D:: 4	D:4 0	Module
Byte)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'D8	SMR	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCI0
H'D9	BRR									
H'DA	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
H'DB	TDR									
H'DC	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
H'DD	RDR									
H'DE	SCMR	_	_	_	_	SDIR	SINV	_	SMIF	
H'DF	_	_	_	_	_	_	_	_	_	
H'E0	SMR	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCI1
H'E1	BRR									_
H'E2	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
H'E3	TDR									_
H'E4	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
H'E5	RDR									
H'E6	_	_	_	_	_	_	_	_	_	
H'E7	_	_	_	_	_	_	_	_	_	
H'E8										
H'E9	_									
H'EA	_									
H'EB	_									
H'EC	_									
H'ED	_									
H'EE	_									
H'EF	_									

Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H'F0	PWDR0 /HICR	/—	/—	/—	/—	/—	/IBFIE2	/IBFIE1	/FGA ₂₀ E
H'F1	PWDR1 /KMIMR	/KMIMR7	/KMIMR6	/KMIMR5	/KMIMR4	/KMIMR3	/KMIMR2	/KMIMR1	/KMIMR0
H'F2	PWDR2 /KMPCR	/KM ₇ PCR	/KM ₆ PCR	/KM ₅ PCR	/KM ₄ PCR	/KM ₃ PCR	/KM ₂ PCR	:/KM ₁ PCR	KM ₀ PCR
H'F3	PWDR3 /—	/—	/—	/—	/—	/—	/—	/—	/—
H'F4	PWDR4 /IDR1								
H'F5	PWDR5 /ODR1								
H'F6	PWDR6 /STR1	/DBU	/DBU	/DBU	/DBU	/C/D	/DBU	/IBF	/OBF
H'F7	PWDR7 /—	/—	/—	/—	/—	/—	/—	/—	/—
H'F8	PWDR8 /—	/—	/—	/—	/—	/—	/—	/—	/—
H'F9	PWDR9 /—	/—	/—	/—	/—	/—	/—	/—	/—
H'FA	PWDR10 /—	/—	/—	/—	/—	/—	/—	/—	/—
H'FB	PWDR11 /—	/—	<i>/</i> —	/—	/—	/—	/—	/—	/—
H'FC	PWDR12 /IDR2								
H'FD	PWDR13 /ODR2								
H'FE	PWDR14 /STR2	/DBU	/DBU	/DBU	/DBU	/C/D	/DBU	/IBF	/OBF
H'FF	PWDR15 /—	/—	<i>/</i> —	/—	/—				

Notes: FRT: Free-running timer

TMR0: 8-bit timer channel 0 TMR1: 8-bit timer channel 1

SCI0: Serial communication interface 0SCI1: Serial communication interface 1PWM: Pulse width modulation timer

HIF: Host interface

B.1.2 H8/3212 I/O Registers

		Bit Names									
Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	
H'80										External memory (in ex- panded modes)	
H'81	_										
H'82	_										
H'83	_										
H'84	_										
H'85	_										
H'86	_										
H'87	_										
H'88	_										
H'89	_										
H'8A	_										
H'8B											
H'8C	_										
H'8D	_										
H'8E	_										
H'8F											
H'90	TCR	ICIE	OCIEB	OCIEA	OVIE	OEB	OEA	CKS1	CKS0	FRT	
H'91	TCSR	ICF	OCFB	OCFA	OVF	OLVLB	OLVLA	IEDG	CCLRA		
H'92	FRCH										
H'93	FRCL									_	
H'94	OCRAH									_	
H'95	OCRAL									_	
H'96	OCRBH									_	
H'97	OCRBL									_	
H'98	ICRH									_	
H'99	ICRL									_	

Address (Last	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'9A	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMRX
H'9B	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'9C	TCORA									_
H'9D	TCORB									_
H'9E	TCNT									_
H'9F	TCONR	SMOD1	SMOD0	CLMOD	INVV	SCON1	SCON0	INVI	INVO	Timer connec- tion
H'A0	ICCR	ICE	IEIC	MST	TRS	ACK	CKS2	CKS1	CKS0	IIC0
H'A1	ICSR	BBSY	IRIC	SCP	_	AL	AAS	ADZ	ACKB	_
H'A2	ICDR									_
H'A3	ICMR/ SAR	MLS/ SVA6	WAIT/ SVA5	—/ SVA4	—/ SVA3	—/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/ FS	_
H'A4	ICCR	ICE	IEIC	MST	TRS	ACK	CKS2	CKS1	CKS0	IIC1
H'A5	ICSR	BBSY	IRIC	SCP	_	AL	AAS	ADZ	ACKB	_
H'A6	ICDR									_
H'A7	ICMR/ SAR	MLS/ SVA6	WAIT/ SVA5	—/ SVA4	—/ SVA3	—/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/ FS	_
H'A8	SEDGR	VEDG	HEDG	CEDG	FEDG	_	_	_	_	Timer connec- tion
H'A9										
H'AA	TCSR/ TCNT	OVF	WT/IT	TME	_	RST/ NMI	CKS2	CKS1	CKS0	WDT
H'AB	TCNT									_
H'AC	P1PCR	P1 ₇ PCR	P1 ₆ PCR	P1 ₅ PCR	P1 ₄ PCR	P1 ₃ PCR	P1 ₂ PCR	P1 ₁ PCR	P1 ₀ PCR	Port 1
H'AD	P2PCR	P2 ₇ PCR	P2 ₆ PCR	P2 ₅ PCR	P2 ₄ PCR	P2 ₃ PCR	P2 ₂ PCR	P2 ₁ PCR	P2 ₀ PCR	Port 2
H'AE	P3PCR	P3 ₇ PCR	P3 ₆ PCR	P3 ₅ PCR	P3 ₄ PCR	P3 ₃ PCR	P3 ₂ PCR	P3 ₁ PCR	P3 ₀ PCR	Port 3
H'AF										
H'B0	P1DDR	P1 ₇ DDR	P1 ₆ DDR	P1 ₅ DDR	P1 ₄ DDR	P1 ₃ DDR	P1 ₂ DDR	P1 ₁ DDR	P1 ₀ DDR	Port 1
H'B1	P2DDR	P2 ₇ DDR	P2 ₆ DDR	P2 ₅ DDR	P2 ₄ DDR	P2 ₃ DDR	P2 ₂ DDR	P2 ₁ DDR	P2 ₀ DDR	Port 2
HB2	P1DR	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀	Port 1
H'B3	P2DR	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀	Port 2
H'B4	P3DDR	P3 ₇ DDR	P3 ₆ DDR	P3 ₅ DDR	P3 ₄ DDR	P3 ₃ DDR	P3 ₂ DDR	P3 ₁ DDR	P3 ₀ DDR	Port 3
H'B5	P4DDR	P4 ₇ DDR	P4 ₆ DDR	P4 ₅ DDR	P4 ₄ DDR	P4 ₃ DDR	P4 ₂ DDR	P4 ₁ DDR	P4 ₀ DDR	Port 4
H'B6	P3DR	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀	Port 3
H'B7	P4DR	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀	Port 4

Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'B8	P5DDR	_	_	P5 ₅ DDR	P5 ₄ DDR	P5 ₃ DDR	P5 ₂ DDR	P5₁DDR	P5 ₀ DDR	Port 5
H'B9	P6DDR	_	P6 ₆ DDR	P6 ₅ DDR	P6 ₄ DDR	P6 ₃ DDR	P6 ₂ DDR	P6₁DDR	P6 ₀ DDR	Port 6
H'BA	P5DR	_	_	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀	Port 5
H'BB	P6DR	_	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 ₀	Port 6
H'BC	P7DDR	P7 ₇ DDR	P7 ₆ DDR	P7 ₅ DDR	P7 ₄ DDR	P7 ₃ DDR	P7 ₂ DDR	P7 ₁ DDR	P7 ₀ DDR	Port 7
H'BD	_	_	_	_	_	_	_	_	_	_
H'BE	P7DR	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀	Port 7
H'BF	_	_	_	_	_	_	_	_	_	_
H'C0										
H'C1	_									
H'C2	WSCR	_	_	CLKDBL	_	WMS1	WMS0	WC1	WC0	_
H'C3	STCR	IICS	IICX1	IICX0	SYNCE	PWCKE	PWCKS	ICKS1	ICKS0	_
H'C4	SYSCR	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME	_
H'C5	MDCR	_	_	_	_	_	_	MDS1	MDS0	_
H'C6	ISCR	_	IRQ6SC	_	_	_	IRQ2SC	IRQ1SC	IRQ0SC	_
H'C7	IER	_	IRQ6E	_	_	_	IRQ2E	IRQ1E	IRQ0E	_
H'C8	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR0
H'C9	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'CA	TCORA									_
H'CB	TCORB									_
H'CC	TCNT									_
H'CD	PWOERB	OE15	OE14	OE13	OE12	OE11	OE10	OE9	OE8	PWM
H'CE	PWDPRB	OS15	OS14	OS13	OS12	OS11	OS10	OS9	OS8	_
H'CF	PWDPRA	OS7	OS6	OS5	OS4	OS3	OS2	OS1	OS0	_
H'D0	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR1
H'D1	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'D2	TCORA									_
H'D3	TCORB									_
H'D4	TCNT									_
H'D5	PWOERA	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0	PWM
H'D6										_
H'D7										_

Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'D8	SMR	C/Ā	CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	SCI0
H'D9	BRR									_
H'DA	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
H'DB	TDR									_
H'DC	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	_
H'DD	RDR									_
H'DE	SCMR	_	_	_	_	SDIR	SINV	_	SMIF	
H'DF	_	_	_	_	_	_		_	_	
H'E0										
H'E1										
H'E2										
H'E3										
H'E4										
H'E5										
H'E6										
H'E7										
H'E8										
H'E9										
H'EA										
H'EB	_ '									
H'EC	_ '									
H'ED	_									
H'EE	_									
H'EF	_									

Address (Last	Register									
Byte)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'F0	PWDR0									PWM
H'F1	PWDR1									_
H'F2	PWDR2									_
H'F3	PWDR3									_
H'F4	PWDR4									_
H'F5	PWDR5									_
H'F6	PWDR6									_
H'F7	PWDR7									_
H'F8	PWDR8									_
H'F9	PWDR9									_
H'FA	PWDR10									
H'FB	PWDR11									
H'FC	PWDR12									
H'FD	PWDR13									_
H'FE	PWDR14									
H'FF	PWDR15									_

Notes: FRT: Free-running timer

TMR0: 8-bit timer channel 0 TMR1: 8-bit timer channel 1

SCI0: Serial communication interface 0SCI1: Serial communication interface 1PWM: Pulse width modulation timer

B.1.3 H8/3202 I/O Registers

Address Byte Register Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module Name H80 Register Mane Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Mane H80 Register Mane Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Ask part of the memory (in expanded modes) H81 H82 H83 H84 H85 H84 H85 H84 H85 H84 H85 H84 H85 H84 H84<			Bit Names								
H81	Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
H182 H183 H184 H185 H186 H187 H188 H188 H189 H188 H180 H186 H186 H187 H198 H190 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H191 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H193 FRCL H194 OCRAH H195 OCRAL H196 OCRBH H197 OCRBL	H'80										memory (in ex- panded
H183 H184 H185 H186 H187 H188 H188 H189 H188 H180 H186 H187 H188 H188 H189 H189 H189 H189 H189 H189	H'81	_									
H184	H'82	-									
H'85 H'86 H'87 H'88 H'89 H'8A H'8B H'8C H'8B H'8F H'8F H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'83	_									
H'86 H'87 H'88 H'89 H'8A H'8B H'8C H'8B H'8C H'8B H'8F H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'84	_									
H'87 H'88 H'89 H'8A H'8B H'8C H'8D H'8E H'8F H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'85	_									
H'88 H'89 H'8A H'8B H'8C H'8D H'8E H'8F H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'86	_									
H'89 H'8A H'8B H'8C H'8D H'8E H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'87	_									
H'8A H'8B H'8C H'8D H'8E H'96 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBL H'97 OCRBL	H'88	_									
H'8B H'8C H'8D H'8E H'8F H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'89	_									
H'8C H'8D H'8E H'96 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'8A	_									
H'8D H'8E H'8F H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL	H'8B	_									
H'8E H'8F H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'8C	_									
H'96	H'8D	_									
H'90 TCR ICIE OCIEB OCIEA OVIE OEB OEA CKS1 CKS0 FRT H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL FRCL H'94 OCRAH OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH ICRD I	H'8E	_									
H'91 TCSR ICF OCFB OCFA OVF OLVLB OLVLA IEDG CCLRA H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL	H'8F	_									
H'92 FRCH H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'90	TCR	ICIE	OCIEB	OCIEA	OVIE	OEB	OEA	CKS1	CKS0	FRT
H'93 FRCL H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'91	TCSR	ICF	OCFB	OCFA	OVF	OLVLB	OLVLA	IEDG	CCLRA	_
H'94 OCRAH H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'92	FRCH									_
H'95 OCRAL H'96 OCRBH H'97 OCRBL H'98 ICRH	H'93	FRCL									_
H'96 OCRBH H'97 OCRBL H'98 ICRH	H'94	OCRAH									_
H'97 OCRBL H'98 ICRH	H'95	OCRAL									
H'98 ICRH	H'96	OCRBH									
	H'97	OCRBL									_
H'99 ICRL	H'98	ICRH									_
	H'99	ICRL									

	nac

Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'9A										
H'9B	=									
H'9C	=									
H'9D	=									
H'9E	_									
H'9F	_									
H'A0	ICCR	ICE	IEIC	MST	TRS	ACK	CKS2	CKS1	CKS0	I ² C
H'A1	ICSR	BBSY	IRIC	SCP	_	AL	AAS	ADZ	ACKB	_
H'A2	ICDR									_
H'A3	ICMR/ SAR	MLS/ SVA6	WAIT/ SVA5	—/ SVA4	—/ SVA3	—/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/ FS	_
H'A4										
H'A5	_									
H'A6	_									
H'A7	=									
H'A8	_									
H'A9	=									
H'AA	TCSR	OVF	WT/IT	TME	_	RST/ NMI	CKS2	CKS1	CKS0	WDT
H'AB	TCNT									_
H'AC	P1PCR	P1 ₇ PCR	P1 ₆ PCR	P1 ₅ PCR	P1 ₄ PCR	P1 ₃ PCR	P1 ₂ PCR	P1 ₁ PCR	P1 ₀ PCR	Port 1
H'AD	P2PCR	P2 ₇ PCR	P2 ₆ PCR	P2 ₅ PCR	P2 ₄ PCR	P2 ₃ PCR	P2 ₂ PCR	P2 ₁ PCR	P2 ₀ PCR	Port 2
H'AE	P3PCR	P3 ₇ PCR	P3 ₆ PCR	P3 ₅ PCR	P3 ₄ PCR	P3 ₃ PCR	P3 ₂ PCR	P3 ₁ PCR	P3 ₀ PCR	Port 3
H'AF										
H'B0	P1DDR	P1 ₇ DDR	P1 ₆ DDR	P1 ₅ DDR	P1 ₄ DDR	P1 ₃ DDR	P1 ₂ DDR	P1 ₁ DDR	P1 ₀ DDR	Port 1
H'B1	P2DDR	P2 ₇ DDR	P2 ₆ DDR	P2 ₅ DDR	P2 ₄ DDR	P2 ₃ DDR	P2 ₂ DDR	P2 ₁ DDR	P2 ₀ DDR	Port 2
HB2	P1DR	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀	Port 1
H'B3	P2DR	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀	Port 2
H'B4	P3DDR	P3 ₇ DDR	P3 ₆ DDR	P3 ₅ DDR	P3 ₄ DDR	P3 ₃ DDR	P3 ₂ DDR	P3 ₁ DDR	P3 ₀ DDR	Port 3
H'B5	P4DDR	P4 ₇ DDR	P4 ₆ DDR	P4 ₅ DDR	P4 ₄ DDR	P4 ₃ DDR	P4 ₂ DDR	P4 ₁ DDR	P4 ₀ DDR	Port 4
H'B6	P3DR	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀	Port 3
H'B7	P4DR	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀	Port 4

Bit Names

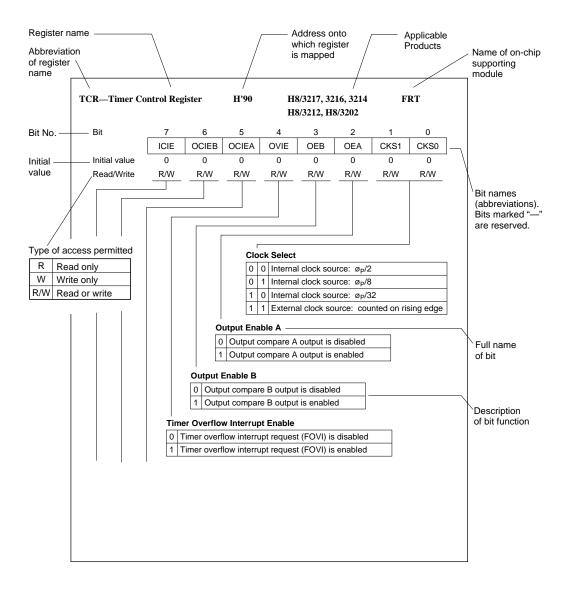
Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'B8	P5DDR	_	_	P5 ₅ DDR	P5 ₄ DDR	P5 ₃ DDR	P5 ₂ DDR	P5 ₁ DDR	P5 ₀ DDR	Port 5
H'B9	P6DDR	_	P6 ₆ DDR	P6 ₅ DDR	P6 ₄ DDR	P6 ₃ DDR	P6 ₂ DDR	P6 ₁ DDR	P6 ₀ DDR	Port 6
H'BA	P5DR	_	_	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀	Port 5
H'BB	P6DR	—/P7 ₃	P6 ₆ /P7 ₂	P6 ₅ /P7 ₁	P6 ₄ /P7 ₀	P6 ₃	P6 ₂	P6 ₁	P6 ₀	Port 6
H'BC	P7DDR	P7 ₇ DDR	P7 ₆ DDR	P7 ₅ DDR	P7 ₄ DDR	P7 ₃ DDR	P7 ₂ DDR	P7 ₁ DDR	P7 ₀ DDR	Port 7
H'BD	_	_	_	_	_	_	_	_	_	_
H'BE	P7DR	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀	Port 7
H'BF	_	_	_	_	_	_	_	_	_	_
H'C0										
H'C1	_									
H'C2	WSCR	_	_	CLKDBL	_	WMS1	WMS0	WC1	WC0	_
H'C3	STCR	IICS	IICX1	IICX0	SYNCE	PWCKE	PWCKS	ICKS1	ICKS0	_
H'C4	SYSCR	SSBY	STS2	STS1	STS0	XRST	NMIEG	HIE	RAME	_
H'C5	MDCR	_	_	_	_	_	_	MDS1	MDS0	_
H'C6	ISCR	_	IRQ6SC	_	_	_	IRQ2SC	IRQ1SC	IRQ0SC	_
H'C7	IER	_	IRQ6E	_	_	_	IRQ2E	IRQ1E	IRQ0E	_
H'C8	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR0
H'C9	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'CA	TCORA									_
H'CB	TCORB									_
H'CC	TCNT									
H'CD										
H'CE										
H'CF										
H'D0	TCR	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR1
H'D1	TCSR	CMFB	CMFA	OVF	PWME	OS3	OS2	OS1	OS0	_
H'D2	TCORA									_
H'D3	TCORB									_
H'D4	TCNT									_
H'D5										
H'D6	_									
H'D7	_									

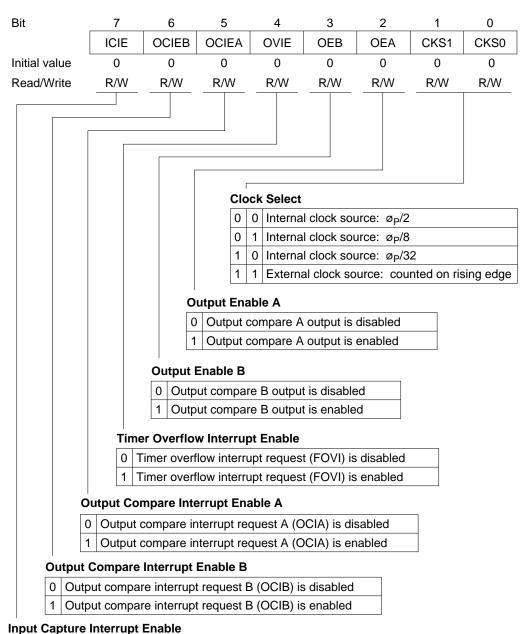
Bit Names

					ואכו	vailles				
Address (Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'D8	SMR	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCI0
H'D9	BRR									_
H'DA	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
H'DB	TDR									_
H'DC	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
H'DD	RDR									
H'DE	SCMR	_	_	_	_	SDIR	SINV	_	SMIF	
H'DF	_	_	_	_	_	_	_	_	_	
H'E0	SMR	C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0	SCI1
H'E1	BRR									
H'E2	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
H'E3	TDR									
H'E4	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
H'E5	RDR									
H'E6	_	_	_	_	_	_	_	_	_	
H'E7	_		_	_	_	_	_	_	_	
H'E8										
H'E9	_									
H'EA	_									
H'EB	_									
H'EC	_									
H'ED	_									
H'EE	_									
H'EF										

Bit Names

(Last Byte)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
H'F0	HICR	_	_	_	_	_	IBFIE2	IBFIE1	FGA ₂₀ E	HIF
H'F1	KMIMR	KMIMR7	KMIMR6	KMIMR5	KMIMR4	KMIMR3	KMIMR2	KMIMR1	KMIMR0	_
H'F2	KMPCR	KM ₇ PCR	KM ₆ PCR	KM ₅ PCR	KM ₄ PCR	KM ₃ PCR	KM ₂ PCR	KM ₁ PCR	KM ₀ PCR	_
H'F3	_	_	_	_	_	_	_	_	_	=
H'F4	IDR1									_
H'F5	ODR1									=
H'F6	STR1	DBU	DBU	DBU	DBU	C/D	DBU	IBF	OBF	=
H'F7	_	_	_	_	_	_	_	_	_	=
H'F8	_	_	_	_	_	_	_	_	_	_
H'F9	_	_	_	_	_	_	_	_	_	=
H'FA	_	_	_	_	_	_	_	_	_	_
H'FB	_	_	_	_	_	_	_	_	_	_
H'FC	IDR2									=
H'FD	ODR2									=
H'FE	STR2	DBU	DBU	DBU	DBU	C/D	DBU	IBF	OBF	='
H'FF	_	_	_	_	_		_	_	_	=


Notes: FRT: Free-running timer


TMR0: 8-bit timer channel 0 TMR1: 8-bit timer channel 1

SCI0: Serial communication interface 0 SCI1: Serial communication interface 1

HIF: Host interface

B.2 Register Descriptions

...par = aprais

- 0 Input capture interrupt request (ICI) is disabled
- 1 Input capture interrupt request (ICI) is enabled

H'91

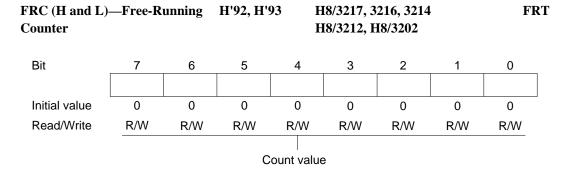
H8/3217, 3216, 3214

H8/3212, H8/3202

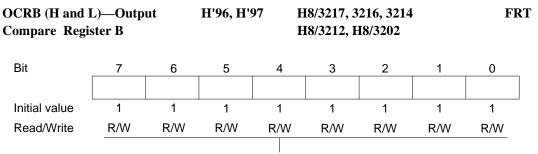
FRT

Note: * Software can write a 0 in bits 7 to 4 to clear the flags, but cannot write a 1 in these bits.

To clear ICF, the CPU must read ICF after it has been set to 1, then write a 0 in this bit
 This bit is set to 1 when an FTI input signal causes the FRC value to be copied to the ICR

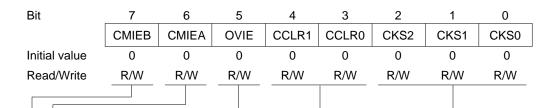

426

Input Capture Flag


TCSR—Timer Control/Status

Register

HITACHI


OCRA (H and L)—Output Compare Register A			H'94, H'		18/3217, 3 18/3212, F			FI	RT
Bit	7	6	5	4	3	2	1	0	_
Initial value	1	1	1	1	1	1	1	1	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			-		with the F		and		

OCRB is constantly compared with the FRC value, and the OCFB bit is set to 1 when OCRB = FRC

ICR (H and L)—Input Capture Register			H'98, H'	H'98, H'99 H8/3217, 3216, 3214 H8/3212, H8/3202				FRT		
Bit	7	6	5	4	3	2	1	0	7	
Initial value	0	0	0	0	0	0	0	0	_	
Read/Write	R	R	R	R	R	R	R	R		

Contains FRC count captured on FTI input

Clock Select 2 to 0 -

Together with the ICKS0 and ICKS1 bits in STCR, these bits select the clock input to TCNT

		TCR							
Channel	Bit 2	Bit 1	Bit 0	Description					
	CKS2	CKS1	CKS0						
X	0	0	0	No clock source (timer stopped)					
	0	0	1	ø internal clock source					
	0	1	0	$\phi_P/2$ internal clock source, counted on the falling edge					
	0	1	1	ø _P /512 internal clock source, counted on the falling edge					
	1	0	0	No clock source (timer stopped)					
	1	0	1	External clock source, counted on the rising edge					
	1	1	0	External clock source, counted on the falling edge					
	1	1	1	External clock source, counted on both the rising and falling edges					

Counter Clear 1 and 0

0	0	Not cleared (Initial value)
0	1	Cleared on compare-match A
1	0	Cleared on compare-match B
1	1	Cleared on rising edge of external reset input signal

Timer Overflow Interrupt Enable

0	The timer overflow interrupt request (OVI) is disabled	(Initial value)
1	The timer overflow interrupt request (OVI) is enabled	

Compare-Match Interrupt Enable A

0 Compare-match interrupt request A (CMIA) is disabled (Initial value)
1 Compare-match interrupt request A (CMIA) is enabled

Compare-Match Interrupt Enable B

	Compare-match interrupt request B (CMIB) is disabled	(Initial value)
1	Compare-match interrupt request B (CMIB) is enabled	

H'9B

H8/3217, 3216, 3214,

TMRX

Notes: *1. When all four output select bits (bits OS3 to OS0) are cleared to 0, the timer output signal is

*2. Software can write a 0 in bits 7 to 5 to clear the flags, but cannot write a 1 in these bits.

430

This bit is set to 1 when TCNT = TCORB

TCSR—Timer Control/Status

TCORA—Time Registers A	e Constan	t	Н'9С		H8/3217, 3216, 3214, H8/3212				
Bit	7	6	5	4	3	2	1	0	
Initial value	1	1	1	1	1	1	1	1	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		- .	01454				O. I.T.		

The CMFA bit is set to 1 when TCORA = TCNT

TCORB—Time Registers B	e Constan	t				H8/3217, 3216, 3214, H8/3212			
Bit	7	6	5	4	3	2	1	0	
Initial value	1	1	1	1	1	1	1	1	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

The CMFB bit is set to 1 when TCORB = TCNT

TCNT—Timer		H'9E		18/3217, 3 18/3212	,	TMRX			
Bit	7	6	5	4	3	2	1	0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
				Coun	t value				

431

H'9F

H8/3217, 3216, 3214

Timer

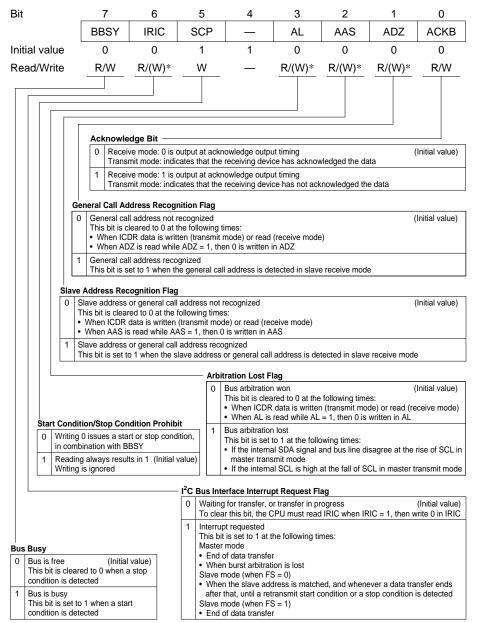
		Mode	IHI Signal	IHO Signal	IV Signal
0	0	No signal (normal connection) (Initial value)	FBACKI input	IHI signal	VSYNCI input
0	1	S-on-G mode	CSYNCI input	CL1 signal	PDC signal
1	0	Composite mode	HSYNCI input	CL1 signal	PDC signal
1	1	Separate mode	HSYNCI input	IHI signal	VSYNCI input

TCONR—Timer Connection

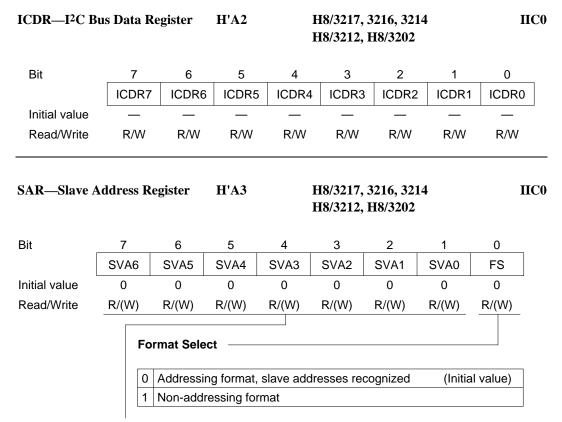
H'A0

H8/3217, 3216, 3214

ICCR—I²C Bus Control


I²C Bus Interface Enable

(Initial value)


IIC0

Interface module disabled, with SCL and SDA signals in high-impedance state

Interface module enabled for transfer operations (pins SCL and SDA are driving the bus)

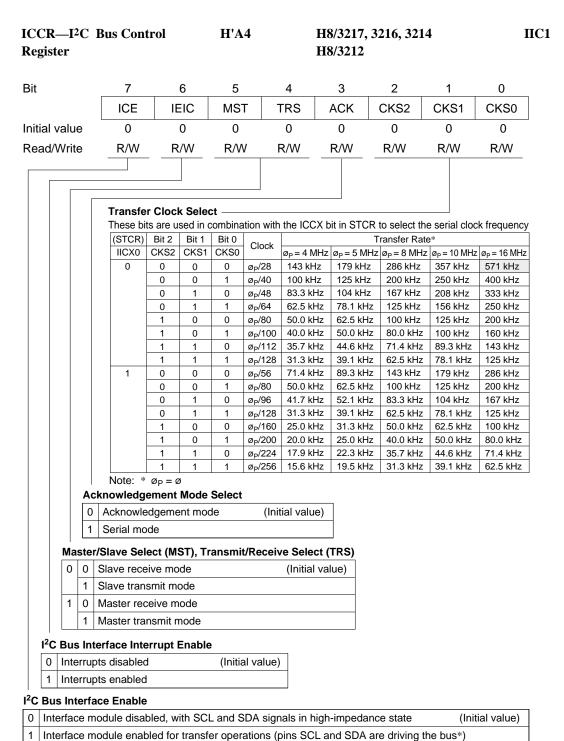
Note: * Software can write a 0 in bits 6, 3, 2, and 1 to clear the flags, but cannot write a 1 in these bits.

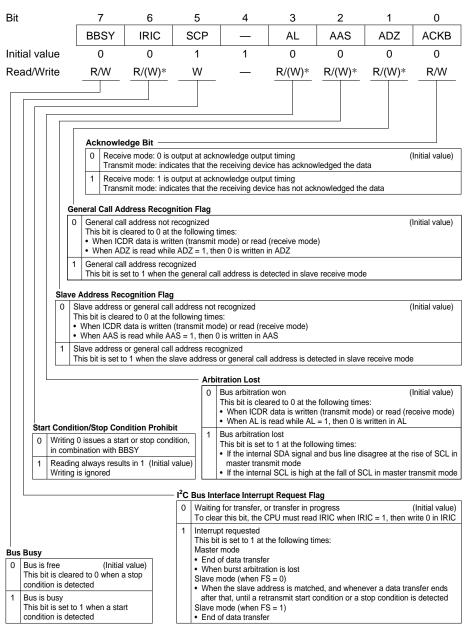
Slave Address 6 to 0

Set a unique address in bits SVA6 to SVA0, differing from the address of other slave devices connected to the I²C bus.

Bit 7 6 5 3 2 1 0 MLS WAIT BC2 BC1 BC0 0 0 0 0 0 Initial value 1 1 Read/Write R/W R/W R/W R/W R/W

Bit Counter 2 to 0


Bit 2	Bit 1	Bit 0	Bits/Frame		
BC2	BC1	BC0	Serial Mode	Acknowledgement Mode	
0	0	0	8	9 (Initial value)	
		1	1	2	
	1	0	2	3	
		1	3	4	
1	0	0	4	5	
		1	5	6	
	1	0	6	7	
		1	7	8	


Wait Insertion Bit

0	Data and acknowledge transferred consecutively	(Initial value)
1	Wait inserted between data and acknowledge	

MSB-First/LSB-First Select

0	MSB-first	(Initial value)
1	LSB-first	

Note: * Software can write a 0 in bits 6, 3, 2, and 1 to clear the flags, but cannot write a 1 in these bits.

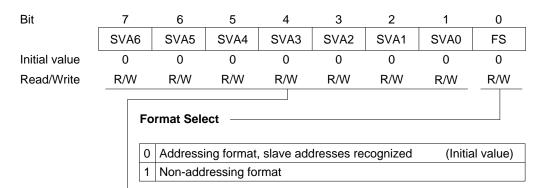
Bit	7	6	5	4	3	2	1	0
	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
Initial value	_	_	_	_	_	_	_	
Read/Write	R/W							

H8/3217, 3216, 3214 H8/3212

IIC1

Bit	7	6	5	4	3	2	1	0
	MLS	WAIT	_	_	_	BC2	BC1	BC0
Initial value	0	0	1	1	1	0	0	0
Read/Write	R/W	R/W	_	_	_	R/W	R/W	R/W

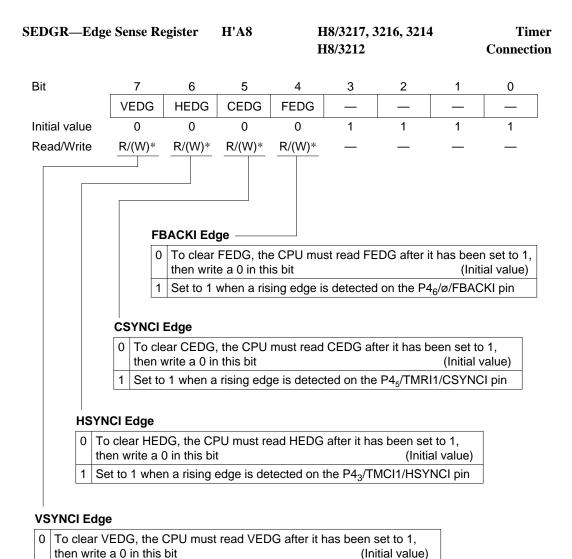
Bit Counter 2 to 0 -


Bit 2	Bit 1	Bit 0		Bits/Frame		
BC2	BC1	BC0	Serial Mode	Acknowledgement Mode		
0	0	0	8	9 (Initial value)		
		1	1	2		
	1	0	2	3		
		1	3	4		
1	0	0	4	5		
		1	5	6		
	1	0	6	7		
		1	7	8		

Wait Insertion Bit

- 0 Data and acknowledge transferred consecutively (Initial value)
- 1 Wait inserted between data and acknowledge

MSB-First/LSB-First Select


0	MSB-first	(Initial value)
1	LSB-first	

Slave Address 6 to 0

Set a unique address in bits SVA6 to SVA0, differing from the address of other slave devices connected to the I^2C bus.

440

Note: * Software can write a 0 in bits 7 to 4 to clear the flags, but cannot write a 1 in these bits.

1 Set to 1 when a rising edge is detected on the P6₃/FTI/VSYNCI pin

H'AA

H8/3217, 3216, 3214 H8/3212, H8/3202 WDT

Bit	7	6	5	4	3	2	1	0
	OVF	WT/IT	TMB	_	RST/NMI	CKS2	CKS1	CKS0
Initial value	0	0	0	1	0	0	0	0
Read/Write	R/(W)*	R/W	R/W	_	R/W	R/W	R/W	R/W

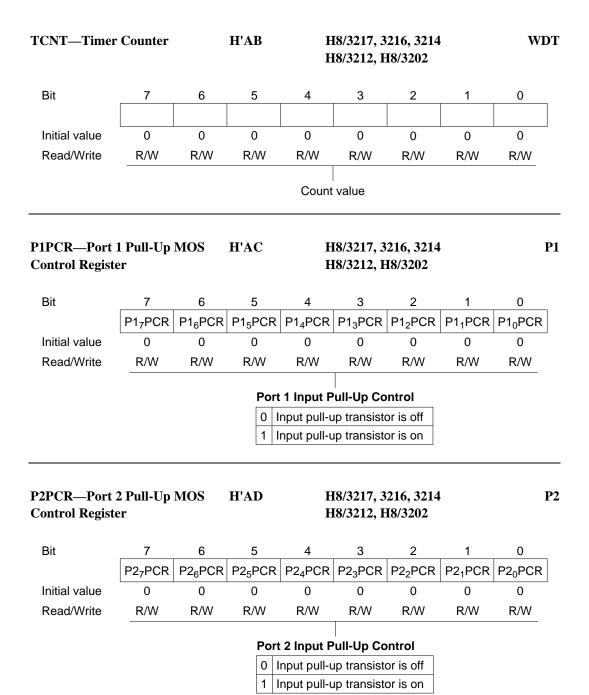
Clock Select 2 to 0

CKS2	CKS1	CKS0	Clock Source	Overflow Interval (Ø _P = 10 MHz)
0	0	0	ø _P /2	51.2 μs (Initial value)
0	0	1	ø _P /32	819.2 μs
0	1	0	ø _P /64	1.6 ms
0	1	1	ø _P /128	3.3 ms
1	0	0	ø _P /256	6.6 ms
1	0	1	ø _P /512	13.1 ms
1	1	0	ø _P /2048	52.4 ms
1	1	1	ø _P /4096	104.9 ms

Reset or NMI Select

	NMI function enabled	(Initial value)
1	Reset function enabled	

Timer Enable


0	TCNT is initialized to H'00 and stopped (Initial value)
1	TCNT runs and requests a reset or interrupt when it overflows

Timer Mode Select

0	Interval timer mode (OVF request)	(Initial value)
1	Watchdog timer mode (reset or NMI request)	

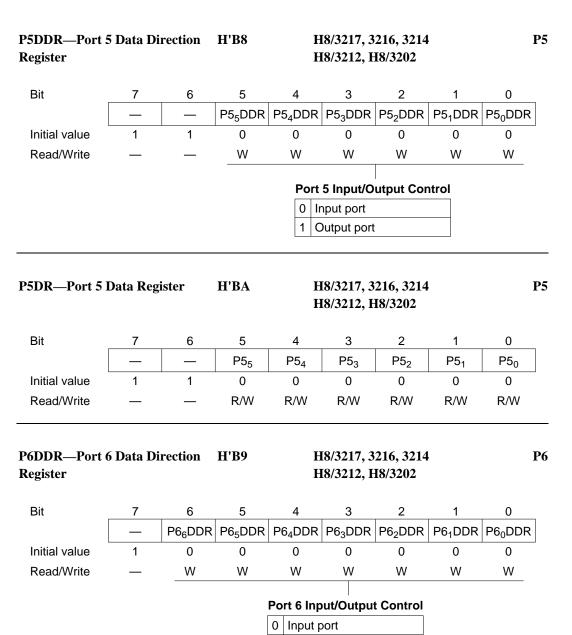
Overflow Flag

	To clear OVF, the CPU must read OVF after it has been set to 1,	
	then write a 0 in this bit (Initial	value)
1	Set to 1 when TCNT changes from H'FF to H'00	

H8/3212, H8/3202 Bit 7 6 5 4 3 2 1 0 P1₇ P1₆ P1₅ $P1_4$ P1₃ P1₂ P1₁ $P1_0$ Initial value 0 0 0 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

444

HITACHI


P2DR—Port 2	Data Regi	ister	H'B3		[8/3217, 3 [8/3212, H	216, 3214 18/3202	ı		P2
Bit	7	6	5	4	3	2	1	0	_
	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀	
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Output port

P3DDR—Port Register	3 Data Di	rection	H'B4		18/3217, 3 18/3212, H			P3	3
Bit	7	6	5	4	3	2	1	0	
	P3 ₇ DDR	P3 ₆ DDR	P3 ₅ DDR	P3 ₄ DDR	P3 ₃ DDR	P3 ₂ DDR	P3 ₁ DDR	P3 ₀ DDR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	W	W	W	W	W	W	W	W	
			0 Input	-	ıt Control				

P3DR—Port 3	Data Regi	ister	H'B6		[8/3217, 3 [8/3212, H	3216, 3214 H8/3202	l		P3
Bit	7	6	5	4	3	2	1	0	
	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀	
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

P4DR—Port 4	Data Reg	ister	H'B7		I8/3217, 3 I8/3212, H	216, 3214 18/3202	ļ		P4
Bit	7	6	5	4	3	2	1	0	_
	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀	
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

448

Output port

P6DR—Port 6 Data Register			Н'ВВ		[8/3217, 3 [8/3202	3216, 3214	ı		P6
Bit	7	6	5	4	3	2	1	0	
	—/P7 ₃	P6 ₆ /P7 ₂	P6 ₅ /P7 ₁	P6 ₄ /P7 ₀	P6 ₃	P6 ₂	P6 ₁	P6 ₀	
Initial value	1	0	0	0	0	0	0	0	
Read/Write	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
P6DR—Port 6	Data Reg	ister	H'BB	Н	8/3212				P6
Bit	7	6	5	4	3	2	1	0	
	_	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 ₀	
Initial value	1	0	0	0	0	0	0	0	
Read/Write	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	/ Data Di	rection	H'BC			3216, 3214	ı		P7
Register Bit	7 Data Di 7	rection 6	Н'ВС 5		(8/3217, 3 (8/3212, I		1	0	P7
Register		6	5	H 4	8/3212, I	18/3202	1		
Register	7	6	5	H 4	8/3212, I	18/3202	1		
Register Bit	7 P7 ₇ DDR	6 P7 ₆ DDR	5 P7 ₅ DDR	H 4 P7 ₄ DDR	3 P7 ₃ DDR	18/3202 2 P7 ₂ DDR	1 P7 ₁ DDR	P7 ₀ DDF	
Register Bit Initial value	7 P7 ₇ DDR 0	6 P7 ₆ DDR 0	5 P7 ₅ DDR 0 W	4 P7 ₄ DDR 0	3 P7 ₃ DDR 0 W	2 P7 ₂ DDR 0 W	1 P7 ₁ DDR 0	P7 ₀ DDF	
Register Bit Initial value	7 P7 ₇ DDR 0	6 P7 ₆ DDR 0	5 P7 ₅ DDR 0 W	4 P7 ₄ DDR 0 W	3 P7 ₃ DDR 0 W	2 P7 ₂ DDR 0 W	1 P7 ₁ DDR 0	P7 ₀ DDF	
Register Bit Initial value	7 P7 ₇ DDR 0	6 P7 ₆ DDR 0	5 P7 ₅ DDR 0 W	4 P7 ₄ DDR 0 W 7 Input/O	3 P7 ₃ DDR 0 W	2 P7 ₂ DDR 0 W	1 P7 ₁ DDR 0	P7 ₀ DDF	
Register Bit Initial value	7 P7 ₇ DDR 0 W	6 P7 ₆ DDR 0 W	5 P7 ₅ DDR 0 W	4 P74DDR 0 W 7 Input/Onput port Output port	3 P7 ₃ DDR 0 W	2 P7 ₂ DDR 0 W	1 P7 ₁ DDR 0 W	P7 ₀ DDF	
Register Bit Initial value Read/Write	7 P7 ₇ DDR 0 W	6 P7 ₆ DDR 0 W	5 P7 ₅ DDR 0 W Port 0 lr 1 C	4 P74DDR 0 W 7 Input/Onput port Output port	3 P7 ₃ DDR 0 W utput Cor	2 P7 ₂ DDR 0 W	1 P7 ₁ DDR 0 W	P7 ₀ DDF	₹

449

0

R/W

0

R/W

0

R/W

0

R/W

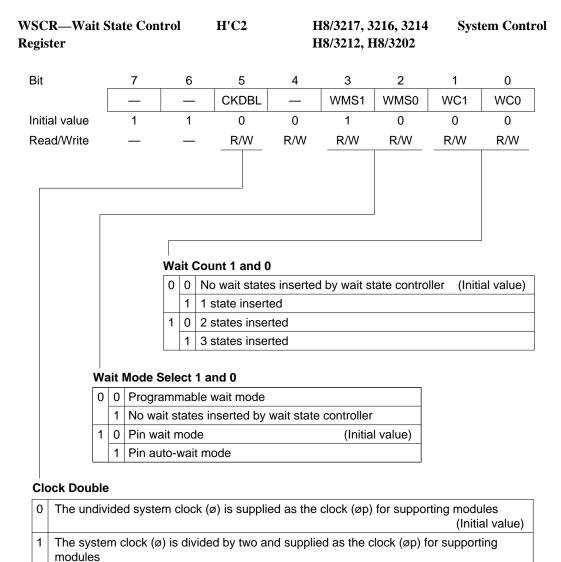
0

R/W

Initial value

Read/Write

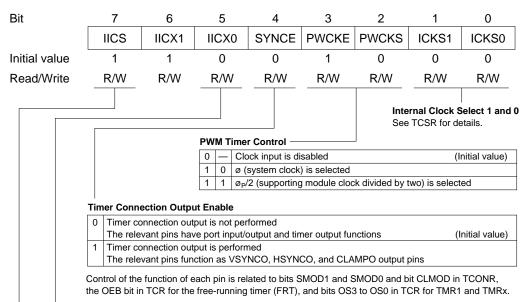
0


R/W

0

R/W

0


R/W

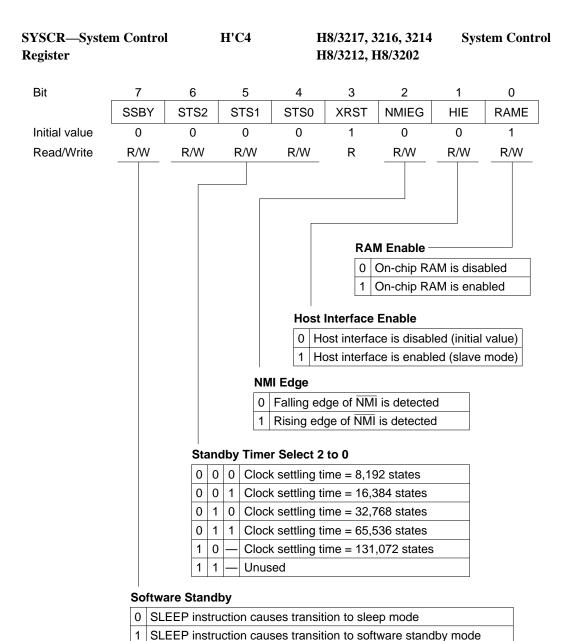
STCR—Serial Timer Control Register

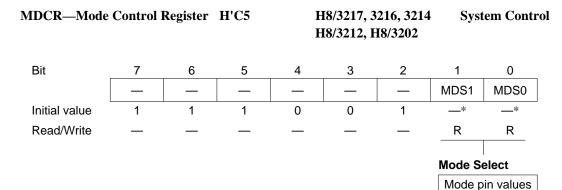
H'C3

H8/3217, 3216, 3214 H8/3212, H8/3202

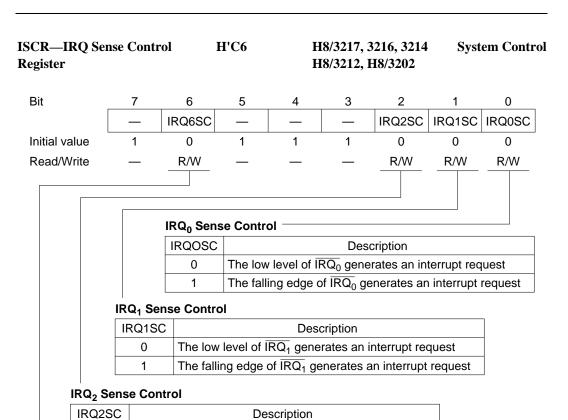
STCR	TCR			
Bit 4	Bit 3		Function of VSYNCO Pin	
SYNCE	OEB			
0	0	P6 ₂ port input/output		(Initial value)
0	1	FTOB output		
1		IV signal output		

STCR	TCC	NR	TCR		
Bit 4	Bit 7	Bit 6	Bits 3 to 0	Function of HSYNCO Pin	
SYNCE	SMOD1	SMOD0	OS3 to 0		
0	_	_	All 0	P4 ₄ port input/output	(Initial value)
0	_	_	Not all 0	TMO1 output	
1	0	0	_	IHI signal output	
	1	1			
1	0	1	_	CL1 signal output	
	1	0]		


STCR	TCONR	TCR		
Bit 4	Bit 5	Bits 3 to 0	Function of CLAMPO Pin	
SYNCE	CLMOD	OS3 to 0		
0	_	All 0	P47 port input/output	(Initial value)
0	_	Not all 0	TMOx output	
1	0	_	CL1 signal output	
1	1	_	CL2 signal output	


I²C Transfer Select

See ICCR for details.


I²C Extra Buffer Select

0	Pins P7 ₃ and P7 ₂ are normal input/output pins	(Initial value)
1	Pins P7 ₃ and P7 ₂ are input/output pins with bus drive	capability

Note: * Initialized according to MD₁ and MD₀ inputs.

IRQ₆ Sense Control

1

•	
IRQ6SC	Description
0	The low level of KEYIN ₀ to KEYIN ₇ generates an interrupt request
1	The falling edge of KEYIN ₀ to KEYIN ₇ generates an interrupt request

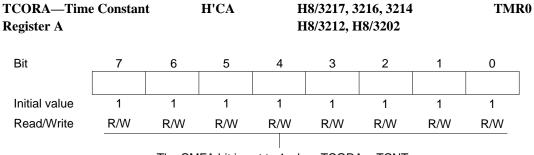
The low level of $\overline{IRQ_2}$ generates an interrupt request The falling edge of $\overline{IRQ_2}$ generates an interrupt request

H8/3217, 3216, 3214 H8/3212, H8/3202

TMR0

Bit	7		6		5		4	3	2	1	0	
	CMIEB		CMIEA		OVIE	= (CCLR1	CCLR0	CKS2	CKS1	CKS0	
Initial value	0		0		0		0	0	0	0	0	
Read/Write	R/W		R/W		R/W		R/W	R/W	R/W	R/W	R/W	
iteau/vviile	.eau/vviile R/VV		17/00				17/ //	17/ / /	- I X/ V V	17/ / /	17/ / /	
	Clock Select 2 to 0											
	TCR STCR											
	Channel 0			Bit 0	Bit 1 Bit 0		Description					
				CKS0	ICKS1	ICKS0						
		0	0	1		0		ource (timer sto		e falling edge		
				1		1	Ø _p /8 internal clock source, counted on the falling edge Ø _p /2 internal clock source, counted on the falling edge					
				0	_	0		ø _p /64 internal clock source, counted on the falling edge				
		0	1	0	_	1		ø _p /32 internal clock source, counted on the falling edge				
						1		 Ø_P/1024 internal clock source, counted on the falling edge Ø_P/256 internal clock source, counted on the falling edge 				
				0	_	<u> </u>	No clock source (timer stopped)					
				1	_	_	External clock source, counted on the rising edge					
	1 1 0 — External clock source, counted on the											
	0	0	0			External clock source, counted on both the rising and falling edges No clock source (timer stopped)						
	1	0	0	1	0	_	$\wp_{p}/8$ internal clock source, counted on the falling edge					
				1	1	_	ø _P /2 internal clock source, counted on the falling edge					
		0	1	0	0		ø _p /64 internal clock source, counted on the falling edge ø _p /128 internal clock source, counted on the falling edge					
				1	0		Ø _p /1024 internal clock source, counted on the falling edge					
			1	1	1	_	ø _p /2048 internal clock source, counted on the falling edge					
		1	0	0	_	_		ource (timer sto				
		1	0	0				lock source, cor lock source, cor				
		1	1	1	_	_		lock source, cor			lling edges	
	er Clear 1	and 0										
O												
0 0			npare-m	atch A								
1 0												
1 1												
Timer Over	flow Interr	upt Ena	able				_					
	ner overflo				,							
1 The tin	ner overflo	w interru	upt requ	iest (O\	/I) is en	abled	_					
Compare-Match	Interrunt	Fnable	Δ									
	Compare-Match Interrupt Enable A 0 Compare-match interrupt request A (CMIA) is disabled											
Compare-match interrupt request A (CMIA) is disabled Compare-match interrupt request A (CMIA) is enabled												
1 23		.,	(-						

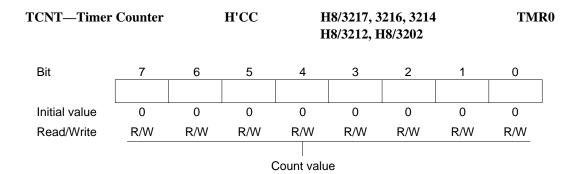
Compare-Match Interrupt Enable B


- Compare-match interrupt request B (CMIB) is disabled
 Compare-match interrupt request B (CMIB) is enabled

H8/3217, 3216, 3214 H8/3212, H8/3202 TMR0

t	7	6	5	4	3	2	1	0		
	CMFB	CMFA	OVF	PWME	OS3*1	OS2*1	OS1*1	OS0*1		
itial value	0	0	0	0	0	0	0	0		
ead/Write	R/(W)*2	R/(W)*2	R/(W)*2	R/W	R/W	R/W	R/W	R/W		
	Output Select 1 and 0									
	0 0 No change when compare-match A occurs 0 1 Output changes to 0 when compare-match A occurs									
	1 0 Output changes to 1 when compare-match A oc									
				inverts (to	ggles) who	en compar	e-match A	occurs		
		Output Se						_		
	0 0 No change when compare-match B occurs									
	0 1 Output changes to 0 when compare-match B occurs 1 0 Output changes to 1 when compare-match B occurs							_		
								_		
	1 1 Output inverts (toggles) when compare-match B occurs							S		
	PWM Mode Enable									
	0 Normal timer mode Initial value									
	1 PWM mode									
<u></u>	imer Ove	rflow Flag	I							
				st read OV	F after it h	as been se	et to 1,			
		ite a 0 in t		NT change	s from H'	EE to H'00				
			wileli i C	NI Change	5 110111111	1 101100				
	are-Match									
		-A, the CP) in this bit		ad CMFA	after it has	been set	to 1,			
		to 1 wher		TCORA						
Compare-N										
0 To clear		ne CPU mi	ust read C	MFB after	it has bee	n set to 1,				
1 This bit i	ic cot to 1	when TCI	NT = TCO	RR						

Notes: *1. When all four output select bits (bits OS3 to OS0) are cleared to 0, the timer output signal is disabled.


*2. Software can write a 0 in bits 7 to 5 to clear the flags, but cannot write a 1 in these

The CMFA bit is set to 1 when TCORA = TCNT

TCORBÑTime Register B		H'CB H8/3217, 3216, 3214 H8/3212, H8/3202						
Bit	7	6	5	4	3	2	1	0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	<u>R/W</u>

The CMFB bit is set to 1 when TCORB = TCNT

PWDPRB—PWM Data Polarity H'CE Register B				H	PWN				
Bit	7	6	5	4	3	2	1	0	
	OS15	OS14	OS13	OS12	OS11	OS10	OS9	OS8	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PWM Data Polarity 15 to 8									
0 PWM direct output (PWDR value corresponds to high width of output) (Initial value)									
	1 PW	PWM inverted output (PWDR value corresponds to low width of output)							

Bit	7	6	5	4	3	2	1	0
	OS7	OS6	OS5	OS4	OS3	OS2	OS1	OS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	PWM [Data Polai	rity 7 to 0					

TCR—Timer Control Register			H'D0		18/3217, 3 18/3212, H	/		TMR	k1
Bit	7	6	5	4	3	2	1	0	
	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: Bit functions are the same as for TMR0.

TCSR—Timer Register	ntrol	H'D1		18/3217, 3 18/3212, H	216, 3214 18/3202	TMR1			
Bit	7	6	5	4	3	2	1	0	
	CMFB	CMFA	OVF	PWME	OS3*1	OS2*1	OS1*1	OS0*1	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/(W)*2	R/(W)*2	R/(W) *2	R/W	R/W	R/W	R/W	R/W	

Notes: Bit functions are the same as for TMR0.

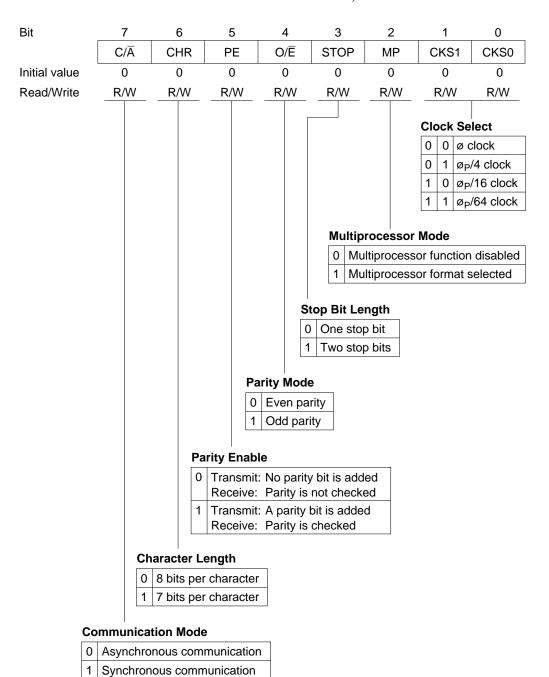
- *1. When all four output select bits (bits OS3 to OS0) are cleared to 0, the timer output signal is disabled.
- *2. Software can write a 0 in bits 7 to 5 to clear the flags, but cannot write a 1 in these bits.

TCORA—Time Constant Register A			H'D2 H8/3217, 3216, 3214 H8/3212, H8/3202						R1
Bit	7	6	5	4	3	2	1	0]
Initial value Read/Write	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	J

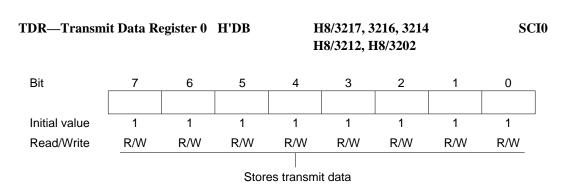
Note: Bit functions are the same as for TMR0.

TCORB—Time Constant Register B			H'D3 H8/3217, 3216, 3214 H8/3212, H8/3202						R1
Bit	7	6	5	4	3	2	1	0	
Initial value Read/Write	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	I

Note: Bit functions are the same as for TMR0.


TCNT—Timer		H'D4 H8/3217, 3216, 3214 H8/3212, H8/3202						TMR1	
Bit	7	6	5	4	3	2	1	0	7
Initial value	0	0	0	0	0	0	0	0	٦
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: Bit functions are the same as for TMR0.


PWOERA—PWM Output Enable Register A			H'D5	PWM					
Bit	7	6	5	4	3	2	1	0	_
	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0	
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			PWM Out	put Enabl		ıŧ			7

When input is set: port input When output is set: port output or PWM 256/256 output
When input is set: port input When output is set: PWM output (0 to 255/256 output)

SCI0

BRR—Bit Rate Register			H'D9 H8/3217, 3 H8/3212, I				SC	I 0	
Bit	7	6	5	4	3	2	1	0	7
Initial value	1	1	1	1	1	1	1	1	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			Se	ets the bit	rate				

0 TSR-empty interrupt request is disabled1 TSR-empty interrupt request is enabled

Transmit End Interrupt Enable

Multiprocessor Interrupt Enable

0 Multiprocessor receive interrupt function is disabled
1 Multiprocessor receive interrupt function is enabled

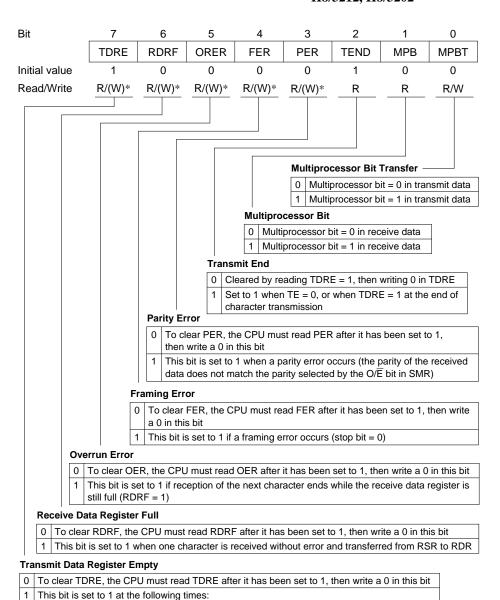
Receive Enable

- 0 The receive function is disabled
- 1 The receive function is enabled

Transmit Enable

- 0 The transmit function is disabled
- 1 The transmit function is enabled

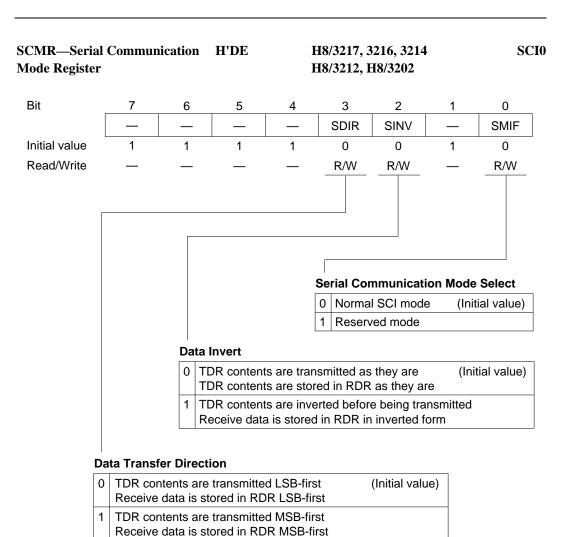
Receive Interrupt Enable


- 0 The receive-end interrupt (RXI) and receive-error interrupt (ERI) requests are disabled
 - The receive-end interrupt (RXI) and receive-error interrupt (ERI) requests are enabled

Transmit Interrupt Enable

- 0 The TDR-empty interrupt request (TXI) is disabled
- 1 The TDR-empty interrupt request (TXI) is enabled

464


HITACHI

Note: * Software can write a 0 in bits 7 to 3 to clear the flags, but cannot write a 1 in these bits.

When TDR contents are transferred to TSR
 When the TE bit in SCR is cleared to 0

RDR—Receive Data register			H'DD	SC	CIO				
Bit	7	6	5	4	3	2	1	0	_
Initial value	0	0	0	0	0	0	0	0	_
Read/Write	R	R	R	R	R	R	R	R	
			Stor	es receive	data				

SMR—Serial M	Iode Regi	ster 1	н'Е0		I8/3217, 3 I8/3202	216, 3214	ļ	SC	I 1
Bit	7	6	5	4	3	2	1	0	
	C/Ā	CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	
Initial value	0	0	0	0	0	0	0	0	'
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: Bit functions are the same as for SCI0.

BRR—Bit Rate Register			H'E1 H8/3217, 3216, 3214 H8/3202						SCI1	
Bit	7	6	5	4	3	2	1	0]	
Initial value Read/Write	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	ļ	

Note: Bit functions are the same as for SCI0.

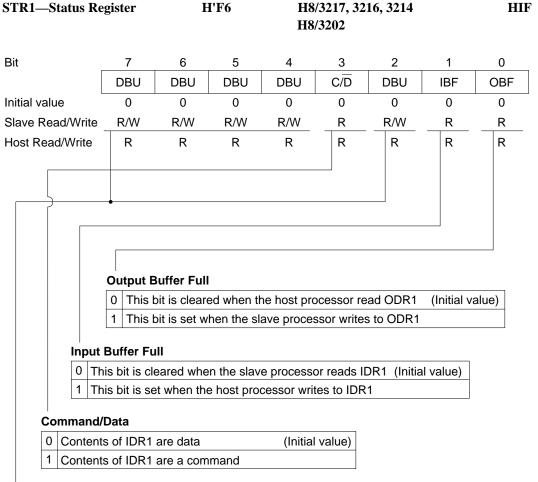
SCR—Serial C	ontrol Re	gister	H'E2		18/3217, 3 18/3202	216, 3214	ļ	SC	II1
Bit	7	6	5	4	3	2	1	0	_
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: Bit functions are the same as for SCI0.

TDR—Transmi	it Data Ro	egister	H'E3		18/3217, 3 18/3202	3216, 3214	ŀ	SC	I1
Bit	7	6	5	4	3	2	1	0	
Initial value Read/Write	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	1 R/W	

Note: Bit functions are the same as for SCI0.

SSR—Serial St	atus Regis	ster 1	H'E4		18/3217, 3 18/3202	216, 3214		SC	I 1
Bit	7	6	5	4	3	2	1	0	
	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
Initial value	0	0	0	0	0	1	0	0	
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W	


Note: Bit functions are the same as for SCI0.

RDR—Receive	Data regi	ister 1	H'E5		18/3217, 3 18/3202	216, 3214		SO	CI1
Bit	7	6	5	4	3	2	1	0	7
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R	R	R	R	R	

Note: Bit functions are the same as for SCI0.

1 IDR2 input buffer full interrupt is enabled

IDR1—Input Dat	er H	I'F4		/3217, 32 /3202	HIF			
Bit	7	6	5	4	3	2	1	0
	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
Initial value	_	_	_	_	_	_	_	
Slave Read/Write	R	R	R	R	R	R	R	R
Host Read/Write	W	W	W	W	W	W	W	W
ODR1—Output I	Data Regi	ister I	I'F5		3/3217, 32 5/3202	16, 3214		HIF
ODR1—Output I	Data Regi 7	ister I	I'F5 5			16, 3214	1	HIF 0
-				Н8	/3202	ŕ	1 ODR1	
-	7	6	5	H8	3	2		0
Bit	7	6	5	H8	3	2		0

Defined by User

The user can use these bits as necessary

IDR2—Input Dat	ta Registe	r I	H'FC		3/3217, 32 3/3202	16, 3214		HIF
Bit	7	6	5	4	3	2	1	0
	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
Initial value		_	_	_	_	_	_	
Slave Read/Write	R	R	R	R	R	R	R	R
Host Read/Write	W	W	W	W	W	W	W	W

Defined by User

The user can use these bits as necessary

Appendix C I/O Port Block Diagrams

C.1 Port 1 Block Diagram

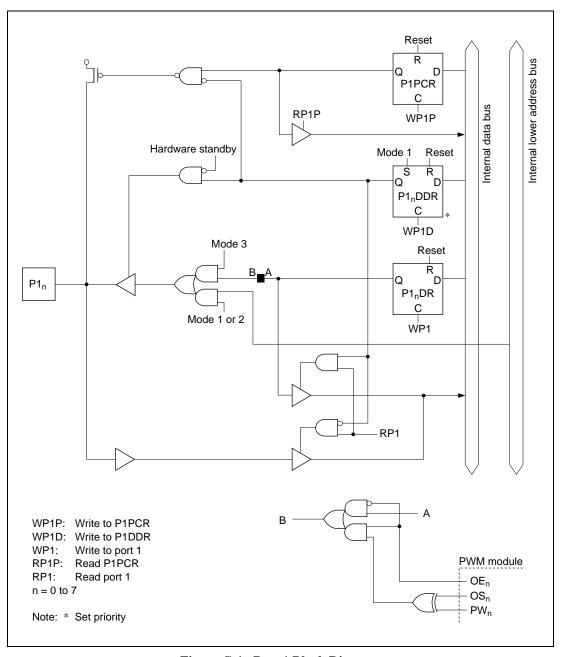


Figure C-1 Port 1 Block Diagram

473

HITACHI

C.2 Port 2 Block Diagram

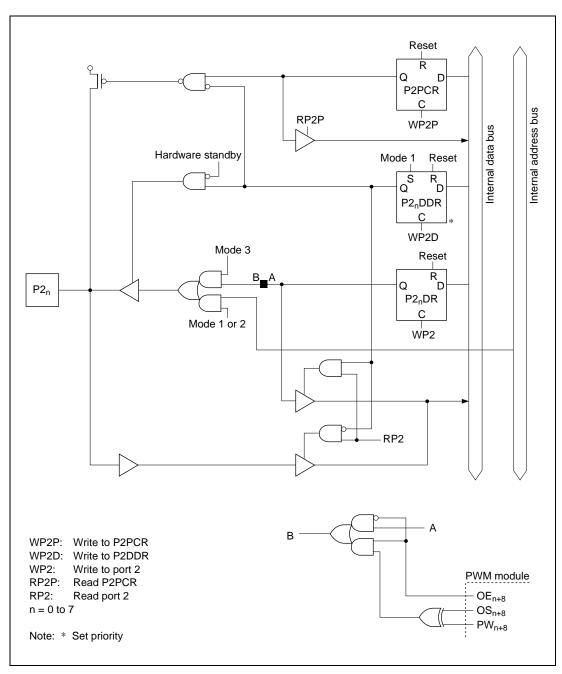


Figure C-2 Port 2 Block Diagram

C.3 Port 3 Block Diagram

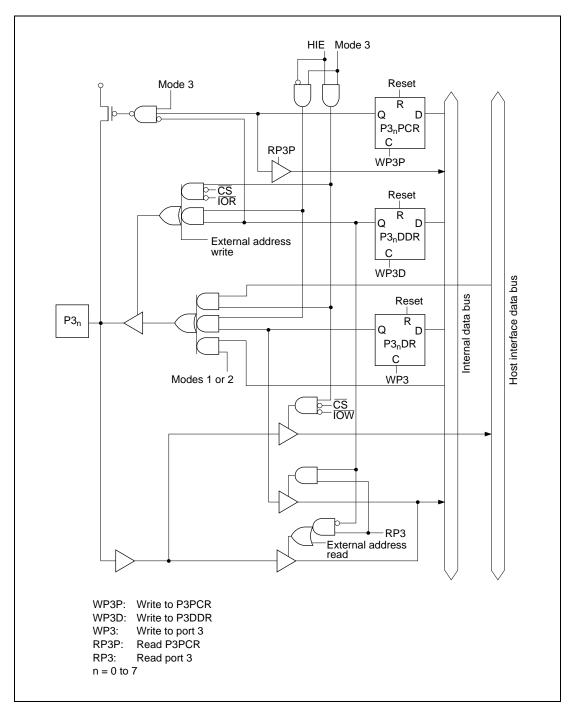


Figure C-3 Port 3 Block Diagram

475

HITACHI

C.4 Port 4 Block Diagrams

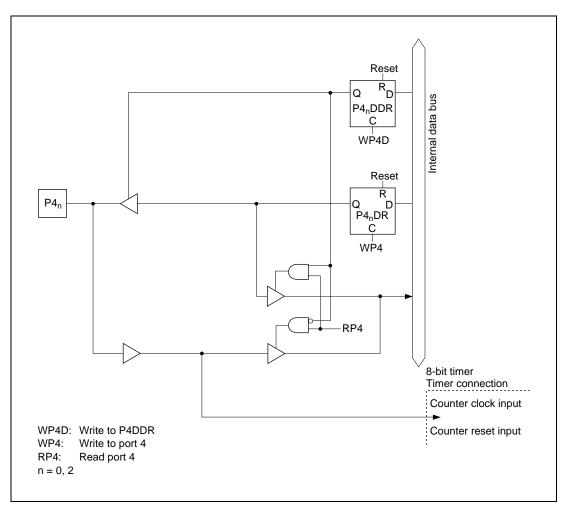


Figure C-4 (a) Port 4 Block Diagram (Pins P4₀, P4₂)

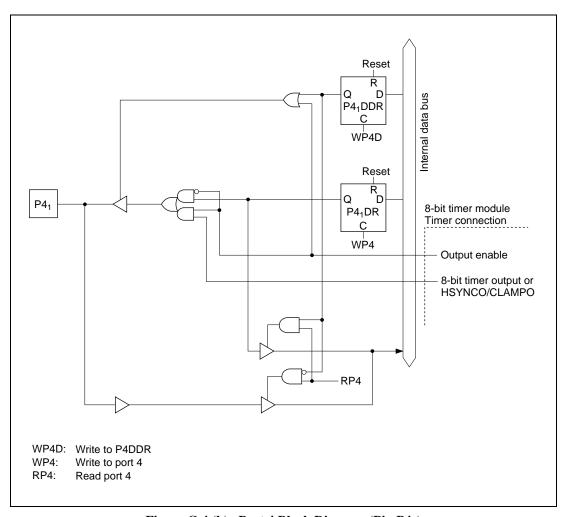


Figure C-4 (b) Port 4 Block Diagram (Pin P4₁)



Figure C-4 (c) Port 4 Block Diagram (Pins P43, P45)

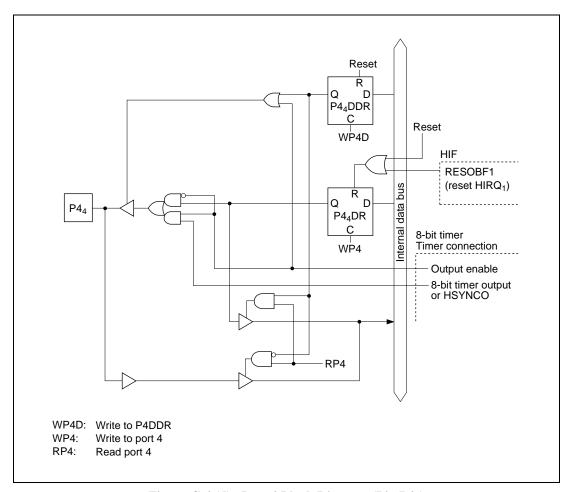


Figure C-4 (d) Port 4 Block Diagram (Pin P4₄)

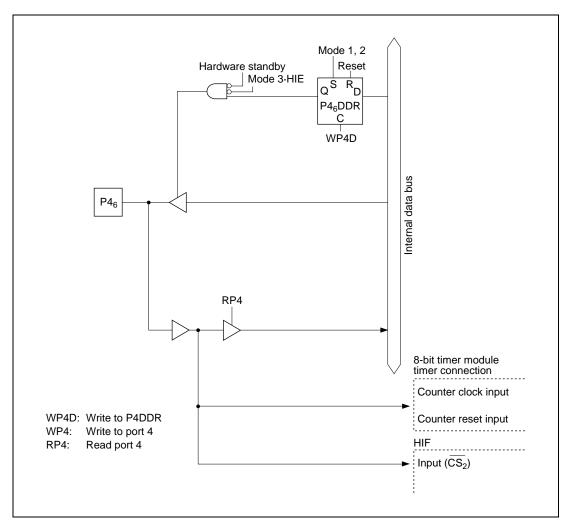


Figure C-4 (e) Port 4 Block Diagram (Pin P4₆)

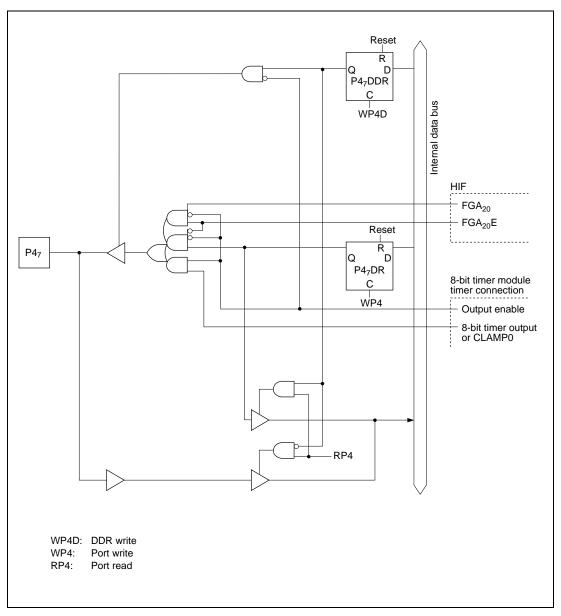


Figure C-4 (f) Port 4 Block Diagram (Pin P47)

C.5 Port 5 Block Diagrams

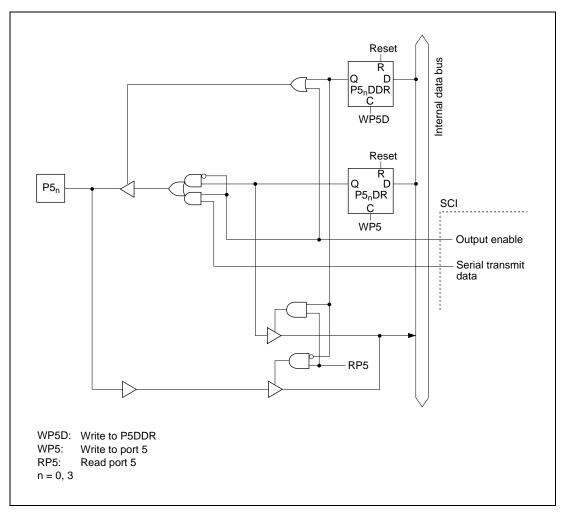


Figure C-5 (a) Port 5 Block Diagram (Pins P5₀, P5₃)

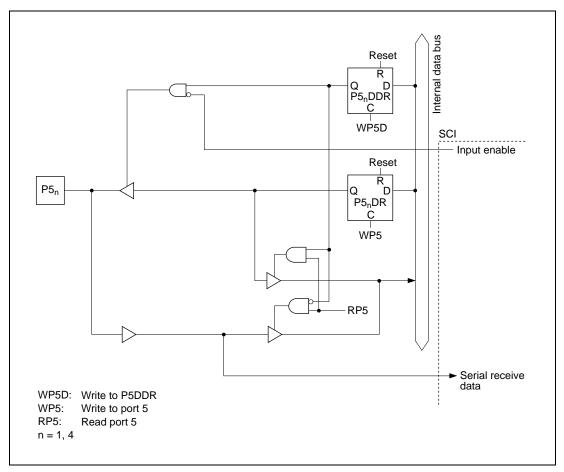


Figure C-5 (b) Port 5 Block Diagram (Pins P5₁, P5₄)

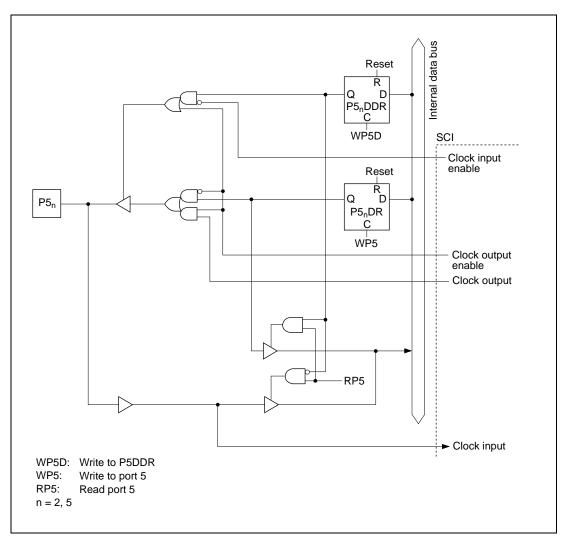


Figure C-5 (c) Port 5 Block Diagram (Pins P5₂, P5₅)

C.6 Port 6 Block Diagrams

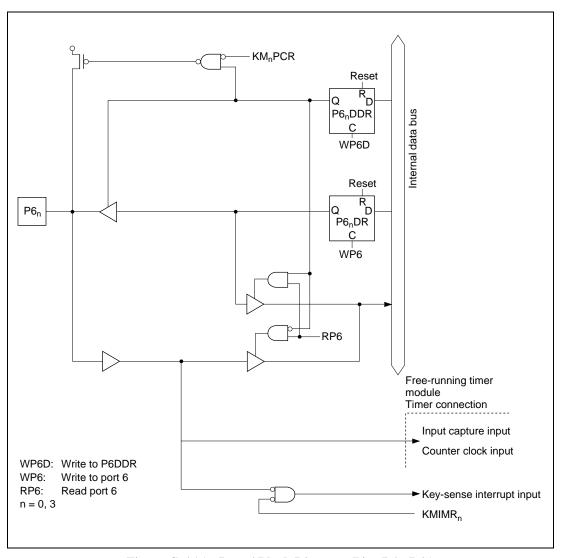


Figure C-6 (a) Port 6 Block Diagram (Pins P60, P63)

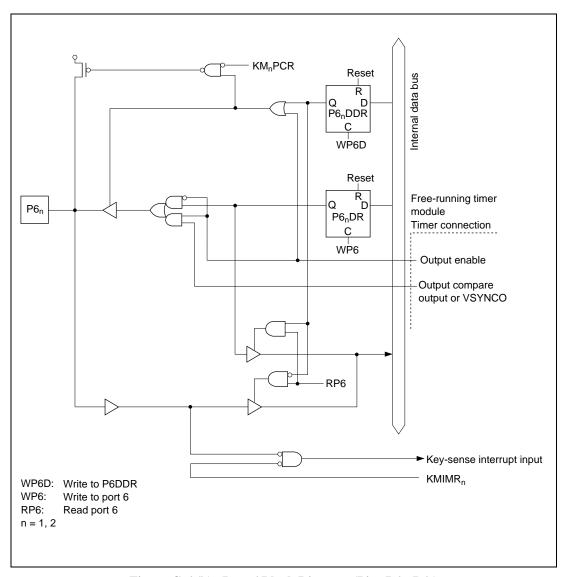


Figure C-6 (b) Port 6 Block Diagram (Pins P6₁, P6₂)

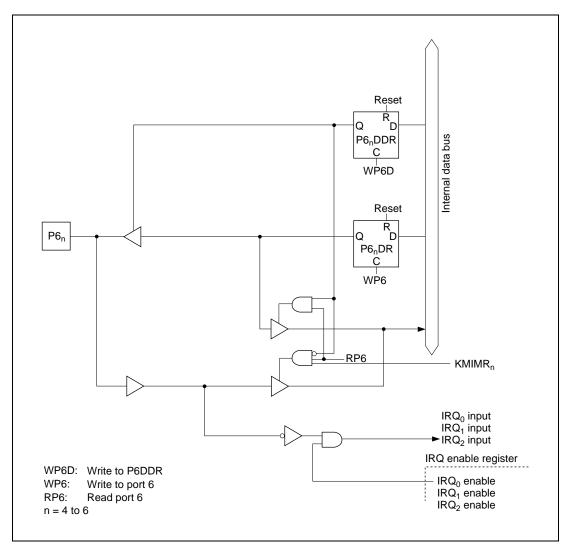


Figure C-6 (c) Port 6 Block Diagram (Pins P64, P65, P66)

C.7 Port 7 Block Diagrams

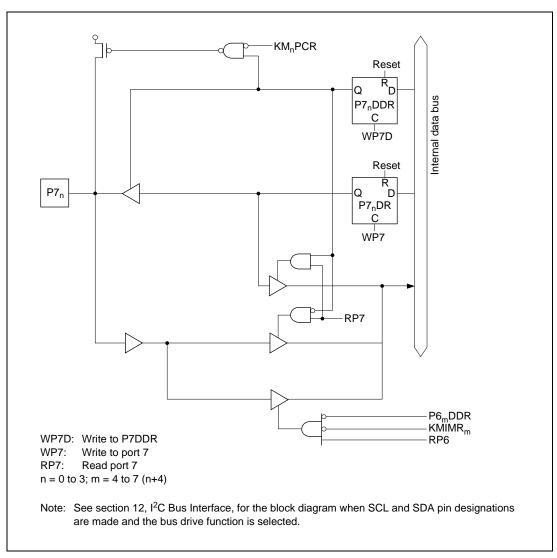
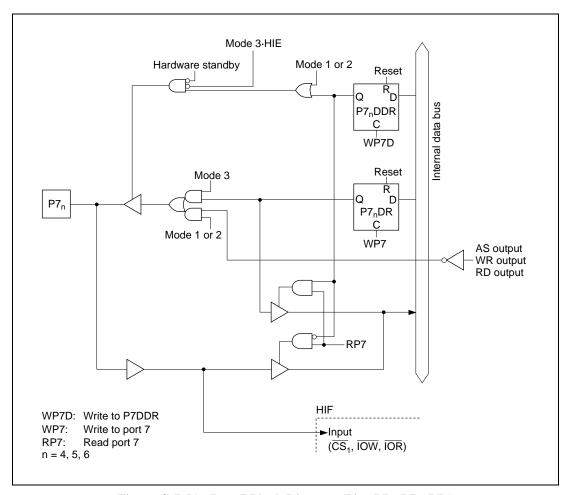



Figure C-7 (a) Port 7 Block Diagram (Pins P7₀, P7₁, P7₂, P7₃)

 $Figure~C-7~(b)~~Port~7~Block~Diagram~(Pins~P7_4,P7_5,P7_6)\\$

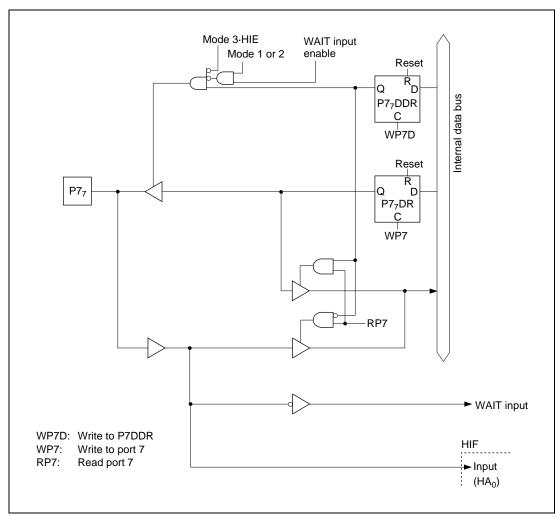


Figure C-7 (c) Port 7 Block Diagram (Pin P77)

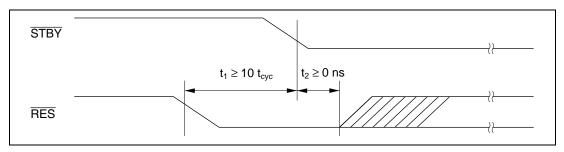
Appendix D Pin States

Table D-1 Port States in Each Mode

Pin Name	MCU Mode	Reset	Hardware Standby	Software Standby	Sleep Mode	Normal Operation
P1 ₇ to P1 ₀ A ₇ to A ₀	1	Low	3-state	Low	Prev. state (Addr. output pins: last address accessed)	A ₇ to A ₀
	2	3-state		Low if DDR = 1, prev. state if DDR = 0		Addr. output or input port
	3			Prev. state	_	I/O port
P27 to P2 ₀ 1 A ₁₅ to A ₈	1	Low	3-state	Low	Prev. state (Addr. output pins: last address accessed)	A ₁₅ to A ₈
	2	3-state	<u> </u>	Low if DDR = 1, prev. state if DDR = 0		Addr. output or input port
	3			Prev. state	_	I/O port
P3 ₇ to P3 ₀ D ₇ to D ₀	1	3-state	3-state	3-state	3-state	D ₇ to D ₀
	2					
	3			Prev. state	Prev. state	I/O port
P4 ₅ to P4 ₀	1	3-state	3-state	Prev. state (note 3)	Prev. state	I/O port
	2					
	3					
P4 ₆ /φ	1	Clock output		High	Clock output	Clock output
	<u>2</u> 3					
	3	3-state	3-state	High if DDR = 1, 3-state if DDR = 0	Clock output if DDR = 1, 3-state if DDR = 0	Clock output if DDR = 1, input port if DDR = 0
P4 ₇	1	3-state	3-state	Prev. state (note 3)	Prev. state	I/O port
	2			, ,		
	3					
P5 ₅ to P5 ₀	1	3-state	3-state	Prev. state (note 3)	Prev. state	I/O port
	2			, ,		
	3					

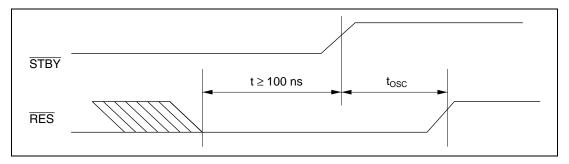
Table D-1 Port States in Each Mode

Pin Name	MCU Mode	Reset	Hardware Standby	Software Standby	Sleep Mode	Normal Operation
P6 ₆ to P6 ₀	1	3-state	3-state	Prev. state (note 3)	Prev. state	I/O port
	2					
	3	_				
P7 ₇ /WAIT	1	3-state	3-state	3-state/prev. state	3-state/prev. state	WAIT/ I/O port
	2	_				
	3	_		Prev. state	Prev. state	I/O Ports
P7 ₆ to P7 ₄ AS, WR, RD	1	High	3-state	High	High	AS, WR, RD
	2	_				
	3	3-state	_	Prev. state	Prev. state	I/O port
P7 ₃ to P7 ₀	1	3-state	3-state	Prev. state (note 3)	Prev. state	I/O port
	2	_				
	3					


Notes: 1. 3-state: High-impedance state

- 2. Prev. State: Previous state. Input ports are in the high-impedance state (with the MOS pull-up on if DDR = 0 and DR = 1). Output ports hold their previous output level.
- 3. On-chip supporting modules are initialized, so these pins revert to I/O ports according to the DDR and DR bits.
- I/O port: Direction depends on the data direction (DDR) bit. Note that these pins may also be used by the on-chip supporting modules.
 See section 7, I/O Ports, for further information.

Appendix E Timing of Transition to and Recovery from Hardware Standby Mode


Timing of Transition to Hardware Standby Mode

(1) To retain RAM contents when the RAME bit in SYSCR is set to 1, drive the RES signal low 10 system clock cycles before the STBY signal goes low, as shown below. RES must remain low until STBY goes low (minimum delay from STBY low to RES high: 0 ns).

(2) When the RAME bit in SYSCR is cleared to 0 or when it is not necessary to retain RAM contents, $\overline{\text{RES}}$ does not have to be driven low as in (1).

Timing of Recovery From Hardware Standby Mode: Drive the \overline{RES} signal low approximately 100 ns before \overline{STBY} goes high.

494

Appendix F Option List

F.1 HD6433217, HD6433216, HD6433214, HD6433212 Option List

Please check off the appropriate applications and enter the necessary information.

1 ROM Size ☐ HD6433212: 16-kbyte ☐ HD6433214: 32-kbyte ☐ HD6433216: 48-kbyte ☐ HD6433217: 60-kbyte ☐ Date of order Customer Department Name ROM code name LSI number (Hitachi entry)

2 System Oscillator

☐ Ceramic oscillator	f =	MHz
☐ External clock	f =	MHz

3 Power Supply Voltage/Maximum Operating Frequency

\square V _{CC} = 4.5 V to 5.5 V (16 MHz max.)	
\square V _{CC} = 4.0 V to 5.5 V (12 MHz max.)	
\square V _{CC} = 2.7 V to 5.5 V (10 MHz max.)	

Notes: 1. Please select the power supply voltage/operating frequency version according to the power supply voltage used.

Example: For use at V_{CC} = 4.5 V to 5.5 V/f = 10 MHz, select V_{CC} = 4.5 V to 5.5 V (16 MHz max.).

The power supply voltage and maximum operating frequency of the selected version should also be entered on the Single-Chip Microcomputer Ordering Specifications Sheet.

ROM code name
LSI number
(Hitachi entry)

4 I²C Bus Option

I ² C bus used
I ² C bus not used

Notes: 1. The "I²C bus used" option includes all cases where data transfer is performed via the SCL and SDA pins using the on-chip I²C bus interface function (hardware module). If the I²C bus interface function (hardware module) is used, various bus interfaces with different bus specifications and names are also included in "I²C bus used". The case in which only one of two channels is used is also included in "I²C bus used".

2. When "I2C bus not used" is selected, values cannot be set in registers relating to the I2C bus interface (ICCR, ICSR, ICDR, ICMR). These register always read H'FF. With emulators, and ZTAT and F-ZTAT versions, the "I2C bus used" option is selected. If the "I2C bus not used" option is selected, it is essential to ensure that I2C bus interface related registers are not accessed.

For the Microcomputer Family item in 1. Basic Specifications in the Single-Chip Microcomputer Ordering Specifications Sheet, please specify the appropriate item from the table below according to the combination of items 1 and 4 above. If the "I2C bus used" option is selected, please also specify this in Special Specifications (Product Specifications, Mark Specifications, etc.) in 1. Basic Specifications.

ROM Size	I ² C bus used	I ² C bus not used
16-kbyte	HD6433212W	HD6433212
32-kbyte	HD6433214W	HD6433214
48-kbyte	HD6433216W	HD6433216
60-kbyte	HD6433217W	HD6433217

F.2 HD6433202 Option List

Please check off the appropriate applications and enter the necessary information.

1	System Oscillator			
	Ceramic oscillator	f =	MHz	
	External clock	f =	MHz	
_				_
_	Date of order			_
_	Customer			_
_	Department			_
_	Name			_
-	ROM code name			_
_	LSI number (Hitachi entry)			_
2	Power Supply Vol	ltage/Maxin	num Op	erating Frequency
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V (1)}$	6 MHz max.)	
	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V } (1)$	2 MHz max.)	

\Box V _{CC} = 4.5 V to 5.5 V (16 MHz max.)
\square V _{CC} = 4.0 V to 5.5 V (12 MHz max.)
\Box V _{CC} = 2.7 V to 5.5 V (10 MHz max.)

Notes: 1. Please select the power supply voltage/operating frequency version according to the power supply voltage used.

Example: For use at V_{CC} = 4.5 V to 5.5 V/f = 10 MHz, select V_{CC} = 4.5 V to 5.5 V (16 MHz max.).

2. The power supply voltage and maximum operating frequency of the selected version should also be entered on the Single-Chip Microcomputer Ordering Specifications Sheet.

ROM code name	
LSI number (Hitachi entry)	

3 I²C Bus Option

☐ I ² C bus used	
☐ I ² C bus not used	

Notes: 1. The "I²C bus used" option includes all cases where data transfer is performed via the SCL and SDA pins using the on-chip I²C bus interface function (hardware module). If the I²C bus interface function (hardware module) is used, various bus interfaces with different bus specifications and names are also included in "I²C bus used".

2. When "I2C bus not used" is selected, values cannot be set in registers relating to the I2C bus interface (ICCR, ICSR, ICDR, ICMR). These register always read H'FF. With emulators, and ZTAT and F-ZTAT versions, the "I2C bus used" option is selected. If the "I2C bus not used" option is selected, it is essential to ensure that I2C bus interface related registers are not accessed.

For the Microcomputer Family item in 1. Basic Specifications in the Single-Chip Microcomputer Ordering Specifications Sheet, please specify the appropriate item from the table below according to the combination of items 1 and 4 above. If the "I2C bus used" option is selected, please also specify this in Special Specifications (Product Specifications, Mark Specifications, etc.) in 1. Basic Specifications.

ROM Size	I ² C bus used	I ² C bus not used
16-kbyte	HD6433202W	HD6433202

Appendix G Product Code Lineup

Table G-1 H8/3217 Series Product Code Lineup

	_		.			Package (Hitachi Package
Product 1 H8/3217	PROM version	ZTAT version	HD6473217C16	Mark Code HD6473217C16	HD6473217C16	64-pin windowed shrink DIP (DP-64S)
			HD6473217P16	HD6473217P16	HD6473217P16	64-pin shrink DIP (DP-64S)
			HD6473217F16	HD6473217F16	HD6473217F16	64-pin QFP (FP-64A)
			HD643217TF16	HD643217TF16	HD643217TF16	80-pin TQFP (TFP-80C)
	Mask ROM version*	With I ² C bus interface	HD6433217WP	HD6433217W(***)P	HD6433217W(***)P	64-pin shrink DIP (DP-64S)
			HD6433813WF	HD6433217W(***)F	HD6433217W(***)F	64-pin QFP (FP-64A)
			HD6433813WTF	HD6433217W(***)TF	HD6433217W(***)X	80-pin TQFP (TFP-80C)
	Mask ROM version*	Without I ² 0 bus interface	CHD3433217P	HD6433217(***)P	HD6433217(***)P	64-pin shrink DIP (DP-64S)
			HD3433217F	HD6433217(***)F	HD6433217(***)F	64-pin QFP (FP-64A)
			HD3433217TF	HD6433217(***)TF	HD6433217(***)X	80-pin TQFP (TFP-80C)
H8/3216	Mask ROM version*	With I ² C bus interface	HD6433216WP	HD6433216W(***)P	HD6433216W(***)P	64-pin shrink DIP (DP-64S)
			HD6433216WF	HD6433216W(***)F	HD6433216W(***)F	64-pin QFP (FP-64A)
			HD6433216WTF	HD6433216W(***)TF	HD6433216W(***)X	80-pin TQFP (TFP-80C)
	Mask ROM version*	Without I ² 0 bus interface	CHD3433216P	HD6433216(***)P	HD6433216(***)P	64-pin shrink DIP (DP-64S)
			HD3433216F	HD6433216(***)F	HD6433216(***)F	64-pin QFP (FP-64A)
			HD3433216TF	HD6433216(***)TF	HD6433216(***)X	80-pin TQFP (TFP-80C)

Table G-1 H8/3217 Series Product Code Lineup (cont)

Product 1	Гуре		Product Code	Mark Code	Order Code Name	Package (Hitachi Package Code)
H8/3214	PROM version	ZTAT version	HD6473214P16	HD6473214P16	HD6473214P16	64-pin shrink DIP (DP-64S)
			HD6473214F16	HD6473214F16	HD6473214F16	64-pin QFP (FP-64A)
			HD6473214F16	HD6473214F16	HD6473214F16	80-pin TQFP (TFP-80C)
	Mask ROM version*	With I ² C bus interface	HD6433214WP	HD6433214W(***)P	HD6433214W(***)P	64-pin shrink DIP (DP-64S)
			HD6433214WF	HD6433214W(***)F	HD6433214W(***)F	64-pin QFP (FP-64A)
			HD6433214WTF	HD6433214W(***)TF	HD6433214W(***)X	80-pin TQFP (TFP-80C)
	Mask ROM version*	Without I ² 0 bus interface	CHD3433214P	HD6433214(***)P	HD6433214(***)P	64-pin shrink DIP (DP-64S)
			HD3433214F	HD6433214(***)F	HD6433214(***)F	64-pin QFP (FP-64A)
			HD3433214TF	HD6433214(***)TF	HD6433214(***)X	80-pin TQFP (TFP-80C)
H8/3212	Mask ROM version*	With I ² C bus interface	HD6433212WP	HD6433212W(***)P	HD6433212W(***)P	64-pin shrink DIP (DP-64S)
			HD6433212WF	HD6433212W(***)F	HD6433212W(***)F	64-pin QFP (FP-64A)
			HD6433212WTF	HD6433212W(***)TF	HD6433212W(***)X	80-pin TQFP (TFP-80C)
	Mask ROM version*	Without I ² 0 bus interface	CHD3433212P	HD6433212(***)P	HD6433212(***)P	64-pin shrink DIP (DP-64S)
			HD3433212F	HD6433212(***)F	HD6433212(***)F	64-pin QFP (FP-64A)
			HD3433212TF	HD6433212(***)TF	HD6433212(***)X	80-pin TQFP (TFP-80C)

Table G-1 H8/3217 Series Product Code Lineup (cont)

Product Type			Product Code	Mark Code	Order Code Name	Package (Hitachi Package Code)
H8/3202	Mask ROM version*	With I ² C bus interface	HD6433202WP	HD6433202W(***)P	HD6433202W(***)P	64-pin shrink DIP (DP-64S)
			HD6433202WF	HD6433202W(***)F	HD6433202W(***)F	64-pin QFP (FP-64A)
			HD6433202WTF	HD6433202W(***)TF	HD6433202W(***)X	80-pin TQFP (TFP-80C)
	Mask ROM version*	Without I ² bus interface	CHD3433202P	HD6433202(***)P	HD6433202(***)P	64-pin shrink DIP (DP-64S)
			HD3433202F	HD6433202(***)F	HD6433202(***)F	64-pin QFP (FP-64A)
			HD3433202TF	HD6433202(***)TF	HD6433202(***)X	80-pin TQFP (TFP-80C)

Notes: 1. * Under development

2. (***) in mask versions is the ROM code.

The I^2C bus interface is available as an option. Observe the following notes when using this option.

- 1. Please inform your Hitachi sales representative if you intend to use this option.
- 2. For mask ROM versions, a W is added to the part number for products in which this optional function is used.

Examples: HD6433217WF16, HD6433212WP

3. The product code is identical for ZTAT versions. However, be sure to inform your Hitachi sales representative if you will be using this option.

502

Appendix H Package Dimensions

Figure H-1 shows the dimensions of the DC-64S package. Figure H-2 shows the dimensions of the DP-64S package. Figure H-3 shows the dimensions of the FP-64A package. Figure H-4 shows the dimensions of the TFP-80C package.

Unit: mm

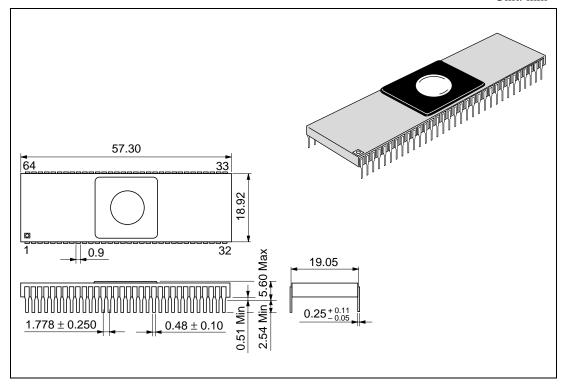


Figure H-1 Package Dimensions (DC-64S)

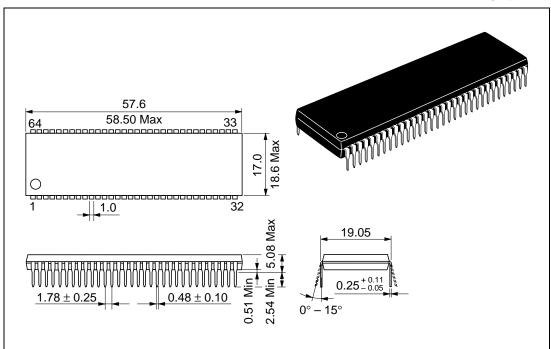


Figure H-2 Package Dimensions (DP-64S)

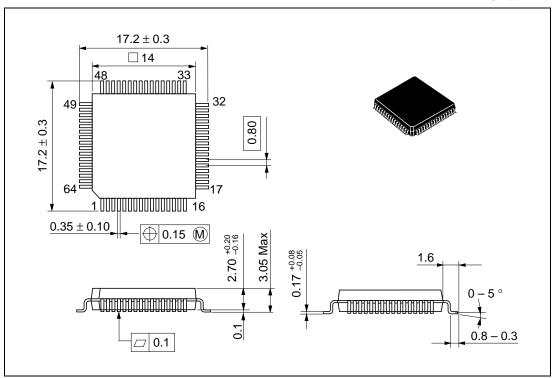


Figure H-3 Package Dimensions (FP-64A)

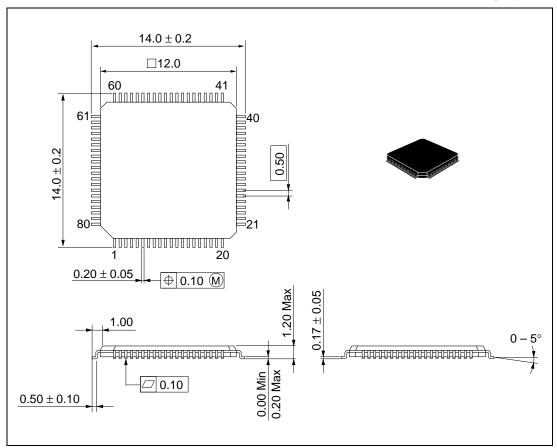


Figure H-4 Package Dimensions (TFP-80C)

506