
Specification : TS-S97D023E Date : October , 2000

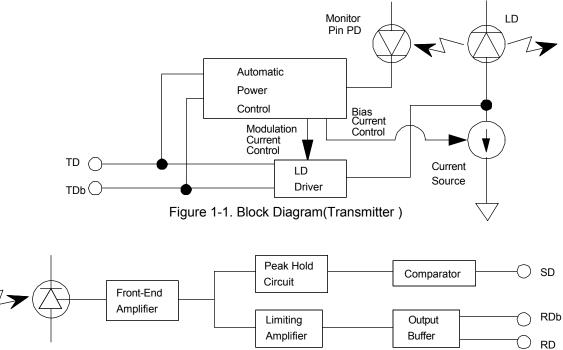
Technical Specification for Optical Transceiver Module

SDM7102-XC SDM7102-XC

Sumitomo Electric reserves the right to make changes in this specification without prior notice.

#Safety Precaution Symbols This specification uses various picture symbols to prevent possible injury to operator or other persons or damage to properties for appropriate use of the product. The symbols and definitions are as shown below. Be sure to be familiar with these symbols before reading this specification.

🕂 Warning	Wrong operation without following this instruction may lead to human death or serious injury.					
\land Caution	Wrong operation without following this instruction may lead to human injury or property damage.					
Example of picture symbo	Example of picture symbols indicates prohibition of actions. Action details are explained thereafter.					
(SDM7102-XC,SDM7102-C) indicates compulsory actions or instructions. Action details are explained thereafter.						


1. General

SDM7102-XC is a series of compact and high speed performance digital optical transceiver module ideally designed for versatile high speed network applications. 1300nm high speed InGaAsP FP-LD and InGaAs PIN-PD are provided as a light source and a detector, respectively. Transceiver module has PC board mountable package with electrical and optical interfaces.

* Data Rate * Duty Cycle * Power Supply Voltage * Electrical Interface * Fiber Coupled Power * Sensitivity * Connector Interface	10 ~ 622.08Mbps, NRZ 50% Single +5.0V PECL -8 ~ -15dBm (Typ11dBm) for SMF ~ -28dBm (Typ34dBm) SC Duplex Connector
The features of SDM7102-XC are liste	d below.
* Features Low Power	Consumption
Low Profile	(9.8mm Max) Plastic Molded Package
Multi-sourc	ed Footprint
Transmitter Unco	ooled Laser with Automatic Power Control IC
Clas	s 1 Laser Product (IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11)
Receiver Wide	e Dynamic Range

Signal Detect (FLAG) Function

2. Block Diagram

Pin PD

Figure 1-2. Block Diagram(Receiver)

3. Package Dimension

All dimensions are in mm.

Figure 2-1. Outline Dimensions (SDM7102-XC)

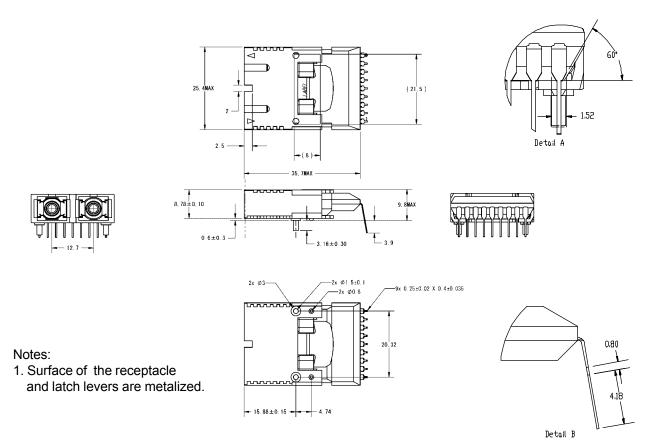


Figure 2-2. Outline Dimensions (SDM7102-GC-ZN)

All dimensions are in mm.

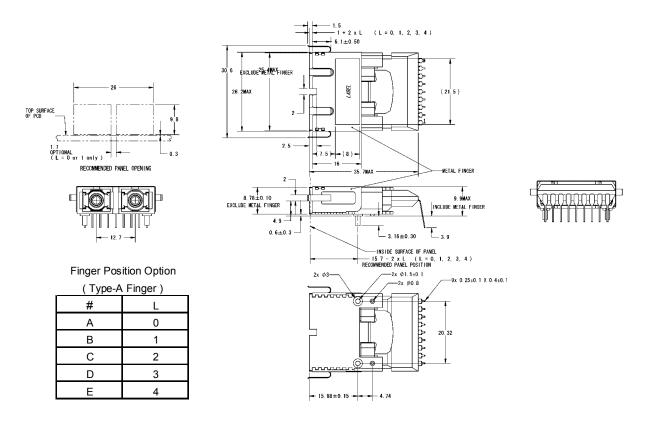


Figure 2-3. Outline Dimensions (SDM7102-GC-#N)

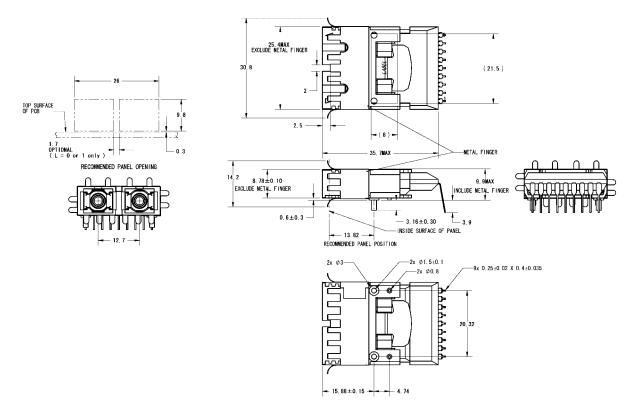


Figure 2-4. Outline Dimensions (SDM7102-GC-GN)

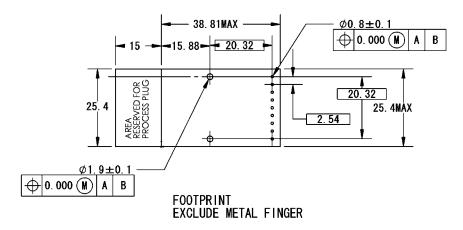


Figure 2-5. Recommended Footprint

∆Caution

O not disassemble this product. Otherwise, failure, electrical shock, overheating or fire may occur. Handle the lead pins carefully. Use assisting tools or prospective aids as required. A lead pin may injure skin or human body

4. Pin Assignment

No.	Symbol	Function			
1	Veerx	Power Supply (-) for Receiver : Connected to GND			
2	RD	Differential Data Output (Positive)			
3	RDb	Differential Data Output (Negative)			
4	FLAG(SD)	FLAG (Signal Detect)			
5	Vccrx	Power Supply (+) for Receiver : Connected to +5.0V			
6	Vcctx	Power Supply (+) for Transmitter : Connected to +5.0V			
7	TDb	Transmitter Differential Data (Negative)			
8	TD	Transmitter Differential Data (Positive)			
9	Veetx	Power Supply (-) for Transmitter : Connected to GND			

5. Absolute Maximum Ratings

Parameter	Symbol	min.	Max	Unit	Note
Storage Case Temperature	Ts	-40	85	С°	1
Operating Case Teperature	Tc	0	70	°C	1
Supply Voltage	Vcc-Vee	0.0	6.0	V	2
Input Voltage	Vi	Vee	Vcc+0.5	V	3
Output Current(RD,RDb,SD)	lo		30	mA	
Lead Soldering (Temperature)			260	С°	4
(Time)			10	sec.	

Note 1. No condensation allowed. 2. Vcc>Vee, Vcc=+5.0V, Vee=GND

3. TD, TDb 4. Measured on lead pin at 2mm (0.079in.) off the package bottom

Use the product with the rated voltage described in the specification. If the voltage exceeds the maximum rating, overheating or fire may occur.

\land Caution

Do not store the product in the area where temperature exceeds the maximum rating, where there is too much moisture or dampness, where there is acid gas or corrosive gas, or other extreme conditions. Otherwise, failure, overheating or fire may occur.

Electrical Interface

(Unless otherwise specified, Vcc_{TX} -Vee_{TX} = Vcc_{RX} -Vee_{RX} = 4.75 to 5.25 V and all operating temperature shall apply.)

6-1. Transmitter side

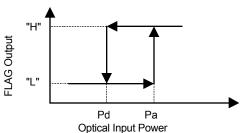
Para	meter	Symbol	min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc-Vee	4.75	5.00	5.25	V	
Supply Current		Idtx		70	150	mA	1
Input Voltage	High	Vih	Vcc-1.17		Vcc-0.73	V	2
TD, TDb	Low	Vil	Vcc-1.95		Vcc-1.45		
Input Current	High	lih	-10		150	μA	2
TD, TDb	Low	lil	-10		10		
Signal Input Rise / F	all Time				1.6	nsec.	3

Note 1. Input bias current is not included. 50% duty cycle data. 622.08Mbps

2. Vcc-Vee=5.0V, Tc=25°C 3. 20 ~ 80%

6-2. Receiver side

Parame	eter	Symbol	min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc-Vee	4.75	5.00	5.25	V	
Supply Current		ldrx		60	110	mA	1
Data & SD	High	Voh	Vcc-1.03		Vcc-0.88	V	2
Output Voltage	Low	Vol	Vcc-1.81		Vcc-1.62		
Data Rise / Fall Time o	of Output Signal	Trd / Tfd			1.6	nsec	3
SD Assert Time		Sa			100	μsec	4, 5
SD Deassert Time		Sd			350	μsec	4, 5


Note 1. Output current is not included. 50% duty cycle data, 622.08Mbps, NRZ 2. Vccrx=+5.0V, Tc=25°C, Output load resistance

 $\text{RI=}50\Omega$ to Vccrx-2V for RD, RDb and SD.

3.20~80%

4. Please refer to Figure 3

5. 50% duty cycle data, 622.08Mbps, PRBS2^23-1, NRZ, pin=-34~-8dBm

Figure 3. FLAG Assert Level and Dessert Level

7. Optical Interface (Unless otherwise specified, Vcc-Vee = 4.75 to 5.25 V and all operating temperature shall apply.)

7-1. Transmitter side

Parameter	Symbol	min.	Тур.	Max.	Unit	Note
Average Output Power to SMF	Pos	-15.0	-11.0	-8.0	dBm	1
Extinction Ratio	Er	8.2			dB	1
Center Wavelength	λc	1274		1356	nm	
Spectral Width (RMS)	Δλ			2.5	nm	
Eve Mask for Optical Output		Refer to Figure 4				

Note 1. Measured at 622.08Mbps PRBS2/23-1, 50% duty cycle data,NRZ

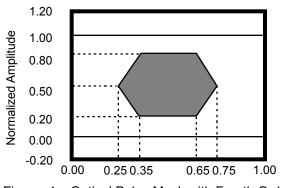
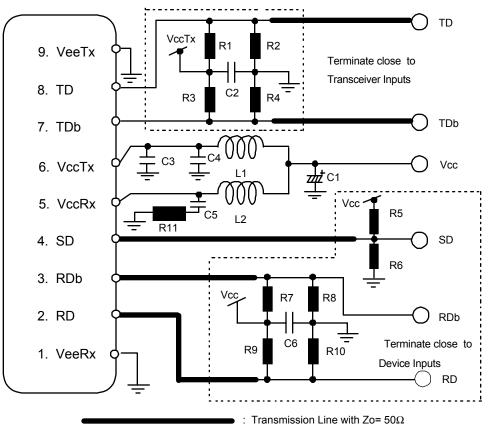


Figure 4. Optical Pulse Mask with Fourth Order Bessel-Thomson Filter Specified in ITU-T G.957

Relation between Input Signal and Optical Output Signal

Input Signal		Optical Output Siganl			
TD	TDb				
High	Low	ON (High)			
Low	High	OFF (Low)			
High	High	Undefined			
Low	Low	Undefined			


🛆 Warning Do not look at the laser beam projection area (e.g. end of optical connector) with naked eyes or through optical equipment while the power is supplied to this product. Otherwise, your eyes may be injured.

7-2. Receiver side

Parameter	Symbol	min.	Тур.	Max.	Unit	Note
Center Wavelength	-	1261		1580	nm	
Minimum Sensitivity	Pmin			-28.0	nm	1, 2
Overload	Pmax	-8.0			nm	1, 2
Flag Assert Level	Pa	-48	-35	-28	dBm	2
Flag deassert Level	Pd	-49	-38	-28	dBm	

Note 1. BER=10^-10, 2. Measured at the bit rate of 622.08Mbps, PRBS 2^23-1, NRZ Note 2. 50% duty cycle data

8. Recommended Inteface Circuit

 $\begin{array}{l} R1=R3=R5=R7=R9=82\Omega\ ,\ R2=R4=R6=R8=R10=130\Omega\ ,\ R11=10\Omega\\ C1=100\ \mu F,\ C3=2200\ pF,\ C2=C6=0.1\ \mu F,\ C4=C5=1\ \mu F\\ L1,\ L2:\ Ferrite\ Bead\ \ ZBF\ 253D-00\ (TDK) \end{array}$

Figure 5. Recommended Interface Circuit

9. Reliability Test

Bellcore TA	-NWT-000983 Is	sue 2, December 19	93					
Heading	Test	Reference	Condition	Samplin			SEI F	lan
				LTPD	SS	С	SS	F/C
Mechanical	Mechanical	MIL-STD-883	Condition B					
Integrity	Shock	Method 2002	5 times/axis					
			500G, 1.0 ms	20%	11	0		
			1,500G, 0.5ms	20%	11	0	11	0
	Vibration	MIL-STD-883	Condition A	20%	11	0	11	0
		Method 2007	20 G					
			20-2,000 Hz					
			4 min/cycle; 4 cycles/axis					
	Thermal Shock	MIL-STD-883	ΔT=100°C	20%	11	0	11	0
		Method 1011						
	Solderability	MIL-STD-883	(steam aging not required)	20%	11	0	11	0
		Method 2003						
	Fiber Pull		1 Kg; 3 times;5sec.	20%	11	0		
			2 Kg; 3 times; 5sec.	20%	11	0		
Endurance	Accel. Aging	(R)-453	+85C; rated power					
	(High Temp.)	Section 5.18	>5,000hrs.		25		25	0
			>10,000hrs.		10			
	High Temp.		max. storage T (T=85°C)	20%	11	0		
	Storage		>2,000					
	Low Temp.		min. storage T (T=-40°C)	20%	11	0	11	0
	Storage		>2,000					
	Temperature	Section 5.20	- 40°C to +85°C					
	Cycling		400 times pass/fail	20%	11	0		
			500 times for info.		11			
			500 times pass/fail	20%	11	0	11	0
			1000 times for info.		11		11	0
	Damp Heat	MIL-STD-202 M103	40°C , 95%, 56days	20%	11	0	11	0
	(if using epoxy)	or IEC 68-2-3	or 85°C /85%RH 2,000hrs.	20%	11	0		
	Cyclic Moisture	Section 5.23		20%	11	0	11	0
	Resistance							
Special	Internal	MIL-STD-883	< 5,000 ppm	20%	11	0	11	0
Tests	Moisture	Method 1018	water vapor					
	Flammability	TR357:Sec. 4.4.2.5						ОК
	ESD Threshold	Section 5.22			6		6	0

10. Laser Safety

This product uses a semiconductor laser system and is a laser class 1 product acc. FDA, complies with 21CFR1040. 10 and 1040.11. Also this product is a laser class 1 product acc. IEC 825-1.

Class 1 Laser Product

▲ Caution

If this product is used under conditions not recommended in the specification or this product is used with unauthorized revision, classfication for laser product safety standard is invalid. Classify the product again at your responsibility and take appropriate actions.

 \bigcirc

11. Other Precaution

Under such a strong vibration environment as in automobile, the performance and reliability are not guaranteed. The governmental approval is required to export this product to other countries. To dispose of these components, the appropriate procedure should be taken to prevent illegal exportation.

This module must be handled, used and disposed of according to your company's safe working practice.

Warning Be sure to carry out correct soldering for connection to peripheral circuits in order to prevent contact failure or short-circuit. Otherwise, a strong laser beam may cause eye injury, overheating or fire. Do not put this product or components of this product into your mouth. This product contaions material harmful to health.

▲ Caution

Be sure to turn the power off when you touch this product connected to the printed circuit boards. Otherwise, electric shock may occur.

Dispose this product or equipment including this product properly as an industrial waste according to the regulations.

12. Ordering Information

Ordering Number	Connector type	Operating Temparature			
SDM7102-XC	SC Duplex Connector, Non-metallized.	Tc = 0 ~ 70°C			
SDM7102-GC-#N	SC Duplex Connector, Metallized. See chart below for detail.				

SDM7102-GC-# N

└─ Operating Case Temperature Option N : 0°C ~ -70°C

- EMI Shield Finger Option

Z : Without Finger

A ~ E : With Type-A Finger

*Letter specifies finger position.

Refer to Figure2-3 for detail.

G : With Type-G Finger (Figure 2-4)

13. For More Information

U.S.A.

4)

ExceLight Communications, 4021 Stirrup Creek Drive, Suite 200 Durham, NC 27703

Tel. +1-919-361-1600 / Fax. +1-919-361-1619

E-mail: info@excelight.com http://www.excelight.com

Europe

Sumitomo Electric Europe Ltd., 220, Centennial Park, Elstree, Herts, WD6 3SL, United Kingdom Tel.+44-208-953-8681 Fax.+44-208-207-5950 http://www.sumielectric.com

Japan Sumitomo Electric Industries, Ltd. (International Business Division), 3-12, Moto-Akasaka 1-chome Minato-ku Tokyo 107-8468 Tel. +81-3-3423-5771 / Fax. +81-3-3423-5099 E-mail:product-info@ppd.sei.co.jp

http://www.sei.co.jp/Electro-optic/index.html

(SDM7102-XC,SDM7102-GC)