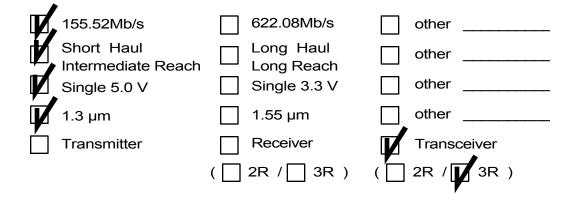

Specification : TS-S96D016E Date : October, 2000



Technical Specification for Optical Transceiver Module

SDM7301-XC

SDM7301-GC

SUMITOMO ELECTRIC

Sumitomo Electric reserves the right to make changes in this specification without prior notice.

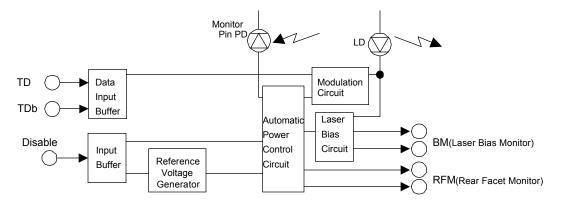
#Safety Precaution Symbols This specification uses various picture symbols to prevent possible injury to operator or other persons or damage to properties for appropriate use of the product. The symbols and definitions are as shown below. Be sure to be familiar with these symbols before reading this specification.

	Wrong operation without following this instruction may lead to human death or serious injury.
\land Caution	Wrong operation without following this instruction may lead to human injury or property damage.
Exampleofpicturesymbo	ls findicates prohibition of actions. Action details are explained thereafter.

indicates prohibition of actions. Action details are explained thereafter.

 $indicates \ compulsory \ actions \ or \ instructions. \ Action \ details \ are \ explained \ thereafter.$

(SDM7301-XC,SDM7301-GC)


 \sim

1. General

SDM7301-XC is a series of compact and high speed performance digital optical transceiver module ideally designed for versatile high speed network applications. 1300nm high speed InGaAsP FP-LD and InGaAs PIN-PD are provided as a light source and a detector, respectively. Transceiver module has PC board mountable package with electrical and optical interfaces.

155.52 Mbps, NRZ 50% Single +5V PECL -8 ~ -15dBm (Typ11dBm) for SMF -8 ~ -28dBm (Typ37dBm) SC Duplex Connector
re listed below.
Power Supply Voltage / Low Power Consumption
tic Molded Package
i-sourced Footprint
Uncooled FP-LD with Automatic Power Control IC
Optical Output Shut-down (Disable)
Laser Bias Current Monitor / Rear Facet Monitor
Class 1 Laser Product (IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11)
Wide Dynamic Range
Built-in Clock Recovery (including SAW filter)
ITU-T G.957 / G.958 and Bellcore TA-NWT-000253 Compliant
Signal Detect (FLAG) Function

2. Block Diagram

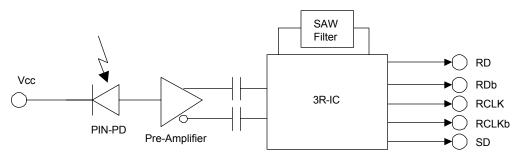


Figure 1-2 Block Diagram (Receiver)

3. Package Dimension

All dimensions are in mm.

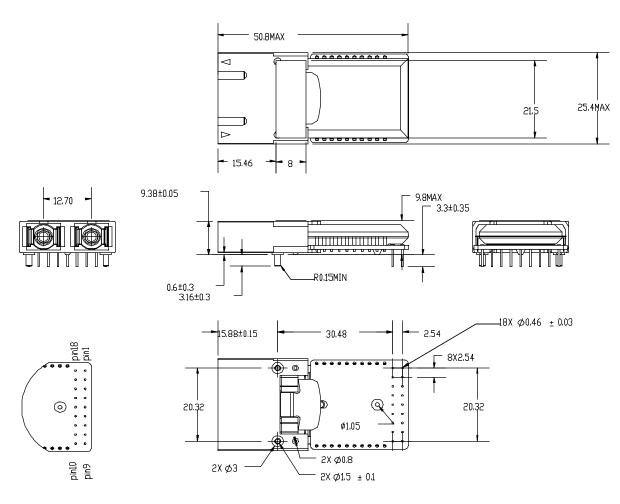


Figure2-1.OutlineDimensions(SCM7301-XC)

Specification : TS-S96D016E Date : October, 2000

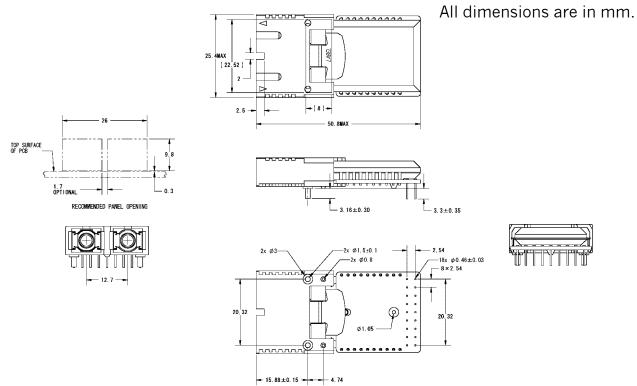


Figure 2-2. Outline Dimensions (SDM7301-GC-ZN/SDM7301-GC-ZW)

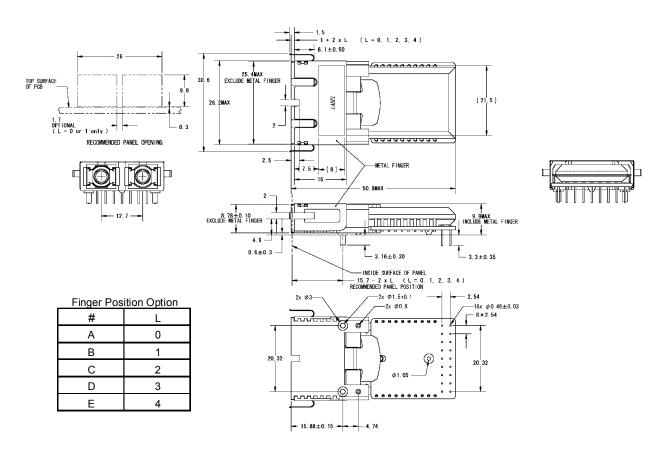


Figure2-3. Outline Dimensions (SDM7301-GC-#N/SDM7301-GC-#W)

Date : October, 2000

▲Caution

O not disassemble this product. Otherwise, failure, electrical shock, overheating or fire may occur. Handle the lead pins carefully. Use assisting tools or prospective aids as required. A lead pin may injure skin or human body

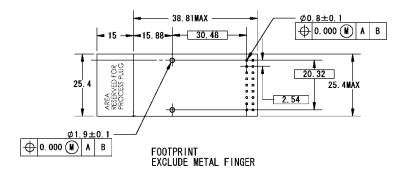


Figure 2-4. Recommended Footprint

4. Pin Assignment

No.	Symbol	Function
1	N/C	Non Connection (Internally)
2	N/C	Non Connection (Internally)
3	RCLKb	Differential Clock Output (Negative)
4	RCLK	Differential Clock Output (Positive)
5	BM(-)	Monitoring pin for LD Bias Monitor
6	BM(+)	Monitoring pin for LD Bias Monitor
7	Disable	LD Disable Input
8	RFM(+)	Monitoring pin for Rear Facet Monitor
9	RFM(-)	Monitoring pin for Rear Facet Monitor
10	Veetx	Power Supply (-) for Transmitter : Connected to GND
11	TD	Transmitter Differential Data (Positive)
12	TDb	Transmitter Differential Data (Negative)
13	Vcctx	Power Supply (+) for Transmitter : Connected to +3.3V
14	Vccrx	Power Supply (+) for Receiver : Connected to +3.3V
15	FLAG(SD)	FLAG (Signal Detect)
16	RDb	Received Differential Data (Negative)
17	RD	Received Differential Data (Positive)
18	Veerx	Power Supply (-) for Receiver : Connected to GND

NC pins should left open for additional functions in the future

5. Absolute Maximum Ratings

Parameter	Symbol	min.	Max	Unit	Note
Storage Case Temperature	Ts	-40	85	°C	1, 2
Operating Case Temperature	Тс	0	70	С°	1, 2, 3
		-40	85	С°	1, 2, 4
Supply Voltage	Vcc-Vee	0.0	6.0	V	5
Input Voltage	Vi	Vee	Vcc+0.5	V	6
Lead Soldering (Temperature)			260	0°	7
(Time)			10	sec.	

Note 1. No condensation allowed.

2. Don't remove or insert an optical connector except the environmental temperature at 0~70°C

3. SDM7301-XC 4. SDM7301-XC-W 5. Vcc>Vee

6. TD, TDb, Disable 7. Measured on lead pin at 2mm (0.079in.) off the package bottom

	▲ Warning
0	Use the product with the rated voltage described in the specification. If the voltage exceeds the maximum rating, overheating or fire mayoccur.
	▲ Caution
\bigcirc	Do not store the product in the area where temperature exceeds the maximum rating, where there is too much moisture or damp- ness, where there is acid gas or corrosive gas, or other extreme conditions. Otherwise, failure, overheating or fire may occur.

6. Electrical Interface

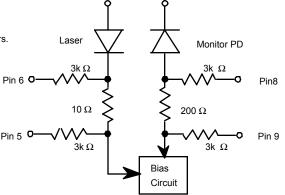
(Unless otherwise specified, Vcc-Vee = 4.75 to 5.25 V and all operating temperature shall apply.)

6-1. Transmitter side

Parameter		Symbol	min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc-Vee	4.75	5.00	5.25	V	
Supply Current		ldtx		70	150	mA	1, 2
Input Voltage	High	Vih	Vcc-1.17		Vcc-0.73	V	3, 4
TD, TDb	Low	Vil	Vcc-1.95		Vcc-1.45		
Input Current	High	lih	-10		150	μA	3, 4
TD, TDb	Low	lil	-10		10		
Signal Input Rise / Fall Tir	ne				1.5	nsec.	5
Disable Input Voltage	Disable Input Voltage		Vee+2.0		Vcc	V	6
Disable Input Current		ldi	-10		200	μA	6
LD Bias Monitor Voltage		Vbm	0.01		0.50	V	3, 7
Rear Facet Monitor Voltag	ge	Vrfm	0.01		0.20	V	2,7

Note 1. Output current is not included. 2. Measured at the bit rate of 155.52Mbps,

50% duty cycle data, 3.Vcc=+5.0V, 4.Tc=25°C, 5. 20 ~ 80%


6. The transmitter is enable as default state and requires an external voltage only to disable.

7. The Laser Bias and Rear Facet Monitor currents are calculated as raitos

of the corresonding voltages to their current-sensing resistors,10 Ω and 200 $\Omega,$

respectively(refer to Figure 3). Upon mesureing or utilizing these values, use a

device whose input impedance is high enough(>1M Ω) compared with those resistors.

Vcc

Vcc

Figure 3 Monitor Circuit Schematic Diagram

6-2. Receiver side

Parameter		Symbol	min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc-Vee	4.75	5.00	5.25	V	
Supply Current		ldrx		145	200	mA	1
Data, Clock & FLAG	High	Voh	Vcc-1.26		Vcc-0.82	V	2, 3
Output Voltage	Output Voltage		Vcc-1.97		Vcc-1.54		
Clock Rise / Fall Time		Trc / Tfc			700	psec.	4, 5
Data Rise / Fall Time		Trd / Tfd			1000	psec.	4, 5
Clock Sampling Point		Tcsp	2.60	3.10	3.60	nsec.	6

Note 1. Output current is not included.

2. Vcc=+5.0V, Tc=25°C

3. Termination condition : RI= 50 Ω to Vccrx =-2V

4.20~80%

5. Input capacitance and stray capacitance of measuring devices should be less than 2pF
6. Phase difference between rising edge of RD and rising edge of RCLK. (Please refer to Figure 4)

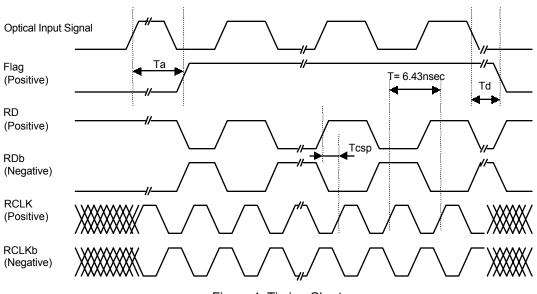


Figure 4. Timing Chart

Optical Output Siganl

ON (High)

OFF (Low)

Undefined

Undefined

7. Optical Interface

(Unless otherwise specified, Vcc-Vee = 4.75 to 5.25 V and all operating temperature shall apply.)

7-1. Transmitter side

Parameter	Symbol	min.	Тур.	Max.	Unit	Note
Average Output Power	Po	-15.0		-8.0	dBm	1
Extinction Ratio	Er	8.2			dB	1
Center Wavelength	λς	1261		1360	nm	
Spectral Width (RMS)	Δλ			7.7	nm	
Eve Mask for Ontical Output		Refer to Figure 5				

Relation between Input Signal and Optical Output Signal

TDb

Low

High

High

Low

Input Signal

TD

High

Low

High

Low

Note 1. Measured at 155.52Mbps PRBS2^23-1, 50% duty cycle data

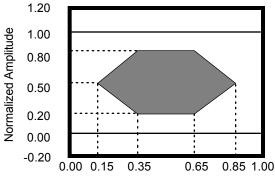


Figure 5. Optical Pulse Mask with Fourth Order Bessel-Thomson Filter Specified in ITU-T G.957

▲ Warning

Do not look at the laser beam projection area (e.g. end of optical connector) with naked eyes or through optical equipment while the power is supplied to this product. Otherwise, your eyes may be injured.

7-2. Receiver side

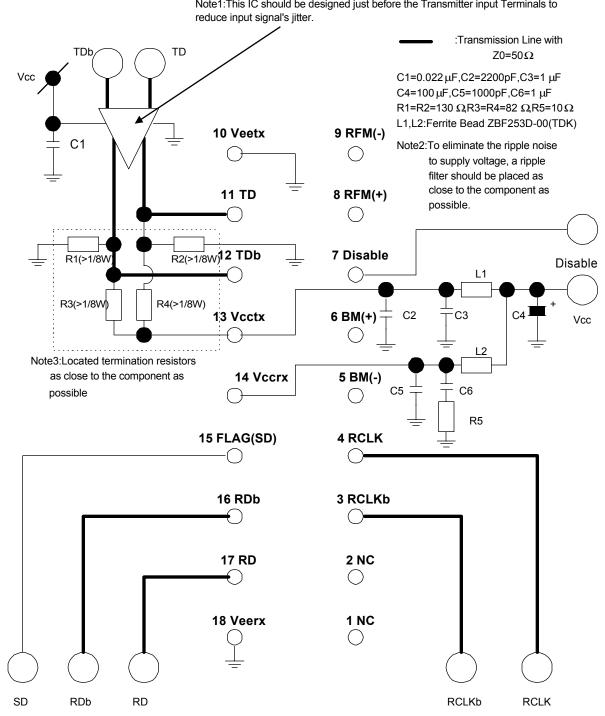
Parameter	Symbol	min.	Тур.	Max.	Unit	Note
Bit Rate Range	-	155.52 +/- 50ppm		m	Mbps	
Minimum Sensitivity	Pmin			-28.0	dBm	1, 2
Overload	Pmax	-8.0			dBm	1, 2
Clock Jitter (rms)	Tjc			64	psec	2, 3, 4
Clock Duty	Cduty	45.0	50.0	55.0	%	2, 3, 4
Consecutive Identical Digit	CID	72	100		bits	5
SD Assert Level	Pa	-48	-37	-28	dBm	2
SD deassert Level	Pd	-49	-39	-28	dBm	1
SD Assert time	Та			100	μsec	2, 3, 6
SD deassert Time	Td			100	μsec	1

Note 1. BER=10^-10

2. Measured at the bit rate of 155.52Mbps, PRBS 2^23-1, NRZ

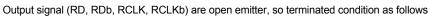
3. Optical Input Power: -28.0 ~ -8.0dBm

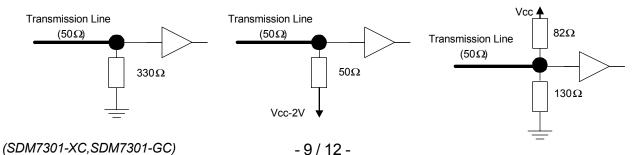
4. Termination condition for RD, RDb, RCLK, RCLKb : RI=50 Ω to Vccrx-2V

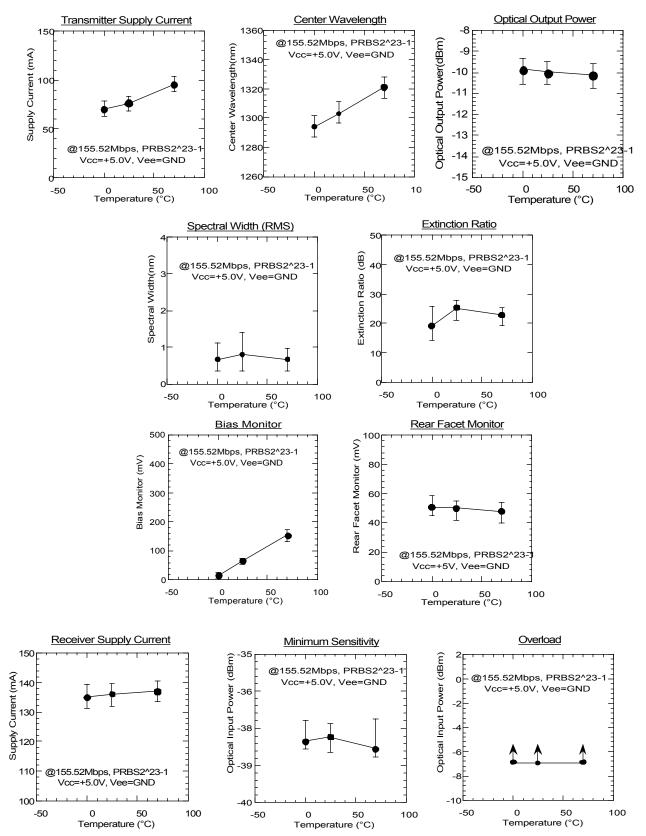

5. Duty 50% input signal

6. Refer to Figure 4

8. Relation between Disable Input Voltage and Optical Output Power


Disable Input Voltage	Optical Output Power
"L" (0[v] ~ 0.8[v])	Enabled
"H" (2.0[v] ~ VCCTX)	Disabled (<-45dBm)
Nuclear Exception of Control Principle States of Control E	


Note. Enabled for no Disable input (pin 7 opened)


9.Recommended Interface Circuit

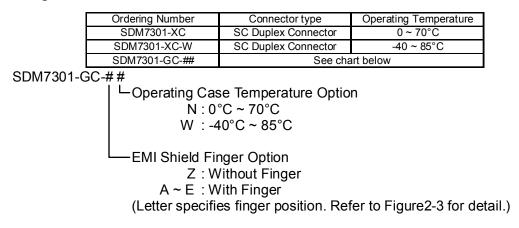
Note1: This IC should be designed just before the Transmitter input Terminals to

10. Characteristic Information

11. Reliability Test

Bellcore TA	-NWT-000983 Is	sue 2, December 19	93					
Heading	Test	Reference	Condition	Samplir	ng		SEI R	esult
				LTPD	SS	С	SS	F/C
Mechanical	Mechanical	MIL-STD-883	Condition B					
Integrity	Shock	Method 2002	5 times/axis					
			500G, 1.0 ms	20%	11	0		
			1,500G, 0.5ms	20%	11	0	11	0
	Vibration	MIL-STD-883	Condition A	20%	11	0	11	0
		Method 2007	20 G					
			20-2,000 Hz					
			4 min/cycle; 4 cycles/axis					
	Thermal Shock	MIL-STD-883	∆T=100°C	20%	11	0	11	0
		Method 1011						
	Solderability	MIL-STD-883	(steam aging not required)	20%	11	0	11	0
		Method 2003						
	Fiber Pull		1 Kg; 3 times;5sec.	20%	11	0		
			2 Kg; 3 times; 5sec.	20%	11	0		
Endurance	Accel. Aging	(R)-453	+85C; rated power					
	(High Temp.)	Section 5.18	>5,000hrs.		25		25	0
			>10,000hrs.		10			
	High Temp.		max. storage T (T=85°C)	20%	11	0		
	Storage		>2,000					
	Low Temp.		min. storage T (T=-40°C)	20%	11	0	11	0
	Storage		>2,000					
	Temperature	Section 5.20	- 40°C to +85°C					
	Cycling		400 times pass/fail	20%	11	0		
			500 times for info.		11			
			500 times pass/fail	20%	11	0	11	0
			1000 times for info.		11		11	0
	Damp Heat	MIL-STD-202 M103	40°C , 95%, 56days	20%	11	0	11	0
	(if using epoxy)	or IEC 68-2-3	or 85°C /85%RH 2,000hrs.	20%	11	0		
	Cyclic Moisture	Section 5.23		20%	11	0	11	0
	Resistance							
Special	Internal	MIL-STD-883	< 5,000 ppm	20%	11	0	11	0
Tests	Moisture	Method 1018	water vapor					
	Flammability	TR357:Sec. 4.4.2.5						ОК
	ESD Threshold	Section 5.22			6		6	0

12. Laser Safety

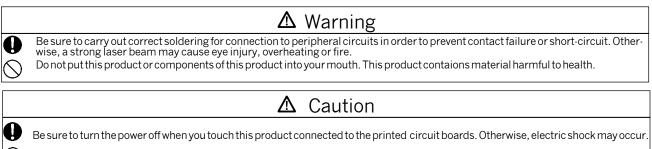

This product uses a semiconductor laser system and is a laser class 1 product acc. FDA, complies with 21CFR1040. 10 and 1040.11. Also this product is a laser class 1 product acc. IEC 825-1.

Class 1 Laser Product

∆Caution

Solution of this product is used under conditions not recommended in the specification or this product is used with unauthorized revision, classification for laser product safety standard is invalid. Classify the product again at your responsibility and take appropriate actions.

13. Ordering Information



14. Other Precaution

Under such a strong vibration environment as in automobile, the performance and reliability are not guaranteed.

The governmental approval is required to export this product to other countries. To dispose of these components, the appropriate procedure should be taken to prevent illegal exportation.

This module must be handled, used and disposed of according to your company's safe working practice.

Dispose this product or equipment including this product properly as an industrial waste according to the regulations.

15. For More Information

U.S.A. ExceLight Communications, 4021 Stirrup Creek Drive, Suite 200 Durham, NC 27703 Tel. +1-919-361-1600 / Fax. +1-919-361-1619 E-mail : info@excelight.com http://www.excelight.com

Europe Sumitomo Electric Europe Ltd., 220, Centennial Park, Elstree, Herts, WD6 3SL, United Kingdom Tel.+44-208-953-8681 Fax.+44-208-207-5950 http://www.sumielectric.com

Japan Sumitomo Electric Industries, Ltd. (International Business Division), 3-12, Moto-Akasaka 1-chome Minato-ku Tokyo 107-8468 Tel. +81-3-3423-5771 / Fax. +81-3-3423-5099 E-mail : product-info@ppd.sei.co.jp http://www.sei.co.jp/Electro-optic/index.html

(SDM7301-XC,SDM7301-GC)