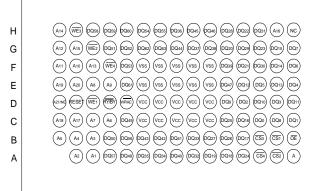
2Mx64 3.3V Simultaneous Operation Multi-Chip Package *Preliminary

FEATURES

- Access Times of 70, 100, 120, 150ns
- Packaging
 - · 119 ball stacked TSOP BGA
- 1,000,000 Erase/Program Cycles
- Sector Architecture
 - 252 32K word sectors and 32 4K word sectors
 - Any combination of sectors can be concurrently erased. Also supports full chip erase
- Organized as 2Mx64
- Commercial, Industrial and Military Temperature Ranges
- 3.3 Volt for Read and Write Operations
- Simultaneous Read/Write Operation
 - Data can be continuously read from one bank while executing erase/program functions in other banks
- Embedded Erase and Program Algorithms
- Erase Suspend/Resume
 - Supports reading data from or programing data to a sector not being erased
- Data Polling and Toggle Bits
 - Provides a software method of detecting the status of program or erase cycles

- Unlock Bypass Program command
 - Reduces overall programming time when issuing multiple program command sequences
- Ready/Busy output (RY/BY)
 - Hardware method for detecting program or erase cycle completion
- Hardware reset pin (RESET)
 - Hardware method of resetting the internal state machine to the read mode
- WP/ACC input pin
 - Write protect (WP) function allows protection of two outermost boot sectors, regardless of sector protect status
 - Acceleration (ACC) function accelerates program timing
- Sector Protection
 - Hardware method of locking a sector, either in-system or using programming equipment, to prevent any program or erase operation within that sector
 - Temporary Sector Unprotect allows changing data in protected sectors in-system

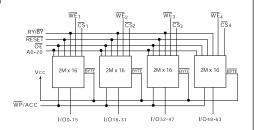

Note: For programming information refer to Flash Programming WEDPF2M64-XXX3 Application Note.

^{*} Preliminary datasheet. This datasheet describes a product that is not fully qualified or characterized and is subject to change without notice.

FIG 1: PIN CONFIGURATION FOR WEDPF2M64-XBX3

TOP VIEW

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



wedpf2m64-xbx3pc.eps

PIN DESCRIPTION

I/O ₀₋₆₃	Data Inputs/Outputs
A0-20	Address Inputs
WE1-4	Write Enables
CS ₁₋₄	Chip Selects
ŌĒ	Output Enable
RESET	Reset/Powerdown
Vcc	Power Supply
Vss	Ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter		Unit
Operating Temperature	-55 to +125	°C
Supply Voltage Range (Vcc)	-0.5 to +4.0	V
Signal Voltage Range	-0.5 to Vcc +0.5	V
Storage Temperature Range	-65 to +150	°C
Endurance (write/erase cycles)	1,000,000 min.	cycles

NOTES:

1. Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	3.0	3.6	V
Input High Voltage	ViH	0.7 x Vcc	Vcc + 0.3	V
Input Low Voltage	VIL	-0.5	+0.8	V
Operating Temp. (Mil.)	TA	-55	+125	°C
Operating Temp. (Ind.)	TA	-40	+85	°C

CAPACITANCE

 $(TA = +25^{\circ}C)$

Parameter	Symbol	Conditions	Max	Unit
WE ₁₋₄ capacitance	Cwe	VIN = 0 V, f = 1.0 MHz	8	pF
CS ₁₋₄ capacitance	Ccs	V _{IN} = 0 V, f = 1.0 MHz	10	pF
Data I/O capacitance	Cı/o	Vvo = 0 V, f = 1.0 MHz	12	pF
Address input capacitance	CAD	V _{IN} = 0 V, f = 1.0 MHz	25	pF
RESET capacitance	Crs	V _{IN} = 0 V, f = 1.0 MHz	20	pF
RY/BY capacitance	Спв	V _{IN} = 0 V, f = 1.0 MHz	20	pF
WP/AC capacitance	CWA	V _{IN} = 0 V, f = 1.0 MHz	30	pF

This parameter is guaranteed by design but not tested.

DATA RETENTION

Parameter	Test Conditions	Min	Unit
Minimum Pattern Data	150°C	10	Years
Retention Time	125°C	20	Years

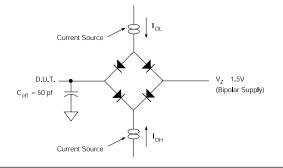
DC CHARACTERISTICS - CMOS COMPATIBLE

 $(Vcc = 3.3V, Vss = 0V, Ta = -55^{\circ}C to +125^{\circ}C)$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Leakage Current	Li	Vcc = 3.6, VIN = GND			10	μΑ	
Output Leakage Current	ILOx32	Vcc = 3.6, VIN = GND	or Vcc			10	μA
Vcc Active Current for Read (1)	Icc1	CS = VIL, OE = VIH, f =	5MHz			65	mA
Vcc Active Current for Program or Erase (2)	Icc2	CS = VIL, OE = VIH				120	mA
Vcc Standby Current	Іссз	Vcc = 3.6, CS = ViH, f	= 5MHz			20	mA
Vcc Reset Current (2)	Icc4	RESET = Vss ± 0.3V			1	20	mA
Automatic Sleep Mode (2,4)	Icc5	V _{IH} = V _{CC ±} 0.3 V; V _{IL} = V _{SS ±} 0.3 V		1	20	mA	
Vcc Active Read-While-Program Current (1,2)	Icc6	CE = VIL, OE = VIH	Word		85	180	mA
Vcc Active Program-While-Erase Current (1,2)	Icc7	CE = VIL, OE = VIH	Word		85	180	mA
Vcc Active Program-While-Erase-Suspended Current (2,5)	Icc8	CE = VIL, OE = VIH			70	140	mA
Acc Accelerated Program Current	IACC		Acc Pin		20	40	
		CE = VIL, OE = VIH	Vcc Pin		60	120	mA
Output Low Voltage	Vol	IoL = 5.8 mA, Vcc = 3	3.0			0.45	V
Output High Voltage	Vон1	Iон = -2.0 mA, Vcc =	3.0		0.85 x Vcc		V
Low Vcc Lock-Out Voltage (4)	VLKO			2.3		2.5	V

NOTES

- 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 5 MHz). The frequency component typically is less than 8 mA/MHz, with OE at Viii.
- 2.Icc active while Embedded Algorithm (program or erase) is in progress.
- 3.DC test conditions: VIL = 0.3V, VIH = Vcc 0.3V
- 4. Guaranteed by design, but not tested.


AC CHARACTERISTICS-WRITE/ERASE/PROGRAM OPERATIONS, CS CONTROLLED

 $(Vcc = 3.3V, Vss = 0V, Ta = -55^{\circ}C to +125^{\circ}C)$

Parameter	Symbol	Symbol		<u>-70</u>		<u>-100</u>		<u>-120</u>		<u>-150</u>	
			Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	twc	70		100		120		150		ns
Write Enable Setup Time	twlel	tws	0		0		0		0		ns
Chip Select Pulse Width	telen	tcp	35		45		50		50		ns
Address Setup Time	tavel	tas	0		0		0		0		ns
Data Setup Time	toveh	tos	45		45		50		50		ns
Data Hold Time	tendx	tон	0		0		0		0		ns
Address Hold Time	tELAX	tah	45		45		50		50		ns
Chip Select Pulse Width High	tehel	tсрн	30		30		30		30		ns
Duration of Byte Programming Operation (1)	twnwh1			300		300		300		300	μs
Sector Erase Time	twhwh2			15		15		15		15	sec
Read Recovery Time (2)	tGHEL		0		0		0		0		μs
Chip Programming Time				50		50		50		50	sec

- 1. Typical value for twhwh1 is 9µs.
- 2. Guaranteed by design, but not tested.

FIG 2: AC TEST CIRCUIT

ACTEST CONDITIONS

Parameter	Тур	Unit
Input Pulse Levels	VIL = 0, VIH = 2.5	٧
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	V
Output Timing Reference Level	1.5	٧

NOTES:

Vz is programmable from -2V to +7V. Io. & IoH programmable from 0 to 16mA. Tester Impedance $Z_0 = 75\Omega$.

Vz is typically the midpoint of VoH and Vol.

lot & loh are adjusted to simulate a typical resistive load circuit.

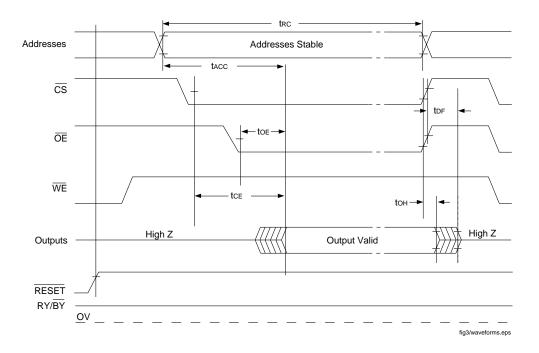
ATE tester includes jig capacitance.

AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS - WE CONTROLLED

 $(Vcc = 3.3V, Ta = -55^{\circ}C to +125^{\circ}C)$

Parameter	Sym	bol	<u> </u>	<u>70</u>	1	00	<u>-1</u> :	20	<u>-150</u>		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	tAVAV	tWC	70		100		120		150		ns
Chip Select Setup Time	tELWL	tCS	0		0		0		0		ns
Write Enable Pulse Width	tWLWH	tWP	35		50		50		65		ns
Address Setup Time	tAVWL	tAS	0		0		0		0		ns
Data Setup Time	tDVWH	tDS	45		50		50		65		ns
Data Hold Time	tWHDX	tDH	0		0		0		0		ns
Address Hold Time	tWLAX	tAH	45		50		50		65		ns
Write Enable Pulse Width High	tWHWL	tWPH	30		30		30		35		ns
Duration of Byte Programming Operation (1)	tWHWH1			300	300		300			300	μs
Sector Erase	tWHWH2			15	15		15			15	sec
Read Recovery Time before Write (3)	tGHWL		0		0		0		0		μs
VCC Setup Time	tVCS		50		50		50		50		μs
Chip Programming Time				50		50		50		50	sec
Output Enable Setup Time		tOES	0		0		0		0		ns
Output Enable Hold Time (2)		tOEH	10		10		10		10		ns
Address Setup Time to OE low during toggle bit polling		tASO	15		15		15		15		ns
Address Hold Time From CS or OE high during toggle		tAHT	0		0		0		0		ns
Output Enable High during toggle bit polling		tOEPH	20		20		20		20		ns
Latency Between Read and Write Operations		tsr/W	0		0		0		0		n s
Write Recovery Time from RY/BY		tRB	0		0		0		0		ns
Program/Erase Valis to RY/BY		tBUSY	90		90		90		90		ns

- 1. Typical value for twhwh1 is 9µs.
- 2. For Toggle and Data Polling.
- 3. Guaranteed by design, but not tested.

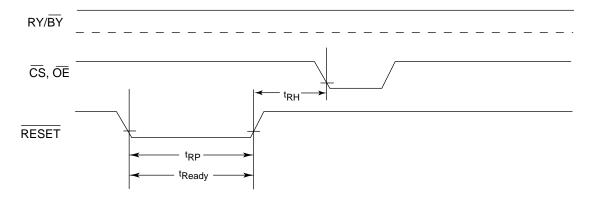

AC CHARACTERISTICS - READ-ONLY OPERATIONS

 $(Vcc = 3.3V, Ta = -55^{\circ}C to +125^{\circ}C)$

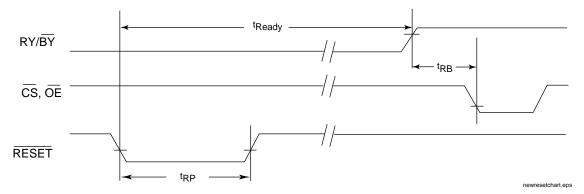
Parameter		Sym	Symbol		<u>-70</u>		<u>-100</u>		<u>-120</u>		<u>-150</u>	
				Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time		tAVAV	tRC	70		100		120		150		ns
Address Access Time		tAVQV	tACC		70		100		120		150	ns
Chip Select Access Time		tELQV	tCE		70		100		120		150	ns
Output Enable to Output Valid		tGLQV	tOE		40		40		50		55	ns
Chip Select High to Output High Z (1)		tEHQZ	tDF		30		30		30		40	ns
Output Enable High to Output H	igh Z (1)	tGHQZ	tDF		30		30		30		40	ns
Output Hold from Addresses, C	S or OE Change,	tAXQX	tOH	0			0		0			ns
Whichever is first												
	Read		tOEH	0		0		0		0		
Output Enable Hold Time (1)	Toggle and											
	Data Polling			10		10		10		10		

^{1.} Guaranteed by design, not tested.

FIG 3: AC WAVEFORMS FOR READ OPERATIONS



AC CHARACTERISTICS - HARDWARE RESET (RESET)


Parameter	Symbol		<u>-1</u>	00	<u>-1</u>	20	<u>-1</u>	<u>50</u>	Unit
			Min	Max	Min	Max	Min	Max	
RESET Pin Low (During Embedded Algorithms) to Read Mode (See Note)	tready			20		20		20	μs
RESET Pin Low (NOT During Embedded Algorithms) to Read Mode (See Note)	tready			500		500		500	ns
RESET Pulse Width	trp		500		500		500		ns
RESET High Time Before Read (See Note)	tкн		50		50		50		ns
RESET Low to Standby Mode	trpd		20		20		20		μs
RY/BY Recovery Time	trв		0		0		0		ns

Note: Not 100% tested.

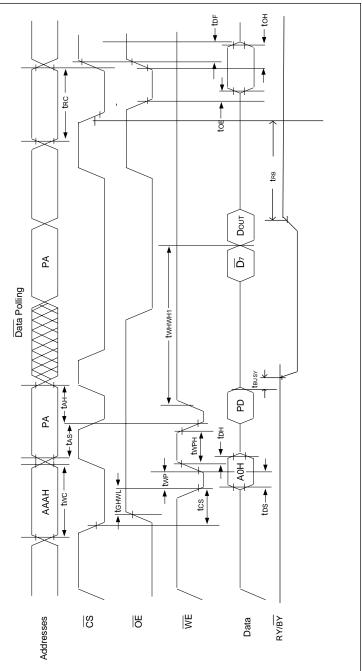

FIG 4: RESET TIMINGS NOT DURING EMBEDDED ALGORITHMS

FIG 5: RESET TIMINGS DURING EMBEDDED ALGORITHMS

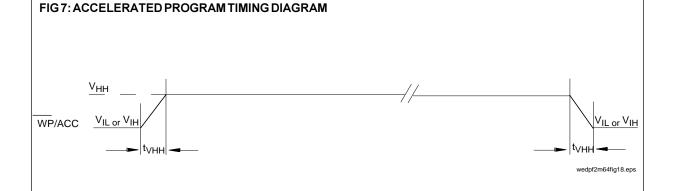
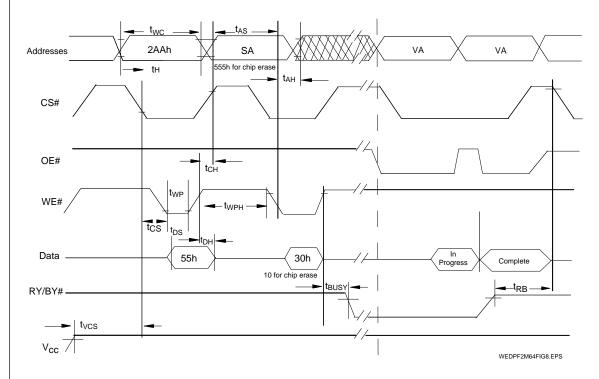


FIG 6: WRITE/ERASE/PROGRAM OPERATION, WE CONTROLLED



NOTES:

- 1. PA is the address of the memory location to be programmed.
- 2. PD is the data to be programmed at byte address.
- 3. \overline{D}_7 is the output of the complement of the data written to each chip.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles of four bus cycle sequence.

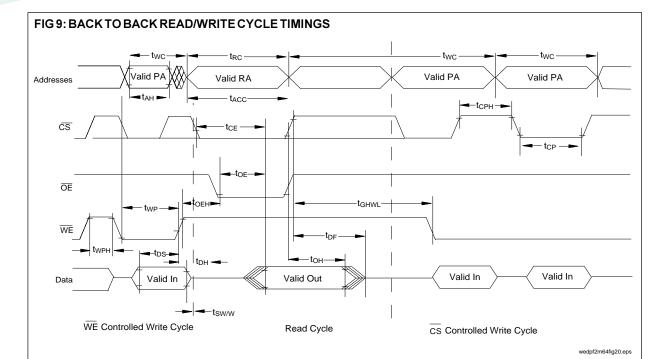
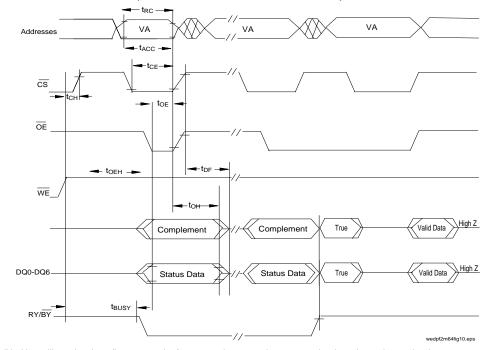


FIG 8: CHIP/SECTOR ERASE OPERATION TIMINGS



NOTES:

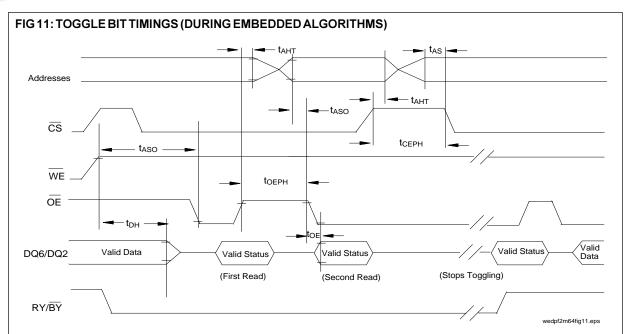
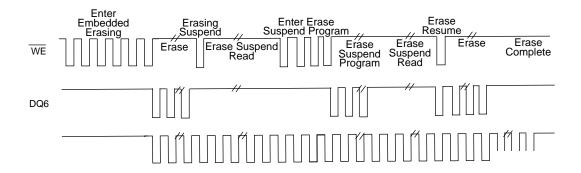
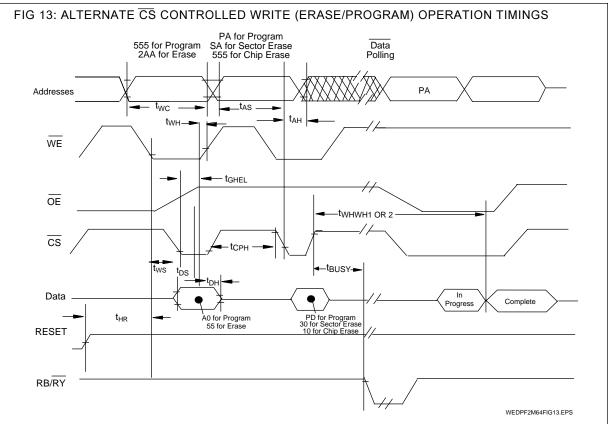

1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see "Write Operation Status").

FIG. 10: DATA POLLING TIMINGS (DURING EMBEDDED ALGORITHMS)

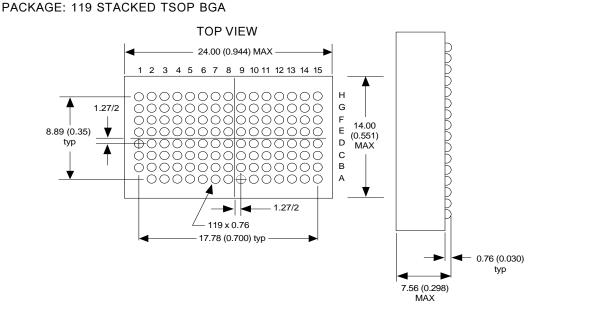


NOTE: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle.

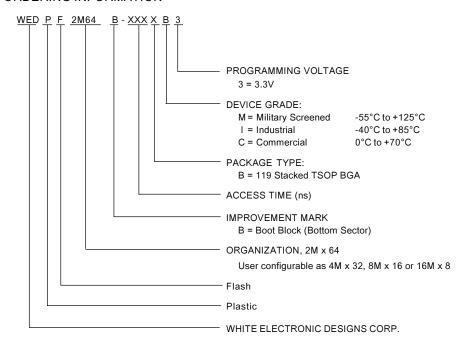


NOTE: VA = Valid address, not required for DQ6. Illustration shows first two status cycle after comand sequence, last status read cycle, and array data read cycle.

FIG 12: DQ2 VS. DQ6



NOTE: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use $\overline{\text{OE}}$ or $\overline{\text{CS}}$.


NOTES:

- 1. Figure indicates last two bus cycles of a program or erase operation.
- 2. PA = program address, SA = sector address, PD = program data.
- 3. DQ7 is the complement of the data written to the device. D_{OUT} is the data written to the device.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

ORDERING INFORMATION

