

SLVS372B - JUNE 2001 - REVISED JANUARY 2002

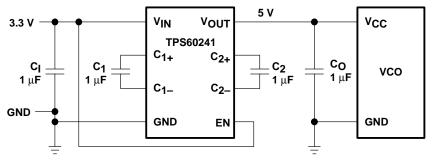
170-μVrms ZERO-RIPPLE SWITCHED CAP BUCK-BOOST CONVERTER FOR VCO SUPPLY

FEATURES

- Wide Input Voltage Range:
 - 1.8 V To 5.5 V for 2.7-V, 3-V, 3.3-V Output (TPS60240/2/3)
 - 2.7 V To 5.5 V for 5-V Output (TPS60241)
- 170-μVrms Zero Ripple Output:
 - at 20 Hz to 10 MHz Bandwidth
- Minimum Number of External Components
 - No Inductors
 - Only Small Ceramic Chip Capacitors
- Up to 90% Efficiency
- Regulated 3.3-V (TPS60240), 5-V (TPS60241),
 3-V (TPS60243), and 2.7-V (TPS60242) Output
 Voltage With ±2.5% Accuracy Over Load
- Up to 25-mA Output Current
- Shutdown Mode: 0.1 μA Typical
- Thermal Protection and Current Limit
- Microsmall 8-Pin MSOP Package
- EVM Available TPS60241EVM-194

APPLICATIONS

- VCO and PLL Power for:
 - PDA Phones
 - Cellular Phones
 - PCMCIA Modems
- Smartcard Readers

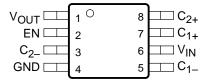

- Digital Cameras
- MP3 Players
- SIM Modules
- Electronic Games
- Memory Backup
- Handheld Meters
- Bias Supplies

DESCRIPTION

The TPS6024x is a switched capacitor voltage converter, ideally suited for VCO and PLL applications that require low noise and tight tolerances. Its dual-cap design uses four ceramic capacitors to provide ultralow output ripple yet high efficiency, while eliminating the need for inefficient linear regulators.

A wide input supply voltage range of 2.7 V to 5.5 V makes the TPS6024x ideal for lithium-based battery applications. The TPS60240/2/3 operates down to 1.8 V, supporting a 3.3-V, 2.7-V, 3-V output from two-cell, nickel- or alkaline-based chemistries. The devices work equally well for low EMI dc/dc step-up conversion without the need for an inductor. The high switching frequency (typical 160 kHz) promotes the use of small surface-mount capacitors, saving board space. The converter's shutdown mode conserves battery energy.

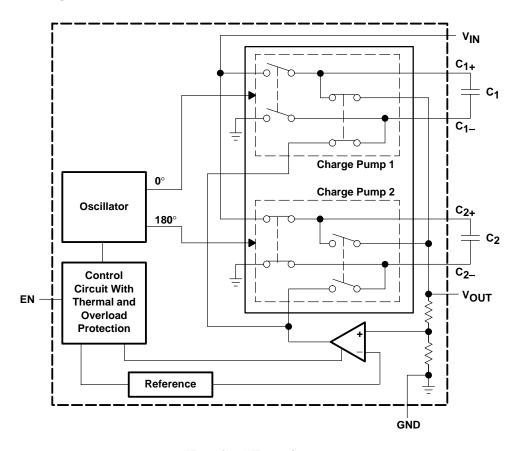
typical application circuit


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description(continued)

The devices are thermally protected and current-limited for reliable operation even under persisting fault conditions. Normal quiescent current (ground pin current) is only $250 \,\mu\text{A}$, and typically $0.1 \,\mu\text{A}$ in shutdown mode. The TPS6024x devices come in a thin, 8-pin MSOP (DGK) package with a component height of only 1,1 mm.

DGK PACKAGE (TOP VIEW)


AVAILABLE OPTIONS

TA	PART NUMBERT	PACKAGE MARKING	PACKAGE	OUTPUT VOLTAGE (V)
-40°C to 85°C	TPS60241DGKR	AUB	DGK (8-pin MSOP)	5 V
	TPS60240DGKR	ATM	DGK (8-pin MSOP)	3.3 V
-40°C to 85°C	TPS60242DGKR	AYF	DGK (8-pin MSOP)	2.7 V
	TPS60243DGKR	AYG	DGK (8-pin MSOP)	3 V

[†] This package type is available taped and reeled only. Quantity is 2500 units per reel (e.g., TPS60241DGKR). The devices are also available on mini reel with 250 units per reel. To order this packaging option, replace the R with a T in the part number (e.g., TPS60261DGKT).

functional block diagram

Terminal Functions

TERMI	NAL		
NAME	NO.	1/0	DESCRIPTION
C ₁₊	7		Positive terminal of the flying capacitor C ₁
C ₁₋	5		Negative terminal of the flying capacitor C ₁
C ₂₊	8		Positive terminal of the flying capacitor C ₂
C ₂ -	3		Negative terminal of the flying capacitor C ₂
EN	2	1	Enable terminal, active high
GND	4		Ground
VIN	6	I	Supply voltage input TPS60241: 2.7 V to 5.5 V, TPS60240/2/3: 1.8 V to 5.5 V. Bypass $V_{\mbox{IN}}$ to GND with a 1- μ F external capacitor (C _I).
VOUT	1	0	Regulated power output. Bypass V_{OUT} to GND with a 1- μ F external filter capacitor (C _O). TPS60241: regulated 5-V output, TPS60240: regulated 3.3-V output, TPS60242: regulated 2.7-V output, TPS60243: regulated 3-V output

SLVS372B - JUNE 2001 - REVISED JANUARY 2002

detailed description

operating principle

The TPS6024x charge pump is a fixed-frequency, dual-phase charge pump that provides 25 mA of continuous supply current for low-noise applications such as VCOs used in cell phones and wireless appliances.

Low-noise operation results from using a proprietary dual-phase charge pump topology that relies on an operational amplifier in the feedback loop to reduce ripple. During the first phase, C_1 is charged to the supply voltage. Terminal C_{1+} is connected to V_{IN} , and C_{1-} is connected to GND. In the second phase, C_{1-} is connected to the output of the operational amplifier, and C_{1+} is connected to V_{OUT} . The operational amplifier then adjusts its output until the output V_{OUT} delivers the correct voltage to make the resistor divided feedback point equal to the reference voltage. During this second phase, C_2 is charged to supply voltage. Terminal C_{2-} is connected to GND, and C_{2+} is connected to V_{IN} . Phase one is then repeated with C_2 , now acting to provide charge to the output in place of C_1 , which is connected to the supply. The dual-phase operation lowers the output ripple voltage significantly compared to a standard single-phase charge pump. In addition, the linear feedback of the operational amplifier eliminates the ripple during discharge of the output capacitor (C_0).

shutdown

Driving EN low disables the converter. This disables the internal circuits and reduces input current to typically 0.1 μ A. In this mode, the load is disconnected from the supply voltage. The device exits shutdown once EN is set to a high level.

start-up procedure

The converter is enabled when EN is set from logic low to high. The start-up time to reach 90% of the nominal output voltage is typically 0.5 ms at load currents lower than 10 mA and with an output capacitor of 1 μ F. Increasing the values of C_O delays the start-up time.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD}	0.3 V to 6 V
Power dissipation, P _D	Internally limited
Voltage EN	0.3 V to 6 V
Voltage C ₂ -, C ₁	-0.3 V to V _I or 5.5 V, whichever is lowest
Voltage C_{2+} , C_{1+}	-0.3 V to V _I , V _O or 5.5 V, whichever is lowest
Junction temperature, T _J	125°C
Storage temperature, T _{stq}	
Shortcircuit output current	80 mA maximum

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
DGK	376 mW	3.76 mW/°C	207 mW	150 mW	

NOTE: The thermal resistance junction to ambient of the DGK package is $R_{TH-JA} = 150$ °C/W.

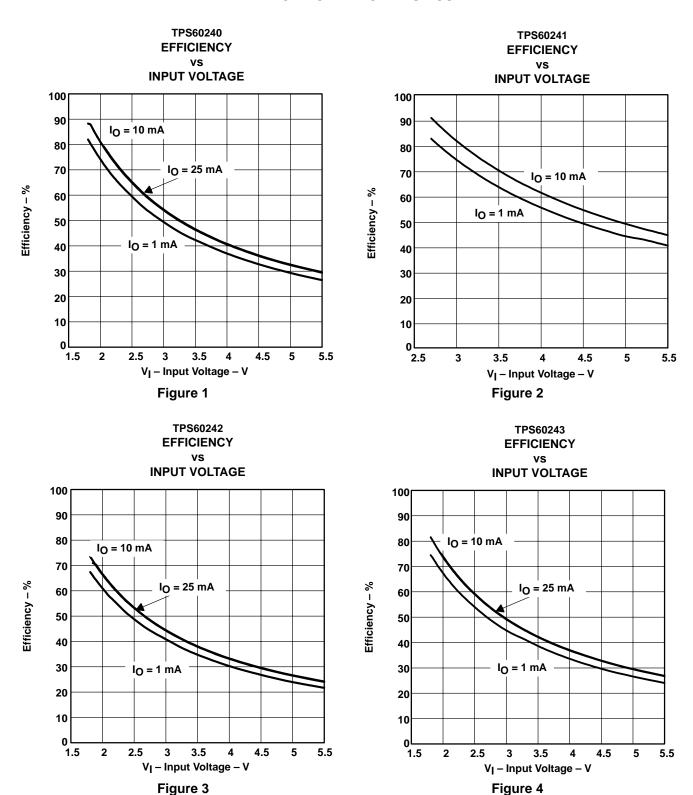
recommended operating conditions

			MIN	NOM	MAX	UNIT
M.	lanut valta sa sana	TPS60240, TPS60242, TPS60243			5.5	V
VI	Input voltage range	TPS60241	2.7		5.5	V
IO	Output current range	All devices		25		mA
Cl	Input capacitor			1		μF
C_1, C_2	Flying capacitors			1		μF
CO	Output capacitor			1		μF
TA	Operating temperature range		-40		85	°C

electrical characteristics for TPS6024X at T_A = 25°C, C_I = C_O =1 μ F, C_1 = C_2 = 1 μ F (unless otherwise noted), limits apply over the specified temperature range, –40°C to 85°C

	PAI	RAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		TPS60240 Assu	red start-up	$I_O \le 5$ mA, $R_L = 600 \Omega$	1.8		5.5		
.,		TPS60241 Assu	red start-up	$I_O \le 12 \text{ mA}, R_L = 417 \Omega$	2.7		5.5	Ī	
VI	Input voltage	TPS60242 Assu	red start-up	$I_O \le 12 \text{ mA}, R_L = 225 \Omega$	1.8		5.5	V	
		TPS60243 Assured start-up		$I_O \le 10 \text{ mA}, R_L = 300 \Omega$	1.8 5.5				
				$1.8 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 5 \text{ mA}$					
		TPS60240		$2.4 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 25 \text{ mA}$	3.2175	3.3	3.3825		
		TD000044		$2.7 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 12 \text{ mA}$	4.075	_			
.,	0	TPS60241		$3 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 25 \text{ mA}$	4.875	5	5.125		
۷O	Output voltage	TD000040		$1.8 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 12 \text{ mA}$	0.0005		0.7075	V	
		TPS60242		$2.3 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 25 \text{ mA}$	2.6325	2.7	2.7675		
		TD000040		$1.8 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 10 \text{ mA}$	0.005	3	0.075		
		TPS60243		$2.3 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}, 0 \text{ mA} \le \text{I}_{\text{O}} \le 25 \text{ mA}$	2.925		3.075		
	TD0000 40/0/0	Nominal	2 V ≤ V _I ≤ 5.5 V	12					
		TPS60240/2/3		V _I = 2 V			80		
Ю	Output current	TD000044	Nominal	2.7 V ≤ V _I ≤ 5.5 V	12			mA	
		TPS60241		V _I = 3.25 V			80		
fosc		Internal clock so	ource		100	160	220	kHz	
۷ _n	Output noise	TPS60240/2/3		V_I < 2.5 V, I_O = 5 mA, ESR < 0.1 Ω, measured over 20 Hz to 10 MHz, C_O = 4.7 μF	170				
"	voltage	TPS60241		V_I = 2.7 V, I_O = 5 mA, ESR < 0.1 Ω , measured over 20 Hz to 10 MHz, C_O = 4.7 μ F		170		μV RMS	
V _{I(H)}	EN	Logic high input	voltage VOH		1.3		5.5	V	
$V_{I(L)}$	EN	Logic low input	voltage V _{OL}		-0.2		0.4	V	
I _{I(H)}	EN	Logic high input	current				100	nA	
I _{I(L)}	EN	Logic low input current					100	nA	
t(EN)	EN	Start-up time		$V_O > 90\%$ of $V(NOM)$ 0.1 mA $\leq I_O \leq$ 10 mA, $C_O = 1 \mu F$		0.5		ms	
		TPS60240		I _O = 5 mA, V _I = 1.8 V		89.6%			
		TPS60241		I _O = 10 mA, V _I = 2.7 V		90.8%			
η	Efficiency	TPS60242		I _O = 10 mA, V _I = 1.8 V		73%			
		TPS60243		I _O = 10 mA, V _I = 1.8 V		81%			

electrical characteristics for TPS6024X at T_A = 25°C, C_I = C_O =1 μ F, C_1 = C_2 = 1 μ F (unless otherwise noted), limits apply over the specified temperature range, –40°C to 85°C (continued)


PARAMETER		AMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Quiescent		$I_{O} = 0 \text{ mA}, V_{I} = 3 \text{ V}$		250	325	•
^{IQ} current		In shutdown mode		0.1	1	μΑ	
	Thermal	Temperature activated			160		۰۰
	shutdown	Temperature deactivated			140		°C

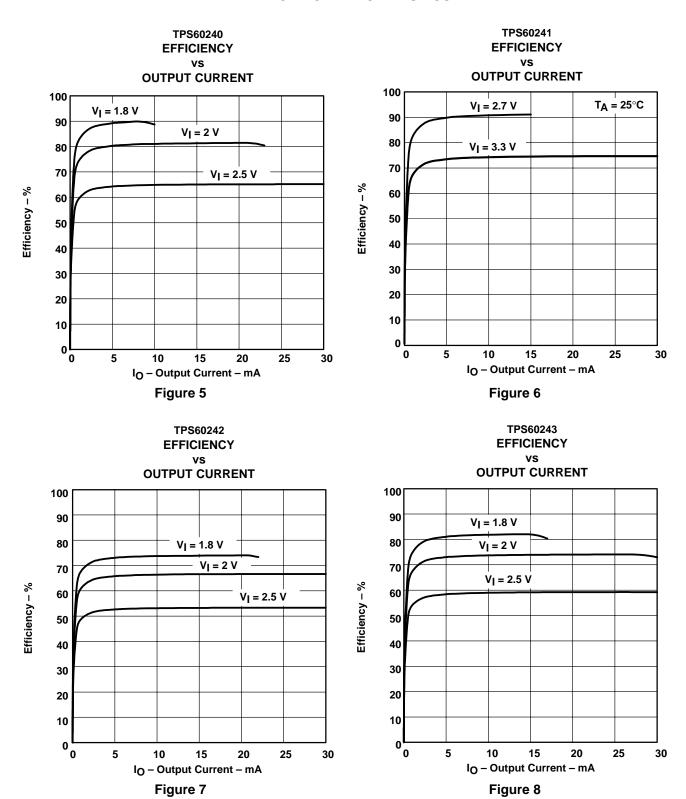
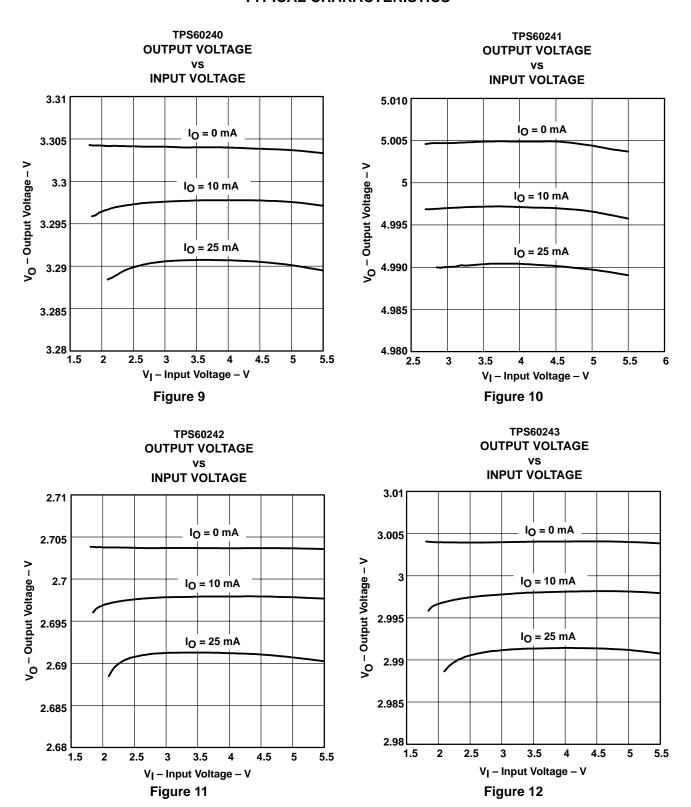
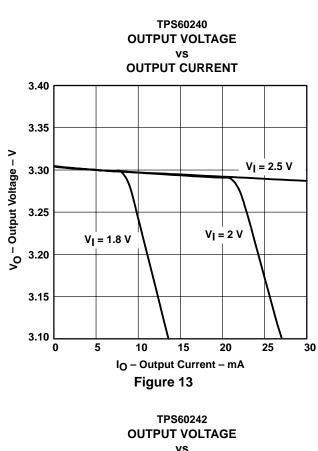
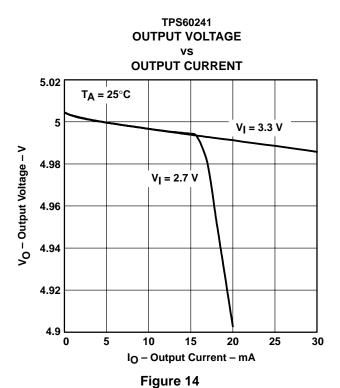

TYPICAL CHARACTERISTICS

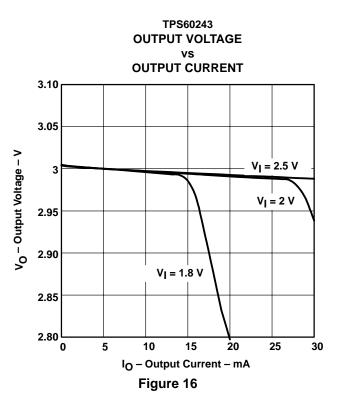
Table of Graphs


			FIGURE
		vs Input voltage	1–4
	Efficiency	vs Output current	5–8
		vs Input voltage	9–12
۷o	Output voltage	vs Output current	13–16
		vs Free-air temperature	17
	Octobroad suggest	vs Input voltage	18
	Quiescent current	vs Free-air temperature	19
I _{L(sd)}	Shutdown current	vs Free-air temperature	20
√n	Output noise voltage	vs Output current	21
	Maximum output current	vs Input voltage	22–25
	Load transient response		26
	Start-up timing		27
	Line transient response		28
	Noise voltage spectrum		29
	Output voltage ripple	vs Time	30





2.80
2.75


2.75

2.70

V_I = 2.5 V

V_I = 2.5 V

V_I = 1.8 V

30

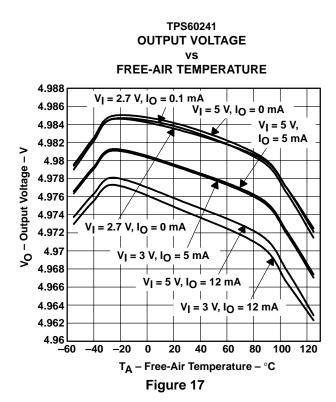
2.55

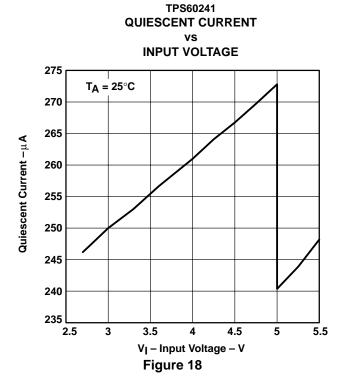
2.50

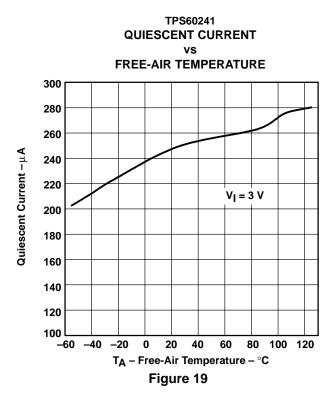
0

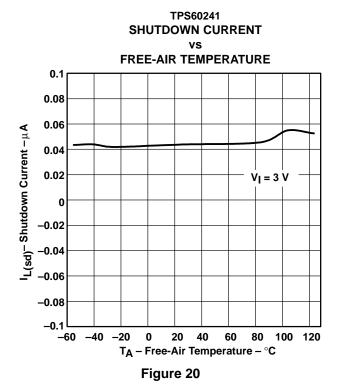
5

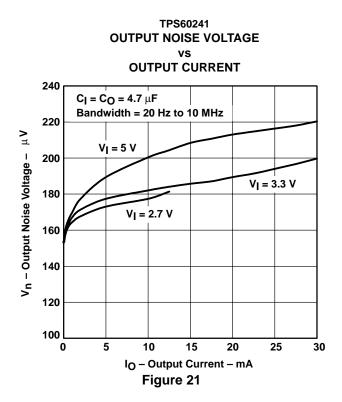
10

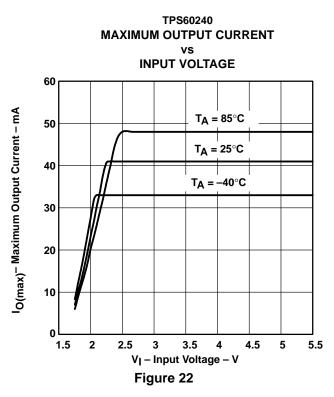

15

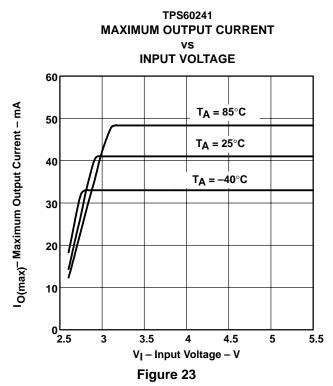

IO - Output Current - mA

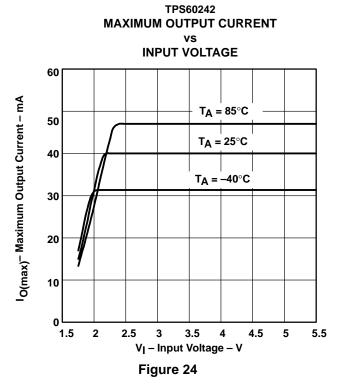

Figure 15

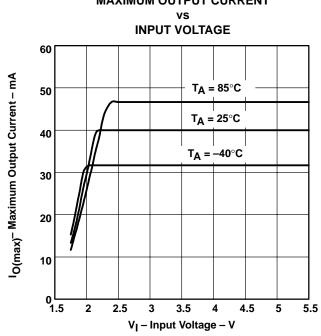

20


25









TPS60243 MAXIMUM OUTPUT CURRENT

LOAD TRANSIENT RESPONSE

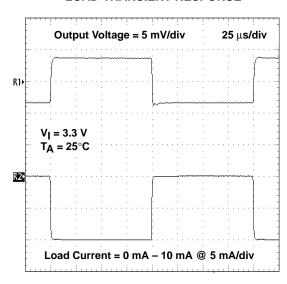


Figure 26

START-UP TIMING

Figure 25

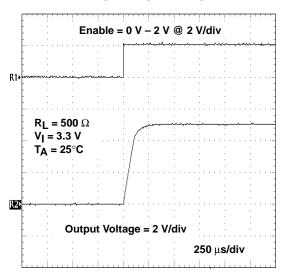


Figure 27

LINE TRANSIENT RESPONSE

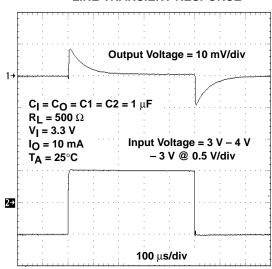
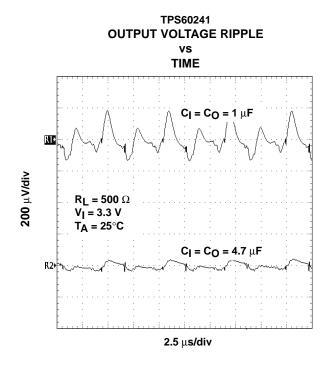



Figure 28

TPS60241 **NOISE VOLTAGE SPECTRUM** $10~\mu V rms$ √Hz $C_I = C_O = 4.7 \mu F$ $C1 = C2 = 1 \mu F$ $R_0 = 500 \Omega$ $V_{I} = 3.3 \text{ V}$ T_A = 25°C 100 nVrms √Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

Figure 29

NOTE: Scope triggered by voltage at flying capacitors, noise removed by averaging function and bandwidth limit 20 MHz.

Figure 30

APPLICATION INFORMATION

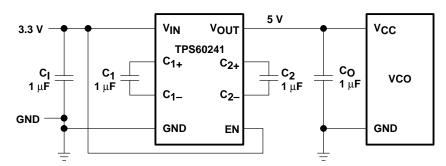


Figure 31. 5-V Low-Noise VCO Supply From 3.3-V Input

Figure 32. 2-V to 3.3-V Low-Noise Converter

output voltage ripple

The output voltage ripple depends on the capacitors used. Table 1 illustrates the dependence between output voltage ripple and capacitor selection.

Table 1. Output Voltage Ripple and Capacitor Selection

Cl	co	c ₁	C ₂	OUTPUT VOLTAGE RIPPLE [μVrms]
1 μF	1 μF	1 μF	1 μF	288
2.2 μF	2.2 μF	1 μF	1 μF	212
4.7 μF	4.7 μF	1 μF	1 μF	183
4.7 μF	1 μF	1 μF	1 μF	272
1 μF	4.7 μF	1 μF	1 μF	185

NOTE: $V_1 = 3.3 \text{ V}$, $V_0 = 5 \text{ V}$, $R_L = 500 \Omega$, $T_A = 25^{\circ}C$

APPLICATION INFORMATION

components

For the best output ripple performance, low-ESR ceramic capacitors are recommended (see Table 2).

Table 2. Recommended Capacitors

PART	MANUFACTURER	PART NUMBER	VALUE	TOLERANCE	DIELECTRIC MATERIAL	PACKAGE	RATED VOLTAGE
	Taiyo Yuden	LMK212BJ105KG-T	1 μF	10%	X7R	0805	10
Cl	TDK	C2012X5R0J475K	4.7 μF	10%	X5R	0805	6.3
_	Taiyo Yuden	LMK212BJ105KG-T	1 μF	10%	X7R	0805	10
CO	TDK	C2012X5R0J475K	4.7 μF	10%	X5R	0805	6.3
C ₁ , C ₂	Taiyo Yuden	LMK212BJ105KG-T	1 μF	10%	X7R	0805	10
C _F	Taiyo Yuden	LMK212BJ105KG-T	1 μF	10%	X7R	0805	10

layout consideration

In order to get optimal noise behavior, keep the power lines to the capacitors and load as short as possible. Use of power planes is recommended.

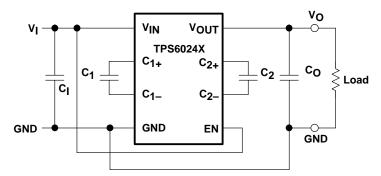


Figure 33. Layout Diagram

APPLICATION INFORMATION

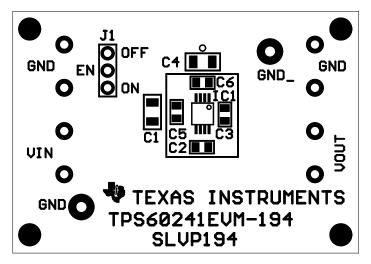


Figure 34. Top Silkscreen

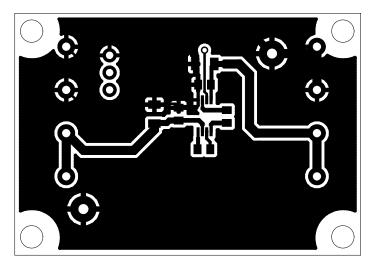
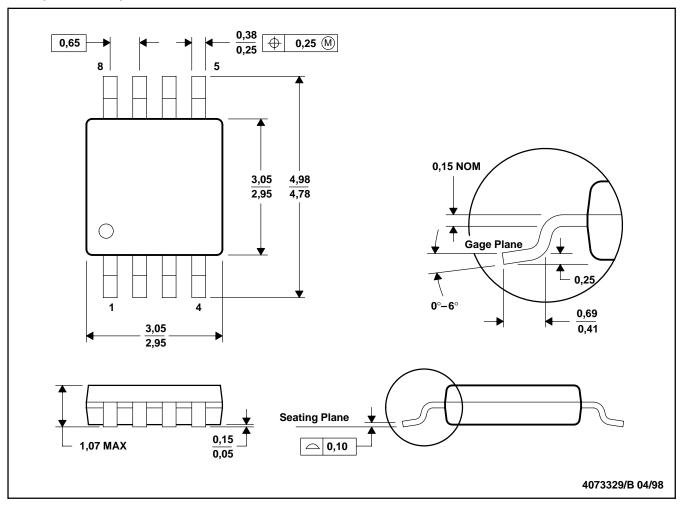


Figure 35. Top Layer

device family products


PART NUMBER	DESCRIPTION		
REG710	30-mA switched cap dc/dc converter		
REG711	50-mA switched cap dc/dc converter		
TPS60110	Regulated 5-V, 300-mA low-noise charge pump dc/dc converter		
TPS60111	egulated 5-V, 150-mA low-noise charge pump dc/dc converter		

MECHANICAL DATA

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion.

D. Falls within JEDEC MO-187

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated