TOSHIBA TLP665J

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRIAC

TLP665J

OFFICE MACHINE

HOUSEHOLD USE EQUIPMENT

TRIAC DRIVER

SOLID STATE RELAY

The TOSHIBA TLP665J consists of a photo-triac optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP.

• Peak Off-State Voltage: 600V (Min.)

• Trigger LED Current : 10mA (Max.)

• On-State Current : 100mA (Max.)

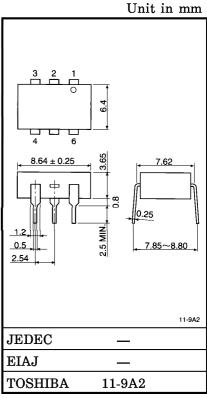
• UL Recognized : UL1577, File No. E67349

• Isolation Voltage : 5000V_{rms} (Min.)

• Option (D4) type

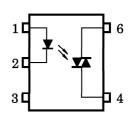
VDE Approved : DIN VDE0884/08.87,

Certificate No. 68383


Maximum Operating Insulation Voltage : 650VPK

Highest Permissible Over Voltage : 6000VPK

(Note 1) When a VDE0884 approved type is needed, please designate the "Option (D4)"


• Structural Parameter

Creepage Distance : 7.0mm (Min.)
Clearance : 7.0mm (Min.)
Insulation Thickness : 0.5mm (Min.)

Weight: 0.44g

PIN CONFIGURATIONS (TOP VIEW)

1 : ANODE 2 : CATHODE

3: NC

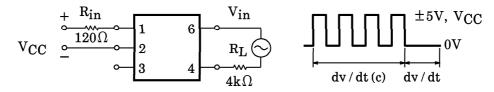
4: TERMINAL 1 6: TERMINAL 2

1 2001-06-01

MAXIMUM RATINGS (Ta = 25°C)

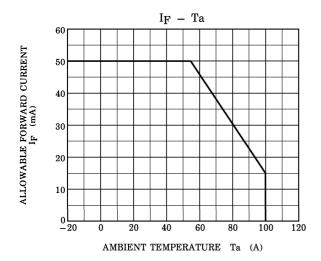
	CHARACTERISTIC		SYMBOL	RATING	UNIT
	Forward Current	${ m I_F}$	50	mA	
	Forward Current Derating (Ta≥53°C)	⊿I _F /°C	-0.7	mA/°C	
	Peak Forward Current (100 µs pulse, 100 pp	os)	I_{FP}	1	A
LED	Power Dissipation		P_{D}	100	mW
	Power Dissipation Derating (Ta≥25°C)		$\Delta P_{\mathbf{D}} / {^{\circ}\mathbf{C}}$	-1.0	mW/°C
	Reverse Voltage		v_{R}	5	V
	Junction Temperature		$T_{ m j}$	125	°C
	Off-State Output Terminal Voltage		$v_{ m DRM}$	600	V
DETECTOR	On-State RMS Current	Ta=25°C		100	A
یا	On-State RMS Current	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	mA	
2	On-State Current Derating (Ta≥25°C)	•	⊿I _T /°C	-1.1	mA/°C
ည္က	Peak On-State Current (100 µs pulse, 120p	ps)	I_{TP}	2	Α
	Peak Nonrepetitive Surge Current		Imare	1.2	Α
	$(P_W = 10 \text{ms}, DC = 10\%)$		TSM	1.2	A
	Total Power Dissipation			300	mW
	Total Power Dissipation Derating (Ta=25°	C)	$\Delta P_{\mathbf{D}}/^{\circ}C$	-4.0	mW/°C
	Junction Temperature		$\mathrm{T_{j}}$	115	$^{\circ}\mathrm{C}$
Sto	rage Temperature Range		$\mathrm{T_{stg}}$	-55~125	°C
Ope	erating Temperature Range			-40~100	°C
Lea	d Soldering Temperature (10s)			260	°C
Tot	al Package Power Dissipation			330	mW
Tot	al Package Power Dissipation Derating (Ta	≥25°C)	$\Delta \overline{\mathrm{P_T}}/\mathrm{^{\circ}C}$	-4.4	mW/°C
Isol	ation Voltage (AC, 1min., R.H. ≤ 60%)	(Note 2)		5000	V _{rms}

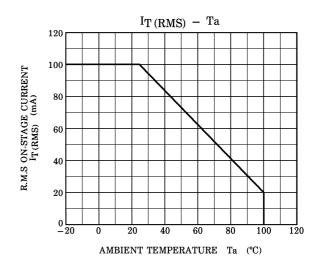
(Note 2) Pin 1, 2 and 3 shorted together and pin 4 and 6 shorted together.

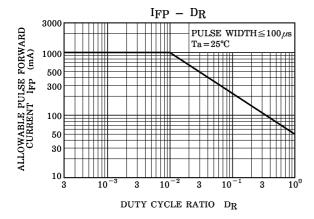

RECOMMENDED OPERATING CONDITIONS

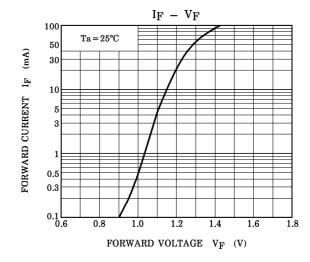
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{AC}	_	_	240	Vac
Forward Current	${ m I_F}$	15	20	25	mA
Peak On-State Current	I_{TP}	_	_	1	A
Operating Temperature	$T_{ m opr}$	-25	_	85	°C

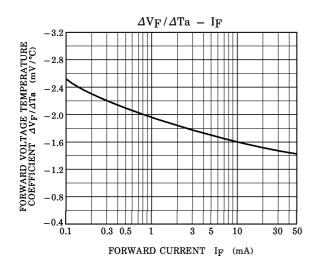
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

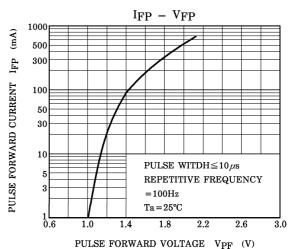

	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Q	Forward Voltage	$ m V_{f F}$	$I_{\mathbf{F}} = 10 \text{mA}$	1.0	1.15	1.3	V
国	Reverse Current	$I_{\mathbb{R}}$	$V_R=5V$	_	_	10	μ A
	Capacitance	C_{T}	V=0, f=1MHz	_	30	_	рF
OR	Peak Off-State Current	I_{DRM}	$V_{ m DRM} = 600 V$	_	10	1000	nA
	Peak On-State Voltage	$V_{ extbf{TM}}$	$I_{TM} = 100 mA$	_	1.7	3.0	V
CIC	Holding Current	${ m I_H}$	_	_	1.0	_	mA
DETEC	Critical Rate of Rise of	dv / dv	$V_{in} = 240V_{rms}$, $Ta = 85$ °C	_	500	_	$V/\mu A$
	Off-State Voltage	uv/uv	(Note 3)				
	Critical Rate of Rise of	dv / dt (c)	V_{in} =60 V_{rms} , I_T =15mA		0.2		V / μ A
	Commutating Voltage		(Note 3)	-	0.2	_	\mathbf{v} / $\mu\mathbf{A}$

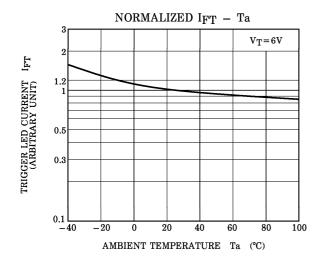

(Note 3) dv/dt TEST CIRCUIT

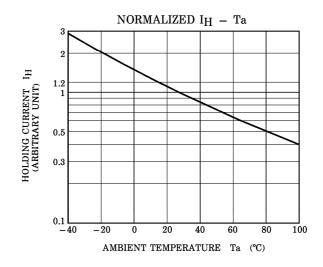


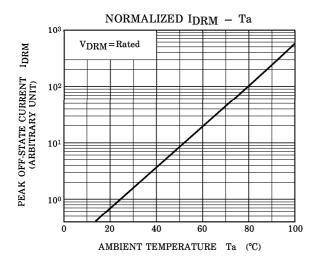

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

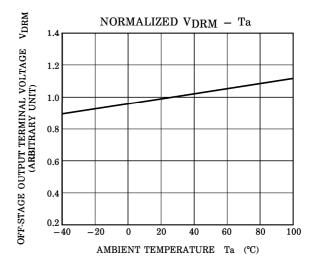

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Trigger LED Current	I_{FT}	$V_T=6V$	_	5	10	mA	
Capacitance (Input to Output)	c_{S}	$V_S=0, f=1MHz$	_	0.8	_	pF	
Isolation Resistance	$R_{\mathbf{S}}$	$V_S = 500V$	5×10^{10}	10^{14}	_	Ω	
		AC, 1 minute	5000	_	_	37	
Isolation Voltage	ı ~ ı	AC, 1 second, in oil	_	10000		$V_{\rm rms}$	
		DC, 1 minute, in oil	_	10000		Vdc	

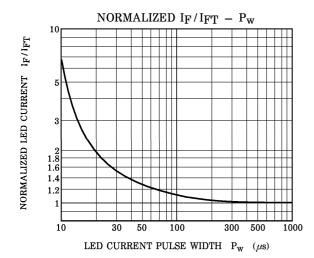











4 2001-06-01

5 2001-06-01

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.