

# L7C108/109

### 128K x 8 Static RAM (Low Power)

#### **FEATURES**

- ☐ 128K x 8 Static RAM with Chip Select Powerdown, Output Enable
- ☐ Auto-Powerdown<sup>TM</sup> Design
- ☐ Advanced CMOS Technology
- ☐ High Speed to 10 ns maximum
- ☐ Low Power Operation Active: 570 mW typical at 15 ns Standby: 5 mW typical
- ☐ Data Retention at 2 V for Battery Backup Operation
- ☐ DSCC SMD No. 5962-89598
- ☐ Available 100% Screened to MIL-STD-883, Class B
- ☐ Plug Compatible with Cypress CY7C108/109, IDT71024/71B024, Micron MT5C1008, Motorola MCM6226A/62L26A, Sony CXK581020
- ☐ Package Styles Available:
  - 32-pin Sidebraze, Hermetic DIP
  - 32-pin Plastic SOJ
  - 32-pin Ceramic LCC
  - 32-pin Ceramic SOJ

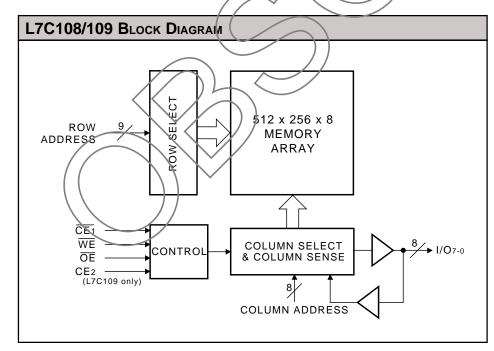
#### DESCRIPTION

The L7C108 and L7C109 are high-performance, low-power CMOS static RAMs. The storage circuitry is organized as 131,072 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. The L7C108 has a single active-low Chip Enable. The L7C109 has two Chip Enables (one active-low). These devices are available in three speeds with maximum access times from 10 ns to 15 ns.

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 930 mW (typical) at 10 ns. Dissipation drops to 50 mW (typical) when the memory is deselected.

Two standby modes are available. Proprietary Auto-Powerdown<sup>TM</sup> circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C108 and L7C109

1


consume only 1.5 mW (typical), at 3 V, allowing effective battery backup operation.

The L7C108 and L7C109 provide asynchronous (unclocked) operation with matching access and cycle times. The Chip Enables and a three-state I/O bus with a separate Output Enable control simplify the connection of several chips for increased storage capacity.

Memory locations are specified on address pins A0 through A16. For the L7C108, reading from a designated location is accomplished by presenting an address and driving CE1 and OE LOW while WE remains HIGH. For the L7C109, CE1 and OE must be LOW while CE2 and WE are HIGH. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when CE1 or OE is HIGH, or CE2 (L7C109) or WE is LOW.

Writing to an addressed location is accomplished when the active-low  $\overline{\text{CE1}}$  and  $\overline{\text{WE}}$  inputs are both LOW, and CE2 (L7C109) is HIGH. Any of these signals may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C108 and L7C109 can withstand an injection current of up to 200 mA on any pin without damage.





### 128K x 8 Static RAM (Low Power)

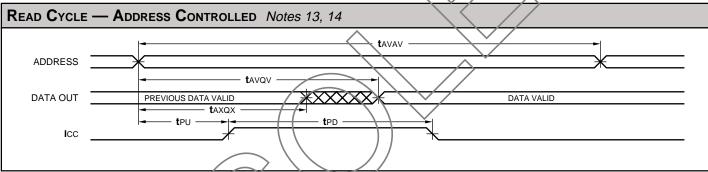
| MAXIMUM RATINGS | Above which useful life may be impaired (Notes 1, 2) |
|-----------------|------------------------------------------------------|
|                 |                                                      |

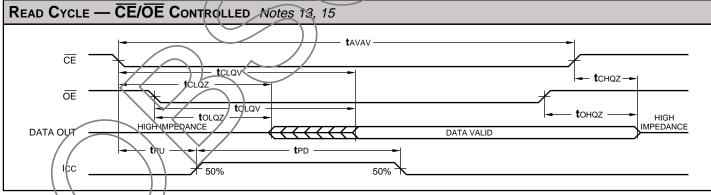
Storage temperature  $-65^{\circ}\text{C}$  to  $+150^{\circ}\text{C}$  Operating ambient temperature  $-55^{\circ}\text{C}$  to  $+125^{\circ}\text{C}$ Vcc supply voltage with respect to ground -0.5 V to +7.0 VInput signal with respect to ground -3.0 V to +7.0 VSignal applied to high impedance output -3.0 V to +7.0 VOutput current into low outputs -3.0 V to +7.0 VLatchup current -3.0 V to -3.0 V to

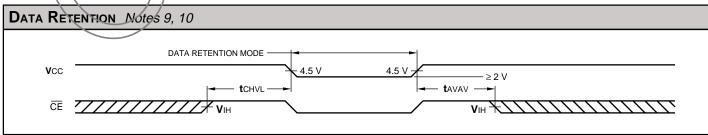
#### **OPERATING CONDITIONS** To meet specified electrical and switching characteristics

| Mode                         | Temperature Range (Ambient) | Supply Voltage              |
|------------------------------|-----------------------------|-----------------------------|
| Active Operation, Commercial | 0°C to +70°C                | 4.5 V ≤ <b>V</b> CC ≤ 5.5 V |
| Active Operation, Industrial | -40°C to +85°C              | 4.5 V ≤ <b>V</b> CC ≤ 5.5 V |
| Active Operation, Military   | -55°C to +125°C             | 4.5 V ≤ <b>V</b> CC ≤ 5.5 V |
| Data Retention, Commercial   | 0°C to +70°C                | 2.0 V ≤ Vcc ≤ 5.5 V         |
| Data Retention, Industrial   | -40°C to +85°C              | 2.0 V ≤ <b>V</b> CC ≤ 5.5 V |
| Data Retention, Military     | −55°C to +125°C             | 2.0 V ≤ <b>V</b> CC ≤ 5.5 V |

| ELECTR      | ICAL CHARACTERISTICS Ove    | er Operating Conditions (Note 5)         |      |         | $\overline{}$       |      |         |                     |      |
|-------------|-----------------------------|------------------------------------------|------|---------|---------------------|------|---------|---------------------|------|
|             |                             | $\wedge$                                 | Γy   | C/108/1 | 09                  | L7C  | 108-L/1 | 09-L                |      |
| Symbol      | Parameter                   | Test Condition                           | Mîn  | Тур     | Max                 | Min  | Тур     | Max                 | Unit |
| <b>V</b> OH | Output High Voltage         | Vcc = 4.5 V IOH = -4.0 mA                | 2.4  |         |                     | 2.4  |         |                     | V    |
| <b>V</b> OL | Output Low Voltage          | IOL = 8 0 mA                             |      |         | 0.4                 |      |         | 0.4                 | V    |
| <b>V</b> IH | Input High Voltage          |                                          | 2.2  |         | <b>V</b> CC<br>+0.5 | 2.2  |         | <b>V</b> cc<br>+0.3 | V    |
| <b>V</b> IL | Input Low Voltage           | (Note 3)                                 | -0.5 |         | 0.8                 | -3.0 |         | 0.8                 | V    |
| lix         | Input Leakage Current       | GND ≤ VIN ≤ VCC                          | -5   |         | +5                  | -10  |         | +10                 | μΑ   |
| loz         | Output Leakage Current      | (Note 4)                                 | -5   |         | +5                  | -10  |         | +10                 | μΑ   |
| ICC2        | Vcc Current, TTL Inactive   | Note 7)                                  |      | 10      | 35                  |      |         | 25                  | mA   |
| Іссз        | Vcc Current, CMOS Standby   | (Note 8)                                 |      | 1       | 5.0                 |      |         | 0.9                 | mA   |
| ICC4        | Vcc Current, Data Retention | <b>V</b> CC = 3.0 V (Notes 9, 10)        |      | 500     | 1000                |      |         | 300                 | μΑ   |
| CIN         | Input Capacitance           | Ambient Temp = 25°C, <b>V</b> cc = 5.0 V |      |         | 7                   |      |         | 5                   | pF   |
| Соит        | Output Capacitance          | Test Frequency = 1 MHz (Note 10)         |      |         | 8                   |      |         | 7                   | pF   |


|        |                     |                | 1   | L7C108 | 3/109- |      |
|--------|---------------------|----------------|-----|--------|--------|------|
| Symbol | Parameter           | Test Condition | 15  | 12     | 10     | Unit |
| ICC1   | Vcc Current, Active | (Note 6)       | 160 | 170    | 180    | mA   |



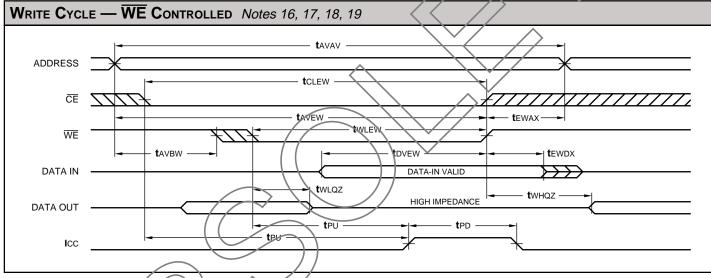


## 128K x 8 Static RAM (Low Power)

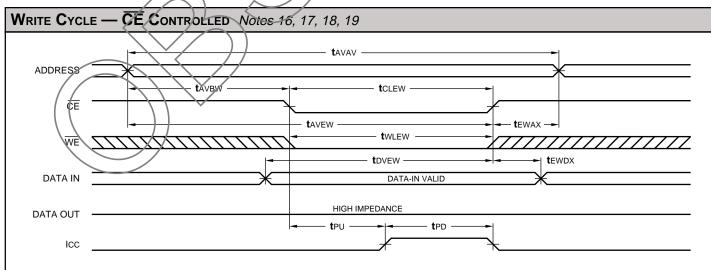
### **SWITCHING CHARACTERISTICS** Over Operating Range

| CYCLE Notes 5, 11, 12, 22, 23, 24 (ns)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .7C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Parameter                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Read Cycle Time                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address Valid to Output Valid (Notes 13, 14)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Address Change to Output Change                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chip Enable Low to Output Valid (Notes 13, 15)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chip Enable Low to Output Low Z (Notes 20, 21)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chip Enable High to Output High Z (Notes 20, 21)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\vee$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Output Enable Low to Output Valid                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Output Enable Low to Output Low Z (Notes 20, 21)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Output Enable High to Output High Z (Notes 20, 21) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Input Transition to Power Up (Notes 10, 19)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Power Up to Power Down (Notes 10, 19)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chip Enable High to Data Retention (Note 10)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    | Parameter  Read Cycle Time  Address Valid to Output Valid (Notes 13, 14)  Address Change to Output Change  Chip Enable Low to Output Valid (Notes 13, 15)  Chip Enable Low to Output Low Z (Notes 20, 21)  Chip Enable High to Output High Z (Notes 20, 21)  Output Enable Low to Output Valid  Output Enable Low to Output Low Z (Notes 20, 21)  Output Enable High to Output High Z (Notes 20, 21)  Output Enable High to Output High Z (Notes 20, 21)  Input Transition to Power Up (Notes 10, 19)  Power Up to Power Down (Notes 10, 19) | Parameter  Read Cycle Time  Address Valid to Output Valid (Notes 13, 14)  Address Change to Output Change  Chip Enable Low to Output Valid (Notes 13, 15)  Chip Enable Low to Output Low Z (Notes 20, 21)  Chip Enable High to Output High Z (Notes 20, 21)  Output Enable Low to Output Valid  Output Enable Low to Output Low Z (Notes 20, 21)  Output Enable High to Output High Z (Notes 20, 21)  Output Enable High to Output High Z (Notes 20, 21)  Input Transition to Power Up (Notes 10, 19)  Power Up to Power Down (Notes 10, 19) | Parameter  Min  Read Cycle Time  Address Valid to Output Valid (Notes 13, 14)  Address Change to Output Change  Chip Enable Low to Output Valid (Notes 13, 15)  Chip Enable Low to Output Low Z (Notes 20, 21)  Chip Enable High to Output High Z (Notes 20, 21)  Output Enable Low to Output Valid  Output Enable Low to Output High Z (Notes 20, 21)  Output Enable High to Output High Z (Notes 20, 21)  Output Enable High to Output High Z (Notes 20, 21)  Output Enable High to Output High Z (Notes 20, 21)  Input Transition to Power Up (Notes 10, 19)  Power Up to Power Down (Notes 10, 19) | L           15           Parameter         Min         Max           Read Cycle Time         15           Address Valid to Output Valid (Notes 13, 14)         15           Address Change to Output Change         15           Chip Enable Low to Output Valid (Notes 13, 15)         16           Chip Enable Low to Output Low Z (Notes 20, 21)         3           Chip Enable High to Output High Z (Notes 20, 21)         4           Output Enable Low to Output Valid         7           Output Enable High to Output Low Z (Notes 20, 21)         4           Output Enable High to Output High Z (Notes 20, 21)         4           Input Transition to Power Up (Notes 10, 19)         0           Power Up to Power Down (Notes 10, 19)         15 | L7C10           15         1           Parameter         Min         Max         Max <th< td=""><td>L7C108/109           15 12           Parameter         Min         Max         Min         Max           Read Cycle Time         15         12           Address Valid to Output Valid (Notes 13, 14)         15         12           Address Change to Output Change         15         12           Chip Enable Low to Output Valid (Notes 13, 15)         15         12           Chip Enable Low to Output Low Z (Notes 20, 21)         3         3           Chip Enable High to Output High Z (Notes 20, 21)         4         3           Output Enable Low to Output Valid         7         6           Output Enable Low to Output Low Z (Notes 20, 21)         8         0           Output Enable High to Output High Z (Notes 20, 21)         4         3           Input Transition to Power Up (Notes 10, 19)         0         0           Power Up to Power Down (Notes 10, 19)         15         12</td><td>L7C108/109—15           Parameter         Min         Max         Min           Address Valid to Output Valid (Notes 13, 14)         15         12         10           Chip Enable Low to Output Valid (Notes 13, 15)         15         12         10           Chip Enable High to Output High Z (Notes 20, 21)         3         3         3         3           Chip Enable Low to Output Valid         7         6         6         7         6           Output Enable Low to Output Low Z (Notes 20, 21)         8         0         0         0           Output Enable High to Output High Z (Notes 20, 21)         4         3         3           Input Transition to Power Up (Notes 10, 19)         0         0         0         0           Power Up to Power Down (Notes 10, 19)         15         12         12</td></th<> | L7C108/109           15 12           Parameter         Min         Max         Min         Max           Read Cycle Time         15         12           Address Valid to Output Valid (Notes 13, 14)         15         12           Address Change to Output Change         15         12           Chip Enable Low to Output Valid (Notes 13, 15)         15         12           Chip Enable Low to Output Low Z (Notes 20, 21)         3         3           Chip Enable High to Output High Z (Notes 20, 21)         4         3           Output Enable Low to Output Valid         7         6           Output Enable Low to Output Low Z (Notes 20, 21)         8         0           Output Enable High to Output High Z (Notes 20, 21)         4         3           Input Transition to Power Up (Notes 10, 19)         0         0           Power Up to Power Down (Notes 10, 19)         15         12 | L7C108/109—15           Parameter         Min         Max         Min           Address Valid to Output Valid (Notes 13, 14)         15         12         10           Chip Enable Low to Output Valid (Notes 13, 15)         15         12         10           Chip Enable High to Output High Z (Notes 20, 21)         3         3         3         3           Chip Enable Low to Output Valid         7         6         6         7         6           Output Enable Low to Output Low Z (Notes 20, 21)         8         0         0         0           Output Enable High to Output High Z (Notes 20, 21)         4         3         3           Input Transition to Power Up (Notes 10, 19)         0         0         0         0           Power Up to Power Down (Notes 10, 19)         15         12         12 |








### 128K x 8 Static RAM (Low Power)

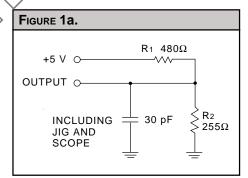
### SWITCHING CHARACTERISTICS Over Operating Range

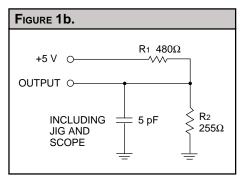
| WRITE         | Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)     |     |     |       |          |     |     |  |
|---------------|--------------------------------------------------|-----|-----|-------|----------|-----|-----|--|
|               |                                                  |     | L   | -7C10 | 8/109    | _   |     |  |
|               |                                                  | 1   | 5   | 1     | 2        | 1   | 0   |  |
| Symbol        | Parameter                                        | Min | Max | Min   | Max      | Min | Max |  |
| <b>t</b> avav | Write Cycle Time                                 | 15  |     | 12    |          | 10  |     |  |
| <b>t</b> CLEW | Chip Enable Low to End of Write Cycle            | 13  |     | 10    |          | 9   |     |  |
| <b>t</b> avbw | Address Valid to Beginning of Write Cycle        | 0   |     | 9     |          | 0   |     |  |
| <b>t</b> avew | Address Valid to End of Write Cycle              | 13  | //  | 10    | $\wedge$ | 9   |     |  |
| <b>t</b> EWAX | End of Write Cycle to Address Change             | 0   |     | 0/    |          | 0   |     |  |
| <b>t</b> WLEW | Write Enable Low to End of Write Cycle           | 11) |     | 9/    |          | 8   |     |  |
| <b>t</b> dvew | Data Valid to End of Write Cycle                 | 8   |     | 6     |          | /5  |     |  |
| <b>t</b> EWDX | End of Write Cycle to Data Change                | 9   |     | 0     |          | 0   |     |  |
| <b>t</b> whqz | Write Enable High to Output Low Z (Notes 20, 21) | 3   |     | 3     |          | 3   |     |  |
| <b>t</b> WLQZ | Write Enable Low to Output High Z (Notes 20, 21) |     | 5   |       | 5        |     | 5   |  |

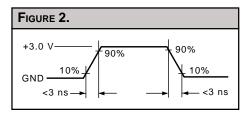




### 128K x 8 Static RAM (Low Power)


#### **NOTES**


- 1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
- 2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
- 3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at  $-0.6~\rm V$ . A current in excess of  $100~\rm mA$  is required to reach  $-2.0~\rm V$ . The device can withstand indefinite operation with inputs as low as  $-3~\rm V$  subject only to power dissipation and bond wire fusing constraints.
- 4. Tested with  $GND \le VOUT \le VCC$ . The device is disabled, i.e.,  $\overline{CE1} = VCC$ , CE2 = GND.
- 5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
- 6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e.,  $\overline{\text{CE1}} \leq \text{VIL}$ ,  $\text{CE2} \geq \text{VIH}$ ,  $\overline{\text{WE}} \leq \text{VIL}$ . Input pulse levels are 0 to 3.0 V.
- 7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e.,  $\overline{\text{CE}}_1 \ge \text{VIH}$ ,  $\overline{\text{CE}}_2 \le \text{VIL}$ .
- 8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., E1 = VCC, CE2 = GND Input levels are within 0.2 V of VCC or GND.
- 9. Data retention operation requires that VCC never drop below 2.0 V.  $\overline{CE1}$  must be  $\geq VCC 0.2$  V or CE2 must be  $\leq 0.2$  V. All other inputs must meet  $VIN \geq VCC 0.2$  V or  $VIN \leq 0.2$  V to ensure full powerdown. For low power version (if applicable), this requirement applies only to  $\overline{CE1}$ , CE2, and  $\overline{WE}$ ; there are no restrictions on data and address.
- 10. These parameters are guaranteed but not 100% tested.


- 11. Test conditions assume input transition times of less than 3 ns, reference levels of 1.5 V, output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
- 12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
- 13.  $\overline{\text{WE}}$  is high for the read cycle.
- 14. The chip is continuously selected (CE1 low, CE2 high).
- 15. All address lines are valid prior-to or coincident-with the CE1 and CE2 transition to active.
- 16. The internal write cycle of the memory is defined by the overlap of CE1 and CE2 active and WE low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
- 17. If WE goes low before or concurrent with the latter of CE1 and CE2 going active, the output remains in a high impedance state.
- 48. If CE1 and CE2 goes inactive before or concurrent with WE going high, the output remains in a high impedance state.
- 19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
- a. Rising edge of  $\overline{CE2}$  ( $\overline{CE1}$  active) or the falling edge of  $\overline{CE1}$  ( $\overline{CE2}$  active).
- b. Falling edge of  $\overline{WE}$  ( $\overline{CE1}$ , CE2 active).
- c. Transition on any address line ( $\overline{\text{CE}}_1$ , CE2 active).
- d. Transition on any data line ( $\overline{\text{CE}}_1$ , CE2, and  $\overline{\text{WE}}$  active).

The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width

- 20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
- 21. Transition is measured  $\pm 200$  mV from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
- 22. All address timings are referenced from the last valid address line to the first transitioning address line.
- 23. CE1, CE2, or WE must be inactive during address transitions.
- 24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A 0.01 µF high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

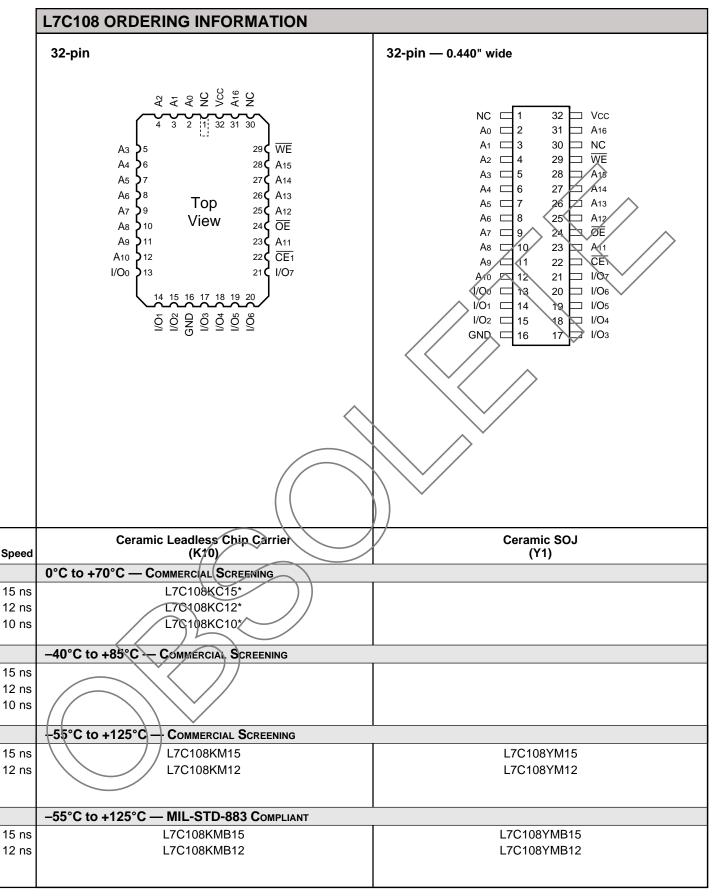








### 128K x 8 Static RAM (Low Power)


|                                      | 32-pin — 0.4" wide                                                                                   | 32-pin — 0.4" wide                                       |
|--------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                      |                                                                                                      |                                                          |
|                                      | NC [1 32] Vcc                                                                                        | NO Ed. 22 No.                                            |
|                                      | NC ☐1 32 ☐ Vcc<br>A0 ☐2 31 ☐ A16                                                                     | NC □ 1 32 □ Vcc<br>A0 □ 2 31 □ A16                       |
|                                      | A1 [] 3 30 [] NC                                                                                     | A1 □ 3 30 □ NC                                           |
|                                      | A2                                                                                                   | A2 ☐ 4 29 ☐ WE<br>A3 ☐ 5 28 ☐ A19                        |
|                                      | A4 🛮 6 27 🕽 A14                                                                                      | A4 🖂 6 27 🗖 A14                                          |
|                                      | A5 ☐ 7 26 ☐ A13<br>A6 ☐ 8 25 ☐ A12                                                                   | A5                                                       |
|                                      | A7 🗍 9 24 🗍 ŌĒ                                                                                       | A7 🖂 9 🔷 24 🗖 🔎                                          |
|                                      | A8 ☐ 10 23 ☐ A11<br>A9 ☐ 11 22 ☐ CE1                                                                 | A8 10 23 A A0<br>A9 01 22 CE1                            |
|                                      | A10 12 21 1/O7                                                                                       | An 12 21 1/07                                            |
|                                      |                                                                                                      | √06 ☐ 13 20 ☐ 1/06<br>1/01 ☐ 14 19 ☐ 1/05                |
|                                      | I/O2 ☐ 15 18 ☐ I/O4                                                                                  | 1/02                                                     |
|                                      | GND 16 17 1/O3                                                                                       | GND 16 17 1/O3                                           |
|                                      |                                                                                                      |                                                          |
|                                      |                                                                                                      |                                                          |
|                                      | ^                                                                                                    |                                                          |
|                                      |                                                                                                      |                                                          |
|                                      |                                                                                                      |                                                          |
|                                      |                                                                                                      |                                                          |
|                                      |                                                                                                      |                                                          |
|                                      |                                                                                                      |                                                          |
| peed                                 | Sidebraze Hermetic DIP<br>(D/12)                                                                     | Plastic SOJ<br>(W6)                                      |
|                                      | 0°C to +70°C — COMMERCIAL SCREENING                                                                  | (113)                                                    |
|                                      | L7C108QC15*                                                                                          |                                                          |
|                                      |                                                                                                      | L7C108WC15*                                              |
| 2 ns                                 | L76108DC12*                                                                                          | L7C108WC12*                                              |
| 2 ns                                 | L7G108DC12*<br>L7G108DC10*                                                                           |                                                          |
| 2 ns<br>0 ns                         | L7C108DC12* L7C108DC10*  -40°C to +85°C — Commercial Screening                                       | L7C108WC12*<br>L7C108WC10*                               |
| 5 ns<br>2 ns<br>0 ns<br>5 ns<br>2 ns | L7C108DC12* L7C108DC10*  -40°C to +85°C — COMMERCIAL SCREENING                                       | L7C108WC12*<br>L7C108WC10*<br>L7C108WI15*                |
| 2 ns<br>0 ns<br>5 ns<br>2 ns         | L7G108DC12* L7G108DC10*  -40°C to +85°C — Commercial Screening                                       | L7C108WC12*<br>L7C108WC10*                               |
| 2 ns<br>0 ns<br>5 ns<br>2 ns         | L76108DC12* L76108DC10*  -40°C to +85°C — Commercial Screening                                       | L7C108WC12*<br>L7C108WC10*<br>L7C108WI15*<br>L7C108WI12* |
| 2 ns<br>0 ns<br>5 ns<br>2 ns<br>0 ns | -40°C to +85°C — COMMERCIAL SCREENING  -55°C to +125°C — COMMERCIAL SCREENING                        | L7C108WC12*<br>L7C108WC10*<br>L7C108WI15*<br>L7C108WI12* |
| 2 ns<br>0 ns<br>5 ns<br>2 ns<br>0 ns | -40°C to +85°C — Commercial Screening  -55°C to +125°C — Commercial Screening                        | L7C108WC12*<br>L7C108WC10*<br>L7C108WI15*<br>L7C108WI12* |
| 2 ns<br>0 ns<br>5 ns<br>2 ns<br>0 ns | -40°C to +85°C — COMMERCIAL SCREENING  -55°C to +125°C — COMMERCIAL SCREENING  L7C108DM15            | L7C108WC12*<br>L7C108WC10*<br>L7C108WI15*<br>L7C108WI12* |
| 2 ns<br>0 ns<br>5 ns<br>2 ns<br>0 ns | -40°C to +85°C — COMMERCIAL SCREENING  -55°C to +125°C — COMMERCIAL SCREENING  L7C108DM15            | L7C108WC12*<br>L7C108WC10*<br>L7C108WI15*<br>L7C108WI12* |
| 2 ns<br>0 ns<br>5 ns<br>2 ns         | -40°C to +85°C — COMMERCIAL SCREENING  -55°C to +125°C — COMMERCIAL SCREENING  L7C108DM15 L7C108DM12 | L7C108WC12*<br>L7C108WC10*<br>L7C108WI15*<br>L7C108WI12* |

<sup>\*</sup>The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C108WI10L)

03/04/99-LDS.108/9-N



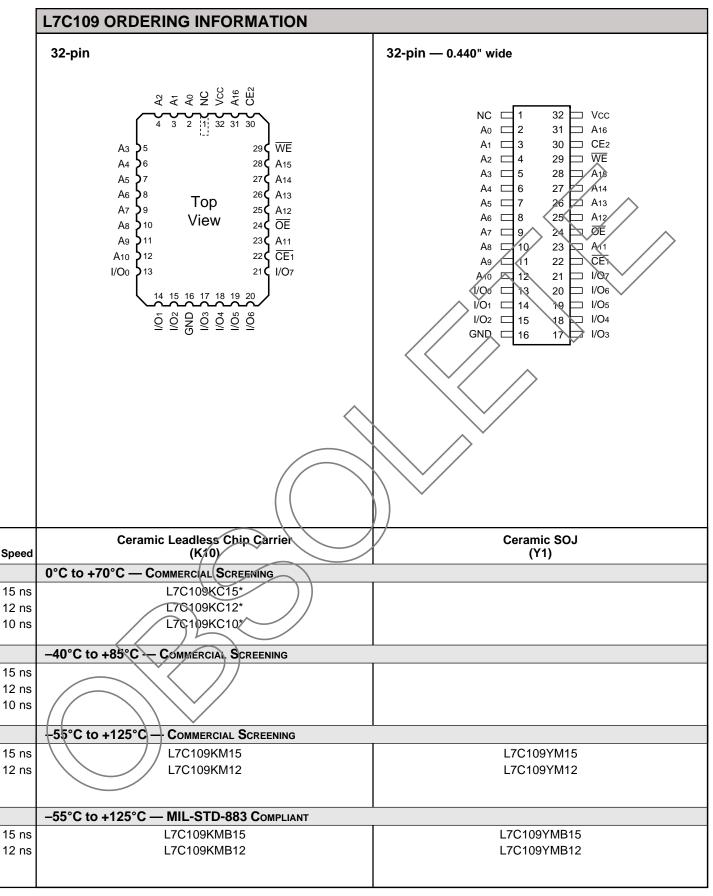
### 128K x 8 Static RAM (Low Power)



<sup>\*</sup>The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C108KC10L)



# 128K x 8 Static RAM (Low Power)


| 32-pin — 0.4" wide                          | 32-pin — 0.4" wide                        |
|---------------------------------------------|-------------------------------------------|
| NC                                          | NC                                        |
| Sidebraze Hermetic DIP                      | Plastic SOJ                               |
| d (D/2) 0°C to +70°C — Commercial Screening | (W6)                                      |
| E                                           | L7C109WC15*<br>L7C109WC12*<br>L7C109WC10* |
| -40°C to +85°C — COMMERCIAL SCREENING       |                                           |
| S S S S                                     | L7C109WI15*<br>L7C109WI12*<br>L7C109WI10* |
| -55°C to +125°C — Commercial Screening      |                                           |
| L7C109DM15<br>L7C109DM12                    |                                           |
| -55°C to +125°C — MIL-STD-883 COMPLIANT     |                                           |
| L7C109DMB15<br>s L7C109DMB12                |                                           |

<sup>\*</sup>The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C109WI10L)

03/04/99-LDS.108/9-N



### 128K x 8 Static RAM (Low Power)



<sup>\*</sup>The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C109KC10L)